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Introduction

The recent evolution of the femtosecond laser technology has made possible
the use of very short and energetic pulses, which has opended a wide range
of new experiments that has led to new understandings of the matter and of
the light-matter interaction. In dielectrics, the discovering that pulses under
250 fs and under 1.6 µJ can modify permanently the refractive index without
breaking the material has lead to new applications such as Bragg gratings in
SiO2[1][2][3]. At higher energies, very precise 3D nano processing inside the
bulk has been shown possible[2][4][5][6]. Despite those practical achievement,
the physical mechanisms are still not fully undestood. Indeed, the light-matter
interaction mecanisms are different than the ones at longer time pulses[7]. When
at picosecond laser pulses the main effects are thermal, it is not the case for fem-
tosecond pulses. In this master thesis, we will focus on the interaction between
femtosecond laser pulses and dielectrics such as fused silica and sapphire. First,
the underlying theories will be briefly recalled. Then, we will present the dif-
ferents experimental setups that make us possible to follow the excitation and
relaxation of electrons on very short time scales, and on longer time scale. In
addition to the experimental results, we will also present the new results we
obtained thanks to numerical simulations, and show how those results draw a
different pictures of the light-matter interraction with ultrashort pulses that the
one commonly accepted.
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Chapter 1

Theory

1.1 Backgound

1.1.1 The free electron Drude model

This model has been developed by Paul Drude in 1900. It has been developed
in analogy with the gas kinetic theory and applied to the electrons in metals.
Indeed, the electrons are considered in this model as a gas of particles accelerated
by the magnetic and electric fields, and slowed by collisions with the atoms
cores. Though it has been proved that it was based on false hypotheses, the
model still gives surprisingly good predictions, and gives an explanation to some
characteristics of metals such as electric conductivity, thermic conductivity and
Hall effect.

The hypotheses
The hypotheses in the Drude model are :

� The negative charge carriers are electrons that behave as a gas on which
the kinetic theory can be applied.

� The positive charge carriers can be considered as not moving because they
are a lot heavier.

� There are no interactions between electrons. The electrons can be de-
scribed classically.

� Collisions are instantaneous, and modify the speed of electrons instanta-
neously. The probability there is a collision between t and t+dt is given
by dt

τ where τ is the mean time between two collisions.

Determination of the refractive index with the Drude-Lorentz model
[8]

The goal of the Drude-Lorentz model is to model the interaction between light
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and an atom with a single resonant frequency. The displacement of the atom is
calculated as :

m
d2x

dt2
+mωc

dx

dt
+mω2

0x = −eE

where m is the mass of the electron, ωc a damping term representing the loss of
energy by collisions of the atom, and ω0 is the atom resonant frequency. Let’s
now describe the light :

E(t) = E0cos(ωt+ Φ) = E0<(e−i(ωt+φ))

where ω is the frequency of the light. When incorporating the latter equation
on the first, we find that :

x(t) = − eE0/m

ω0 − ω2 − iωωc
e−iωt

The resonant polarization created by the dipoles due to the displacements of
the atoms from their equilibrium can be caluclated as :

Presonant =
Ne2

m

1

(ω2
0 − ω2 − iωωc)

E

where N is the number of atoms per unit volume. This can be used to calculate
the relative dielectric constat εr. From the Maxwell’s equation, we know that :

D = ε0E + P

= ε0E + Pbackground + Presonant

= ε0E + ε0χE + Presonant

= ε0εrE

where we assumed in the last relation that the material is isotropic. χ is the
electric susceptibility. This gives us :

εr(ω) = n2(ω) = 1 + χ+
Ne2

ε0m

1

(ω0 − ω2 − iωcω)

In the free electron model, the electrons are not bound to the nucleus, which
means that in this case, ω0 = 0. For n0 = 1 + χ, we have :

n2(ω) = εr(ω) = n0 −
Ne2

ε0m

1

(ω2 + iωcω)

This relation will prove usefull in the next of the report.
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Figure 1.1: Origin of the bands

1.1.2 The band theory

The band theory derives from the orbital theory. It describes the different
energies an electron can take inside a solid. Contrarily to the cases of a single
atom or of a polyatomic molecule, the energy is not discretised, meaning that the
energy of an electron can lie on a large continuous range of energy called band.
Some values of energy are still not accessible ; those form a band called forbidden
band. The origin of those continuous bands comes from the interactions between
the orbitals of the atoms inside a large, periodic lattice of atoms or molecules.
This is depicted in Fig.1.1. The theory has been successful in explaining some
phenomena such as electrical resistivity and optical absorption.

One other achievement of this model is explaining the difference between
metals, semiconductors and insulators :

� Metals : the electrons partially occupy the conduction band, and can thus
circulate freely on the material under optical or thermal excitation.

� Semiconductor : The valence band, where all the electrons are initially,
and the conductor band are separated by a forbidden band, also known
as a gap, which prevents the electrons to circulate freely. Only excitations
with energy higher than the band gap can promote the electrons in the
conductor band. This can be achieved under visible light excitation for
Eg of the order of 1 or 2 eV.

