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Introduction: a quick recap on sonAIR
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An emission model for the accurate simulation of
single flights

• The emission model accounts for both engine and airframe noise

• Considers the most important effects based on physics
I Directivity (θ, ϕ)
I Engine power (N1, N12)
I Aeroacoustic sources (Ma, ρ)
I Configuration (LG , FH, SB)
I Interactions (e.g. change of directivity with engine power)

• Spectral model in 1/3 octave bands, between 25 Hz – 5 kHz
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Application in current and future aircraft noise topics

• Increased accuracy for standard applications
I Calculation of noise maps for yearly traffic

• Unique new applications
I Assessment and optimization of noise abatement procedures
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Zellmann et al. (2018), Aircraft Noise Emission Model Accounting for Aircraft Flight Parameters, Journal of Aircraft
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Motivation: the need for a parameter estimation
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Engine and airframe input parameters are needed

• Commonly available inputs:
I Radar data: x(t), y(t), z(t)
I List of movements: aircraft type, date, time, [mass], destination, ...

• Required sonAIR inputs:
I Directivity (θ, ϕ) → from geometry 3
I Engine power (N1, N12) → 7
I Aeroacoustic sources (Ma, ρ) → from geometry and ISA 3
I Configuration (LG , FH, SB) → 7

→ For the application of sonAIR, it is essential to determine the missing
engine and airframe parameters: N1 and configuration
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Is a solution by calculation possible?

Problem: estimate N1 (← F ), flap handle (← A), landing gear (←W ){
m · axy = F · cos (γ + α) −W · cos γ +A · cos

(
π
2 + γ

)
m · az = F · sin (γ + α) −W · sin γ +A · sin

(
π
2 + γ

)
−m · g

xy

z

W

A
F

m·g

α

γ
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Separation into two independent sub-problems

• From balance of forces:
I Too many unknowns for direct solution
I No unique solution for configuration (e.g. ∆ in lift caused by flap

change can be compensated for by angle-of-attack)

• The problem is divided into two independent problems

1 The configuration is estimated using machine learning
2 N1 is estimated using an engineering approach

• Assumptions for independence of the two sub-problems:
I Configuration changes occur mainly based on altitude / aircraft speed
I N1 estimation assumes a mean configuration profile

• Restriction: requires training data

→ shown here: 1 for approaches, 2 for departures
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Methods: the machine learning solution for the
aerodynamic part

10 / 25



Configuration is a machine learning problem

• Configuration cannot be solved for uniquely, but for each point in
time there is a most likely configuration

• Machine learning problem: classification task with supervised learning:

{h, v , vz} → {flap handle, landing gear}

• Possible to build for approaches and departures for all available
aircraft types

• Example here: SVM classifier
→ hyperplane so that the distance from it to the nearest data point
on each side is maximized
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Example: classifiers for approaches A320

1 Flap handle:

{h, v} → {flap handle}

2,000 4,000
60

80

100

120

140

Altitude [m]

G
ro
u
n
d
sp
ee
d
[m

/s
]

0

1

2

3

4

Estimated accuracy: 82%
(cross-validation)

2 Landing gear:

{h, v} → {landing gear}

2,000 4,000
60

80

100

120

140

Altitude [m]

G
ro
u
n
d
sp
ee
d
[m

/s
]

0

1

Estimated accuracy: 96%
(cross-validation)

12 / 25



Methods: the engineering solution for the engine part
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Departures are modeled by segment-wise N1-profiles

N1-profiles A320
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Take-off profiles account for flex take-off

Ansatz: N12
h=hi

= a0 + a1 ·m · cos γ̄ + a2 ·m · sin γ̄ + a3 · Th=hi

• Thrust is a function of mass and climb behavior (balance of forces
under assumptions a ≈ 0, γ ≈ const. = γ̄):

F = f (m · cos γ̄,m · sin γ̄)

• Thrust is a quadratic function of N1:

Fh=hi ∝ N12
h=hi

• N12 is approximately linearly dependent on temperature:

N12
h=hi
∝ Th=hi

• [Proxy for aircraft mass: m ∝ v2
IC ]
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Climb profiles account for de-rated climb

Ansatz: 1 per de-rate 2 N1h=hi = a · |Th=hi − b|+ c

• One or two de-rated climb settings, e.g. N1 at h = 2 000 m over
ground
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• Variance inside climb setting is due to temperature variations
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How to distinguish climb settings?

Two factors to consider: aircraft mass m and increase in energy ∆E
between two points in time t1 and t2, e.g. h1 = h(t1) = 1 000 m over
ground and h2 = h(t2) = h(t1 + 300 s).

1 m 2
∆E

m
= 0.5 ·

(
v2

2 − v2
1

)
+ g · (h2 − h1)
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Example N1-profiles for A333
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Summary: increased accuracy
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Roundup and conclusions

• sonAIR is able to provide increased accuracy for existing aircraft noise
applications as well as the application to new kinds of investigations
using single flights

• The parameter estimation is crucial for the application of sonAIR

• The solution consists in
I Using machine learning for the configuration problem
I Using an engineering approach for the N1 estimation problem

• Validation shows good agreement, resulting in receiver LAE errors of
less than 1 dB for both close and far range

• Solution works for non-SWISS aircraft and other airports
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Challenges and next steps: towards generalization
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Improvements for further generalization

• Addition of new aircraft types, e.g. Bombardier C-Series
• Improve training database for non-SWISS aircraft

I In-house N1 determination from acoustics
• Investigation into procedures for a variation of airlines and airports

I ICAO Noise Abatement Departure Procedures NADP 1&2:
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Outlook: live aircraft noise calculations with sonAIR
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Live aircraft noise calculations with sonAIR

Pilot project for Airbus: Empa in cooperation with partner n-Sphere
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https://sonair.n-sphere.ch/apps/realtime/


Thank you for your attention. Questions?
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