Willkommen Welcome Bienvenue

CSA annual workshop October 10th, 2019

Christoph Zellmann

Content

- Introduction
- sonAIR
- Future prognosis
- Case study Geneva
- Flight tests at Zurich airport

Applications

Conclusions

Introduction

- Why aircraft noise calculations?
 - Thousands of microphones are impractical an expensive
 - Monitoring of the noise around airports
 - Explain and show changes
 - Predict future development
 - Protection of residents
 - Sound insulation
 - Land use planning
 - Health effect studies

Introduction

Balanced Approach to aircraft noise Future prognosis •Ban of old and loud aircraft Reduction of noise •Noise related charges to promote quieter at source aircraft Case study Geneva Land-use planning Noise monitoring / zoning and management Sound insulation program Flight tests at Zurich airport Noise abatement Noise preferential routes operational Reduced power / Reduced drag techniques procedures

• Partial restrictions for a time period and runway

Night time restrictions

Operating

restrictions

Introduction

- Best-Practice models
 - Defined by law or recommended
 - → Focus on yearly air traffic and prognoses (mean values)
 - → Fast algorithms on the costs of simplifications
 - → Influence of airspeed, configuration or sometimes even thrust not or insufficiently modeled
- Scientific models
 - → Focus on single flights/procedures
 - → Current and future aircraft types
 - → Complex algorithms and computational expensive
 - → Full scenarios are possible with todays hardware

sonAIR

Aircraft noise emission model

- One-third-octave bands from 25 Hz 5 kHz
- 3D directivity pattern
- Separation of engine and airframe noise
- Noise emission depends on flight parameters

The sonX propagation model

- In one-third-octave bands from 25 Hz 5 kHz
- Direct sound calculation under the assumption of a homogeneous atmosphere
- Three optional refinements:
 - METEO: Correction for meteorological effects
 - REFLECT: Reflections at buildings and walls (specular reflections and scattering)
 - FOREST: Diffuse reflections from forest edges and cliffs

Time-step simulation

- Simulation of each single path with a time-step method
- Sound emissions are read and interpolated from a lookup table
- Attenuations are read from a database (sonX) or directly calculated for simple situations

Calculation example

Future prognosis

Background

- New generation of high-bypass-ratio turbofans
- Promising 15% less fuel consumption and 50% reduction of noise
- Over 1 000 deliveries, more than 11 000 orders
- Production rates Airbus: 60 per month / Boeing: currently huge problems

How does this development change the ground noise exposure of a single-runway airport (near future)?

Method

- J. Delfs et. al. (2018), Aircraft Noise Assessment—From Single Components to Large Scenarios, MDPI Energies.
- Combination two scientific tools for aircraft noise calculations
- PANAM predicts the noise emission of novel aircraft concepts
- sonAIR assesses scenarios and adds emission models for current aircraft types

Development of A320 family

- Retirement of ceo via age structure and survivor curve
- Introduction of neo with 60 aircraft per month

2025 vs. 2015

2025: 186 000 flights 2035: 205 000 flights

2035 vs. 2015

Case study Geneva

Case study Geneva

Flight test at Zurich airport

- CDA approach using Low Noise Augmentation System (LNAS)
- Cooperation of Skylab, DLR and Empa

Project scope

- Today: high variations in altitude, speed and configuration
 - Imprecise information of the expected distance to touch down
 - Speed restrictions
 - Altitude restrictions
 - → Compromise between efficiency and reserve
 - → Rules of thumbs are used
- Scope: automatize the approach to reduce
 - Noise
 - Fuel
 - Work load

Example approach with early landing gear

Acoustic Footprint

Potential

Empa
Materials Science and Technology

- Two outliers compared:
- Landing gear 6'800 m / 76 s later
- Sound exposure differs up to 4 dB
- Spoiler and early flap setting also add up to 4 dB
- → Potential for reductions with LNAS
- Analysis is ongoing

Conclusions

Conclusions

- Scientific models and collaboration are needed to tackle measures of the balanced approach, e.g. to
 - improve the prediction future developments,
 - calculate reflections and shielding in densely populated areas,
 - assess new flight procedures and low-noise systems.
- Visualization helps to communicate changes/improvements and complicated topics

Backup

Results: Contour areas

Compared to 2015

- Slight improvement for 2025 despite growth of traffic
- Reduction potential of 8% to 24% of the noise contour area was found for the year 2035

L _{eq} dB	2015	2025	Δ_{2015}	2035 Δ_{2015}
50	192.4	189.2	-2%	176.6 -8%
55	64.0	59.5	-7%	53.7 -16%
60	27.1	25.8	-5%	23.4 -13%
65	11.3	10.3	-9%	8.6 -24%
70	4.0	3.7	-9%	3.1 -22%

Backup: Influence of land cover and terrain