� Insulator, or dielectric : In this case, the bandgap is a lot larger (around 10
eV). This means that it is not possible under usual thermal excitation or

3



Figure 1.2: Difference between metal, semiconductor, and insulator

linear visible light excitation to promote electrons in the conductor band.

The difference between the three types of matter is shown in Fig.1.2.
In this thesis we will discuss only about dielectrics. We will see that although

it is not possible for one single photon in the visible range to cross the bandgap,
some non-linear mechanisms make possible the excitation of electrons under
high intensities.

1.1.3 The phonons

Any vibration of the lattice of a crystal can be decomposed into a linear com-
bination of normal modes of oscillations of the atoms, based on the symetry of
the system. All those modes can propagate along a wave vector k at a frequency
ν, and it is possible to associate to them an energy E = hν and a momentum
p = ~k. As we see, it is analog to the photon case, which is why the wave
packet is said to be a quasiparticle, the phonon. They are responsible for a lot
of different phenomena in solids such as heat capacity, thermic conductivity or
electric conductivity.

Two types of phonon exist, acoustic phonons and optical phonons, the differ-
ence between the two being that although acoustic phonons implies the relative
motion of atoms inside the primitive cells around, optical phonons only im-
plies the relative motion of atoms inside one primitive cell, which means that
only a crystalline system with more than one atom per cell can have optical
phonons. This is illustrated in Fig.1.3. The names of those phonons come from
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Figure 1.3: The different types of phonons. One primitive cell is composed of
one white and one black atoms.

the fact that acoustic phonons correspond typically to the sound waves propa-
gating inside the material, and the optical phonons are easily excited by infrared
radiation. Those are the type of phonon we are most interested in this master
thesis.

1.1.4 The Self Trapped Electron (STE)

In SiO2, under high intensities of light, some defects are created [9]. Those in-
trinsic defects called Self Trapped Excitons (STE) are the results of the trapping
of an electron on a silicon atom, and a hole on an oxygen atom[10]. That makes

the oxygen atom move to an interstitial position (movement of 0.4
o

A). Those
movement are shown in Fig.1.4. This creates two levels of energy in the band
gap, at 2,6 eV and 5,2 eV [10]. Althouth the STE are among the best studied
radiation induced defects, some of its property are not known yet. For example,
its lifetime had never been studied before this experiment.

1.2 Light-matter interactions in wide-bandgap
dielectrics

The wide-bandgap of the materials we studied (around 10ev) makes it impos-
sible to have direct transition from the valence band to the conduction band
under normal conditions unless using an exemer laser. However, under high in-
tensities those transitions are made possible, thanks mostly to two mechanisms
: multiphoton ionization and electronic avalanche. The latter, although very
efficient once triggered, needs a preexcitation of the material, so it is generally
assumed that the former is responsible for the initial excitation of electrons[7].
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Figure 1.4: STE. One electron is trapped on Si1, and one hole on O1. This
makes the O1 oxygen atom move to an interstitial position. As a result, the
O1-Si2 bound is very weak.

However, their respective contribution is still under debate. In particular, pre-
vious studies in our research group tend to show that in some materials such
as Al2O3, their might not even be any electric avalanche [11][12]. This will be
discussed later. Other mechanisms can have a huge importance, such as defect-
assisted ionization, where the presence of defect states lower the multiphoton
absorption order[13]. For this reason, the material used is very pure.

1.2.1 Electrons excitation mechanisms

Multiphoton ionization
It is possible at high intensities to have simultaneous absorption of n photons,

which can results in the excitation of some electrons if the total energy is greater
than the bandgap. It is a non-linear process, being a nth order dependency of
the laser intensity. The multiphoton transition probability per time unit W can
be written as [14]:

W = σnF
n
p

with σn being the generalized cross section for N-photon transitions (in cm2Ns1−N )
which can empiricaly be estimated by σn ≈ 10−19.(1031±2)1−N , and Fp being

the photon flux density of the pump defined as Fp =
Ip
~ω where I is the intensity

of the pulse and ω is its angular frequency. Let’s now express the probability of
multiphoton absorption per irradiated surface unit P :

Pv = Nvσn(
F

~ωτ
)nτ

where Nv is the number of electrons in the conduction band, and τ is the pulse
duration, and F is the laser intensity ( in J.cm−2). We see that for n>2, short
pulses favor this mechanism.

Electron heating and impact ionization
Once in the conduction band, the electrons which are at first in the bottom of
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Figure 1.5: Schema of multiphoton ionization and impact ionization

the band can be further excited by a mechanism called“inverse Bremsstrahlung”.
It consists in a three-body interaction between the electron, a photon and a
phonon, and it results in the raise of the kinetic energy of the electron.

Once a critical density of electron is in the conduction band and the energies
of the electrons are high enough, a new mechanism called impact ionization can
occur. It consists in the collision of a high energy electron and an electron in
the valence band, thus promoting the latter in the conduction band. It is a very
efficient way of promoting electrons, the density of electrons increasing in an
exponential rate. In bands with parabolic dispersion, this mechanism starts to
be in action for energies such as [15]:

Eimp = (
1 + 2µ

1 + µ
)Ẽg

with µ = mc
mv

is the ratio between the effective masses of the conduction and va-
lence band. For SiO2, this value is often greater than 13.5 eV, which means that
an electrons irradiated by 800nm photons have to undergo 9 inverse Bremsstrahlung
before impact ionization can occur. This is a very high value and the importance
of this process is still under debate.

The two mechanisms are depicted in Fig.1.5.
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1.2.2 Electrons relaxation mechanisms

The electrons in the conduction band are cooled by radiative and non-radiative
processes, namely scattering, which can occur between one electron and a phonon,
an ion, or another electron. In SiO2, it has been showed that acoustic phonons
are responsible for the momentum relaxation, while optical phonons are promi-
nent for electrons energies from 0 to 5 eV [16]. Above this value, electron-
electron scattering is the most efficient mechanism. The radiative cooling takes
place at much longer delay (around 1 ns). Alternatively, electrons can be
trapped. Extrinsic trapping occurs when there are imperfections in the material.
Intrinsic trapping, that is to say trapping induced by light-matter interaction
also plays a role in some materials such as quartz[17]. One of the most studied
intrinsic trap is STE (Self Trapped Electron), which corresponds to a distortion
of the lattice. We will see that this induced defect plays an important role in
our experiment.

1.2.3 Phonons excitation mechanism

Optical phonons in a transparent medium can be excited by light through a
mecanism called stimulated Raman scattering. As a reminder, Raman scattering
in general describes the process by which when scattered by an atom, some
photons are not elastically scattered at the same energy as the excitation photons
as most are, but scattered with a different energy, often lower (Stokes Raman
scattering), and sometimes higher (anti-Stokes Raman scattering). This results
from an exchange of energy between the radiation and the medium.

What we described happens spontaneously (spontaneous Raman scattering),
but when Stokes photons are injected in a media together with the original light,
it is possible to have a rate of scattering higher than that of spontaneous Raman
scattering, resulting in an amplification of the Stokes signal. The original light
works as a pump in a laser. This effect can be used to create Raman amplifier
and Raman lasers.

The condition for stimulated Raman scattering is using two laser pules of
frequencies ω1 and ω2 choosen so that ω2 − ω1 = ω0 where ω0 is the frequency
of the Raman mode [18].

Let’s now describe the mecanism mathematically : starting from the classical
harmonic oscillator, the movement equation of the phonon is :

∂2Q

∂t2
+ 2γ

∂Q

∂t
+ ω2

0Q = F (t)

where Q is the deviation of the internuclear distance from its equilibirum Q0,
γ is a damping term, and ω0 is the frequency of the Raman mode. The key
assumption of the theory is that the optical polarizability of the molecule is
not constant but depends on the internuclear separation Q(t) acording to the
following equation [19]:

α(t) = α0 +

(
∂α

∂Q

)
0

Q(t)
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For a Gaussian pulse described as :

E = Ae−(t−zn/c)2/(2τ2
l )cos(ωl(t− zn/c))

where A is the amplitude of the electrical field, τl is the length of the pulse and
ωl is the central frequency of the pulse, is can be shown that the amplitude of
the phonon Q0 is equal to :

Q0 =
2πI Nᾱ

ω0nc
e−ω

2
0τ

2
l /4

where I is the fluence of the excitation pulse, N is the number of oscillators per
volume unit and ᾱ = (∂α/∂Q)0.

As we see, the excited phonon is described by a damped sinusoide. Fur-
thermore, another point we might stress is that the phonons oscillations are
generated by a pulse much quicker than their vibration frequency. This means
that the oscillations are generated coherently, that is to say that the vibration
wave of the phonon is known.

1.3 Modification regimes

The different regions The interractions bewteen light and the material lead
to different outcome for severals light conditions. Depending on the energy of
the pulse and of its duration, several regimes have been observed[1]. The pulse
energies and durations at which they can be found is plotted in Fig.1.6. In
region 1, the pulse energy is too low to induce any modification and damages.
In region 3, the pulse is powerfull enough to induce damages. In region 2, that is
to say for pulse duration under 260 fs and for its enegy between 0.3 and 1.6 µJ,
the refractive index is changed, without ablation of the material. Two different
regimes have been observed in this region : smooth refactive index change,
and birefringent refractive index change. Several theories has been suggested
in order to explain smooth refractive index change[2]. In the thermal model, a
small volume of the material is heated to very high temperature. The subsequent
quenching of the material change its density, thus changing the refractive index.
However, it has been shown that it is not the only mechanism. Other phenomena
such as the appearance of color centers , and the densification of the material
due to structural changes can explain smooth refractive index change.

Because of those different regimes, the boundary between region 1 and region
3, and the boundary between region 2 and region 3 is called the damage thresh-
old. The boundary between region 1 and region 2 is called the modification
threshold.

Ablation criteria In order to model the interaction, one has to choose an
ablation criteria. Several criteria has been proposed over time, the first one

9



Figure 1.6: The different regimes : in region 1 no change are visible, in region 2
the refractive index is changed, in region 3 damages are visible.

being the intensity of the pulse, which has been contested due to the fact that it
does not take into consideration the duration of the pulse[13]. A critical excita-
tion density is often considered as the criteria from which ablation would occur,
because it is thought that the depletion of the valence electrons would break
bonds[7]. It has been criticized lately because it does not explain the molten
matter often found on the periphery of the craters[20]. Coulomb explosion,
that is to say coulombic repulsion between ions once the electrons responsi-
ble for bonds have been removed and a more energy related criteria has been
proposed[21][22], explaining those thermal effects.
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Chapter 2

The experiments

Our experiment is based on the principle of interferometry. We will present the
basic idea of the experiment and the experimental setup that we used.

2.1 Pump-probe technique

The technique we have been using in all the experiments is the pump-probe
technique. A first powerful pulse (aka the pump) is sent through the material
first. Then a less powerful pulse (aka the probe) is sent at a certain delay after
the pump. The pump, by exciting the electrons inside the material induces some
transient modifications in the sample. For example, the reflection coefficient can
change or the transmission through the sample of the pulse beam can be modified
during all the time when the electrons are excited. This can be measured thanks
to the probe pulse. Repeating the experiment with different time delays between
the pump and the probe give the evolution of the electron density through a
long time scale. The technique is illustrated in Fig.2.1.

In our case, we do not measure the reflection of the probe beam, because
the met[23]hod is not sensitive enough, although there are plans to do it in the
future. Instead, we measure the phase shift of the probe relative to a reference
pulse, thanks to a method called frequential interferometry.

2.2 Frequential interferometry

2.2.1 Idea

In order to follow the dynamics of the electrons, we have to find a physical
parameter that change following the density of excited electrons. This is the
case of the refractive index (we will see later how the excitation of electrons
can be accessed by the shift of the refractive index). The idea is to create
interferences in the frequency domain thanks to two pulses delayed in time, in
the same manner as two pulses with different frequencies can interfere in the
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Figure 2.1: Example of an experiment with the pump-probe technique measur-
ing the reflectivity of the beam
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temporal domain and create beatings.The modifications of the refractive index
is then accessible in the phase of the interferences. The reason why we are in
the frequency domain is that spatial interferometry (such as the Young’s double
slit experiment) is not precise enough, because it is necessary to control very
precisely the lengths of the two paths, which limits the measure of the phase
shift. Here, the two pulses take the same path, so this is not a problem[24].

Experimentally, we use three pulses : one first probe pulse that “see” the
material when the electrons are not excited and is so our reference pulse, one
pump pulse that excites the medium, and a final probe that “see” the excited
material. The two probe pulses interfere, and the phase of the resulting signal
is measured. The measure is repeated for different time delays between the
pump and the second probe, so that we can follow the dynamic of the excited
electrons.

Let’s write the electrical field of the reference probe :

E1(t) = E0e
iω0t

If we suppose that the pump perturbs the medium before the second probe
arrives, then the electrical field of the second probe is [23]:

E2(t) =
√
TE0(t−∆t)ei(ω0(t−∆t)+∆φ)

where T is the transmission factor and ∆φ = 2πL
λprobe

∆n is the phase shift induced

by the pump and is related to the refractive index variation. If we look to the
intensity in the frequency domain :

Ĩ(ω) =
∣∣∣Ẽ(ω)

∣∣∣2 = Ĩ0(ω)
[
1 + T +

√
Tcos(∆φ− ω∆t)

]
where the ˜ above the letters indicates the Fourier transform, E = E1 + E2,

and Ĩ0(ω) =
∣∣∣Ẽ0(ω − ω0)

∣∣∣2. Ĩ is the actual physical value recorded by the CCD

camera, the Fourier transform being done by a spectrometer. In order to obtain
the physical response of the material, we have to know the phase of Ĩ. Let’s
write the inverse Fourier transform of Ĩ.

TF−1
[
Ĩ(ω)

]
= (1+T ) TF−1

[
Ĩ0(ω)

]
+2
√
T TF−1

[
Ĩ0(ω)

]
·TF−1 [cos(∆φ− ω∆t)]

which we can rewrite :

TF−1
[
Ĩ0(ω)

]
= G0(t) and TF−1

[
Ĩ(ω)

]
= G(t)

Thus :

G(t) = (1 + T )G0(t) +
√
T
[
G0(t+ ∆t)ei∆φ +G0(t−∆t)e−i∆φ

]
If we suppose that the pulses are Gaussian , then :

G0(t) = I0e
− t2

τ2 eiω0t
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Then :

G(t) =I0

{
(1 + T )eiω0te−t

2/τ2

+

√
T
[
eiω0(t+∆t)2e−(t+∆t)2/τ2

ei∆φ + e−iω0(t−∆t)e−(t−∆t)2/τ2

e−i∆φ
]}

If we measure G(t) for t = ∆t, then :

G(∆t) = I0

{
(1 + T )eiω0∆te−∆t2/τ2

+
√
T
[
e−i∆φ + eiω0(2∆t)e−(2∆t)2/τ2

ei∆φ
]}

i.e G(∆t) ∼= I0
√
Te−i∆φ

Thus, the phase of G(∆t) gives us the phase shift ∆φ and so the physical
response of the material[23].

To sum up, we aim to measure the phase shift created by the pump. In
order to do so, we use three pulses. The first one is the reference, the second
the pump and the third the probe. The reference and the probe pulses interfere
in the frequency domaine, and the interference created give the phase shift. In
practical, the signal is recorded by a CCD camera, and the recorded area is large
enough so that the area at the edge is not excited by the pump. This is possible
because the radius of the probe is much larger than the pump one. Thus, we
can use that unperturbed area as the reference, and so the reference pulse is
not required. Instead, we use a michelson interferometer after the sample, with
one branch slightly tilted, so that the two beams can interfere, in a way that
the interference occurs between the edge of the probed area and the perturbed
center. This is represented in Fig.2.2.

2.2.2 Experimental setup

The experiments have been made at the Saclay Laser-matter Interaction Center
(SLIC: http://iramis.cea.fr/slic/index.php) facility. The laser is a CPA ampli-
fied Ti-Sa system, delivering up to 70mJ at 800nm, with a repetition rate of
20Hz. The experimental setup is shown in Fig.2.3. The laser beam is sepa-
reted in two by a beam splitter. The beam with most energy, the pump, can
be frequency doubled by a BBO crystal. It goes through a controled delay line
and is then focused on the sample. The other beam, the probe, goes through
a controled delay line, and then through the sample. After that it is splitted
in two pulses delayed in time thanks to a Michelson interferometer, Fourier
transformed by the spectrometer and finally collected by a CCD camera.

2.2.3 The different contribution to the phase shift

It is possible to distinguish several contributions in the phase shift coming from
different mechanisms : the main ones are the Kerr effect, the contribution from
the free electrons, and the contribution from the trapped electrons.

14



Figure 2.2: The two beams after the Michelson interferometer.

The Kerr effect
The Kerr effect arises in transparent media exposed to high intensities. It

reflects the non-linearity of the refractive index under high intensities. In cen-
trosymmetric crystals like ours, the second order polarization is absent. The
next term is responsible for the Kerr effect. We can write the refractive index
shift as [19] :

∆n = n2Ip

with n2being the non-linear refractive index of the medium and Ip the intensity
of the pump. The contribution of the Kerr effect is thus proportional to the
intensity of the pulse, and it lasts as long. We can also note that the peak
of the Kerr effect corresponds to the moment when the pump and the probe
overlapped temporally, which is the ∆t = 0 delay case.

Free electron model and contribution
This model gives the contribution of the electrons in the conduction bands,

which we consider act freely, after they have been promoted there by the pump.
The model uses the Drude model for free electrons. As we saw earlier, the
complex refractive index of a solid in the free electron approximation is given
by :

n2(ωprobe) = εr = n2
0 − ω2

plasma

fCB
ω2
probe + iωprobeωc

with εr the relative permittivity, n0 the unperturbed refractive index, fCB the
oscillator strength standing for transitions occurring in the conduction band

15



:

Figure 2.3: The simplified experimental setup
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and ωc being a damping term representing the probability of collisions between
an electron and another electron, an ion or a phonon. ωplasma is the plasma
frequency and is given by :

ωplasma =

√
Ne2

ε0m∗

where N is the density of excited electrons, e is the elementary charge, ε0 is the
vacuum permittivity, and m* is the effective mass.

Trapped electron model and contribution
In some materials such as in fused silica, a new contribution can be observed

after the two first contributions (experimentaly around 150 fs). It corresponds
to the trapping of the electrons in the conductive band. As we said previously,
the electrons are trapped in induced defects called STE, which corresponds to
the deformation of the lattice under high intensity. The contribution of the STE
on the refractive index can be expressed as [25] :

n2(ωprobe) = εr = n2
0 − ω2

STE

fTR
ω2
tr − ω2

probe − iωprobe/τtr

with :

ωSTE =

√
Ntre2

ε0m0

Ntr is the density of electrons trapped, m0 is the mass of an electron, ωtr is
the energy difference between the fundamental and the first excited state of the
induced defect, 1/τtr is the width of this transition, and ftr is the corresponding
oscillator strength.

Valence band depletion
One minor contribution comes from the depletion of the valence band. If we

consider a wide-bandgap being represented by a two level system, then :

n2(ωprobe) = εr = 1 + ω2
valence

f12

ω2
12 − ω2

probe + iωprobe/τ12

with :

ωvalence =

√
Nve2

ε0m0

N0 is the density of electrons in the valence band, ω12 is the energy difference
between the valence band and the conduction band, 1/τtr is the width of this
transition, and ftr is the corresponding oscillator strength. We are far from
resonance, (the energy of the incoming electrons equal to 9 eV whereas the
resonance is around 1.5 eV), so the damping term can be neglected. Thus,
n2(ωprobe) = n2

0.
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This relation is correct when the dielectric is in its fundamental state, but is
no longer true when electrons leave the valence band and go to the conduction
band, or are trapped. Instead, we should write :

ωvalence,depl =

√
(Nv −N −Ntr)e2

ε0m0

In this case, we can write :

n2(ωprobe) = withεr = 1 + ω2
valence,depl

f12

ω2
12 − ω2

probe + iωprobe/τ12

2.2.4 Conclusion

To sum up, we can rewrite the refractive index, taking into account all the
different contributions [25]:

n2(ωprobe) =1 +
e2

mε0
(Nv −N −Ntr)

f12

ω2
12 − ω2

probe − iω/τ12
+ χ(3)I

+
e2

ε0
(−N fCB

m∗
1

ω2
probe + iωprobeωc

+
Ntrftr
m0

1

ωtr − ω2
probe − iωprobe/τtr

)

The phase shift is then calculated as :

∆φ =
2π

λprobe

[ˆ L

0

Re(n(z)− n0)dz

]

where L is the length along which the probe and the pulse overlap. If we suppose
that the densities of the excited electrons and of the trapped electrons are small
compared to the valence density, and that the damping terms can be neglected,
then it is possible to have an approximate expression of ∆φ [25]:

∆φ ≈ 2π

λ
L

[
n2Ip +

e2

2n0ε0

{
−N fCB
m ∗ ω2

+
Ntrftr

m(ω2
tr − ω2)

}]
Although rather crude, the approximations make it possible to clearly see the
different contributions : the first term is the Kerr effect proportional to the
intensity of the pump which contributes positively to the phase shift because
n2 is positive. The second term is the contribution of the free electrons, always
negative, and the last term is the contribution of the trapped electrons, whose
sign depends on the values of ωtr and ω. In our experiment, ω < ωtr , so this
contribution is positive.

18



Figure 2.4: Two pumps experimental setup

2.3 Two pumps experiment

Recently, new experiments using two pumps has been created, both for fonda-
mental purpose [24] and for more applied purpose, like laser machining [26].

In our group, we use two pumps in order to separate the contributions of the
different mecanisms : the idea was to use the first UV pump pulse to promote
the electrons from the valence band to the conduction band, and the second
IR pump pulse to heat the electron already in the conduction band via in-
verse Bremsstrahlung, and trigger electronic avalanche. This way, the two main
mechanims are clearly associated to one pulse : multiphoton absorption with
the UV pulse, and electronic avalanche with the IR pulse [24].

The setup is mostly the same as the single pump pulse, the difference being
that after being splitted by the beam splitter, the powerful beam is even more
splitted. The two newly created beams are the two pumps, one is frequency
doubled by a BBO crystal, and the other keeps its frequency. The duration of
the pulses can be controled. Then both of them are fired on the sample. This
is illustrated in Fig.2.4
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Figure 2.5: Polarizations configuration

2.4 Transmission measure

2.4.1 Idea

As we will see in the results of this experiment, it seems like in some case we have
to take into account the fact that phonons are also excited by the laser and can
perturb our results. In order to conclude whether or not the phonon are excited,
we decided to do an experiment solely on phonons in order to compare it with
our data. This experiment was done in the Laboratoire d’Optique Appliquée
(LOA) in Palaiseau.

A coherent phonon in a crystal has for consequences a change in the refractive
index and the creation of an emitted field. The easiest way of detecting the
phonon is to measure the emitted field it created. It can be shown ([27]) that
the emitted field is equal in the frequency domain to :

ES(ω, z) =

(
πωzQ0

n c

)(
∂χ(3)

∂Q

)
0

[
eiω0τDET (ω + ω0)− e−iω0τDET (ω − ω0)

]
where ω = ωp + ωL (with ωL the frequency of the probe and ωp the frequency
of the pump taken to be equal to ω0 the frequency of the Raman mode), Q0

the amplitude of the phonon, χ(3) the third order susceptibility, τD the delay
between the pump and the probe and ET the probe field. We also have to
consider the polarization of the pulses. Here we take the probe polarizations to
be 45 degrees with respect with the pump. In this configuration, the emitted
field polarisation is orthogonal with the probe (cf. Fig.2.5).

Two types of measures are then possible [27] : the homodyne detection,
which measure the square of the emitted field, and the heterodyne detection,
which measures the field linearly. Both implies the use of a analysor in order to
discriminate the emitted field from the two others, using its polarization. The
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Figure 2.6: Experimental Setup

homodyne detection is really just the measure of the intensity of the emitted
field.

The heterodyne detection is better experimentaly because the emitted field
contribution is amplified by the interference term from a local oscillator. Exper-
imentaly, this is done by polirizing slightly the probe field so that there is a small
component of the probe in the direction of the emitted field. Mathematically :

IH =
nc

8π
|ELO + ES |2 =

nc

8π

(
|ELO|2 + |ES |2 + ELOE

∗
S + ELOE

∗
S

)
For a Gaussian beam, in the time domain, we have :

ET (t) = Ae−(t2/(2τ2
L))ei(kLz−ωLt)

and :
ELO(t) = αe−(t2/(2τ2

L))ei(kLz−ωLt)eiϕ

2.4.2 Experimental setup

The experimental setup is represented in Fig.2.6; the main difference with the
previous setup is the poralizer before the photodiode. The pump wavelength
was 800 nm, the radius of the probe 40 µm and the radius of the probe 40 µm.
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Chapter 3

Experimental results

3.1 Frequential interferometry

3.1.1 Single pump pulse experiment

3.1.1.1 Short time scale

The experiment with one pump gives the kind of figures presented in Fig.3.1,
showing the evolution of the phase shift over time in SiO2 [25]. Those evolutions
can be linked to the different phenomena we presented before. When the signal
is equal to zero, that means that the probe comes before the arrival of the
pump, thus giving no signal. The positive phase shift at 0 is the Kerr effect.
Its maximum corresponds to the time when the pump and the probe overlap
perfectly in time. The next negative contribution is the contribution of the free
electrons in the conduction band. Finally, the signal rises again to a positive
value. That is the contribution of the STE.

This experiment has been done for several pulse energy, the reults are shown
in Fig.3.2. Althought the curves are not perfect (not a lot of signal, lot of
absorption because of pulse energy too important), what can be seen is that the
more powerful the pulse is, the more the phase shift is imporant. This is because
more electrons are promoted to the conduction band. This experiment has been
repeated for several materials. The results in Al2O3 are shown in fig3.3. As one
can see, other materials give different results. In particular, the signal does not
go above zero after the negative contribution in Al2O3, meaning that there is no
STE. Instead, the electrons only relaxe by scattering processes. If we increase
the intensity of the light, the negative contribution goes lower and lower, again
because more and more electrons are excited (Fig.3.4).

An interesting result in Fig.3.1 is the very small oscillations that can be
seen when the signal goes positive again. We believe that this comes from the
excitation of the phonons in the material, and this is the reason why we decided
to do a specific experiment on phonons .

Those results show very well the dynamics of the electrons in the femtosecond
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Figure 3.1: Phase shift in SiO2 for a laser pulse of 230 µJ, λ = 800nm

Figure 3.2: Phase shift in SiO2 for different pulse energies
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Figure 3.3: Phase shift in Al2O3 for a laser pulse of 230 µJ, λ = 800nm

Figure 3.4: Phase shift in Al2O3 for different pulse energies
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Figure 3.5: Phase shift in the nanosecond regime for two pulse energies.

regime. It would also had been interesting to follow the relaxation over time, but
previous studies has shown that the STE lifetime, never measured precisely, was
longer that one nanosecond. Our experiment could not go that far, because of
the limited lenght of the delay line. This was the motivation for a modification
of the experimental setup.

3.1.1.2 Long time scale

We focus in this section to SiO2. We measured the relaxation of the STE on
a large time scale, up to 10 ns. We were able to do so by adding a very long
delay line in the setup for the probe pulse (delay line of 2 meters long, operated
by hand). The result is ploted in Fig.3.5. It enabled us to measure its lifetime
: 6 ns. As can be seen, this results is consistent for the two pulse energies.
Interestingly, the phase shift at the end in not equal to 0, but is still positive.
This is still to be studied.

3.1.2 Two pump pulses experiment

We have two reasons to use two pumps. First, it will make the separation of the
two main mechansims easier to see : the UV pump excites the electrons from the
valence band to the conduction band purely by multiphoton absorption (because
it only takes 3 photons for UV pulse to promotes electrons in the conduction
band instead of 6 for the IR pulse, it is far more efficient), and the IR pump pulse
heats the electrons in the conduction band in order to trigger impact ionisation
(which is made possible because the cross section for heating is bigger for IR
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Figure 3.6: Intensities at damage threshold in Al2O3 for a 300fs IR pulse as a
function of a 60fs UV pulse. The delay between the two pulses is fixed at 936
fs.

than for UV, making it more efficient for the IR pulse). Secondly, it makes
possible to discuss the ablation criteria. It is generally accepted that it is the
excitation density that determines the presence of ablation, but as we will see,
it might not always be true because in some case it is possible for the same
density to lead either to ablation and not to ablation.

3.1.2.1 Intensities at damage treshold experiments

The first experiment that has been done is the measure of the critical IR pump
pulse intensity as a function of the UV pump pulse intensity from which damages
can be seen in the sample. The delay between the two pump pulses was fixed
to 936 fs in Al2O3 and 1.75 ps in SiO2. This was done so that when the IR
pulse arrives, the medium is already pre-excited by the UV-pulse, and in SiO2

the STE are already trapped. The result can be seen in Fig.3.6 and Fig.3.7 [24].
We will use those experiement later.

3.1.2.2 Phase shift experiments

By measuring the phase shift created by the sequence of 2 pulses UV and IR,
and by comparing it to single pulse phase shift, it has been proved by a previous
PhD student that no impact ionisation occurs in Al2O3, contrary to SiO2 [24].
The reason why the situation is different for the two materials is still unclear.
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Figure 3.7: Intensities at damage threshold in SiO2 for a 300fs IR pulse as a
function of a 60fs UV pulse. The delay between the two pulses is fixed at 1.75
ps.

27



Figure 3.8: Pump-probe measurement on SiO2 in heterodyne configuration

One hypothesis would that the ionization cross section is material dependent,
but again, there is no clear reason why that would be the case.

3.2 Transmissions measures

In the heterodyne configuration, the results of our experiment can be see in
Fig.3.8. The first peak is the Kerr effect, and the following dumped oscilla-
tions are due to the phonons. The period of oscillations is 260fs. From these
experiments, it is also possible to calculate the displacement of the phonons [27].
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Chapter 4

Exploitation of the results

The major part of the thesis was the numerical simulation of all the phenomena.
First we had to simulate the propagation of the pulse inside the material taking
into account all the mechanisms that occur as the pulse propagates. Then,
using this simulation we were able to reproduce the experimental results, and
to calculate the absorbed energy.

4.1 The propagation algorithms

4.1.1 Single pulse rate equations

The aim is to calculate the temporal and spatial evolution of the excited carrier
density N and the photon flux of the exciting pulse, F.

For Al2O3 :
Let’s describe the model we have been using in order to simulate the propa-

gation of the laser pulse inside Al2O3 [25]:

∂N

∂t
=(Ntot −N)σnF

n

∂F

∂y
=− n(Ntot −N)σnF

n − αF

Where n is the order of the multiphoton process,τ is the electron trapping
time, F = I

ω~ is the fluence of the pump and α = 2ωIm(
√
εr)/c is the absorption

coefficient due to the plasma at the surface of the sample. The first equation
shows the evolution of N over time ; the term on the right is the excitation due
to multiphotonic absorption. The last equation shows the evolution of Fp over
depth ; the first term is related to the multiphoton absorption, and the last term
represents the absorption due to the plasma.

As can be seen, there is no impact ionization, because as we have seen
previsously, it seems there is no impact ionization into Al2O3. It is also worth
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Figure 4.1: Descritization of the conduction band

noticing that heating of the excited electrons inside the conduction band is not
simulated neither. Because there is no impact ionization, this does not have
any effect on the density of electrons, but as we try to calculate the amount of
energy absorbed, it will be necessary to use a trick to reproduce the amount of
energy heating would have absorbed.

For SiO2 :
In SiO2, it is now important to modelise the possible heating of the electrons

in the bottom of the conduction band. This is done by descritizing the energies
of the electrons inside the conduction band and assuming the transitions are
possible for one photon absorption [28] (see Fig.4.1).

This allows us to introduce impact ionization. This was done using the
results in [7]. We also have to simulate the trapping of electrons.

Overall, the new equations give for two levels of energy inside the conduction
band :
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∂N1

∂t
=NvσnF

n + 2Γ2N2F − βN1F −N1/τ

∂N2

∂t
=βN1F − Γ2N2F −

N2

τ
∂Ntr
∂t

=N1/τ +N2/τ

Nv =Ntot −N1 −N2 −Ntr − Γ2N2

∂F

∂y
=− nNvσnFn − αF

Where n is the order of the multiphoton process, N1, N2 and Nv are re-
spectively the density of electrons in the bottom of the conduction band, in the
second level of energy in the conduction band, and in the valence band, Ntr is
the density of trapped electrons,τ is the electron trapping time, F = I

ω~ is the
fluence of the pump, α = 2ωIm(

√
εr)/c is the absorption coefficient due to the

plasma at the surface of the sample, β the cross section for 1 photon, and Γ2 the
impact ionization coefficient of the second level. . The first equation shows the
evolution of N1 over time ; the first term is due to the multiphoton absorption,
the second to impact ionization, the third represents the heating of electrons
to the second level of energy inside the conduction band, and the second term
represents the trapping of the electrons. The first term in the second equation
which represents the evolution of N2 over time is the heating from N1, the sec-
ond represent impact ionization, and the last the trapping . There is no way to
solve analytically those coupled partial differential equations, so we had to use
a numerical method.

It is worth noticing that for neither Al2O3 nor SiO2 did we simulate the
relaxation of electrons. This is simply because we are focused on short time
scale.

Now, let’s take a look on how those coupled equations were numericaly
resolved.

4.1.2 The finite difference method

The basic idea behind the finite difference method is to use the Taylor develop-
ment in order to approximate the partial derivative.

From the definition of the derivative, we can write :

∂f(x, y)

∂x
= lim
hx→0

f(x+ hx, y)− f(x, y)

hx

If hx � 1, the Taylor development of f(x+ hx, y) gives

f(x+ hx, y)− f(x, y) + hx
∂f

∂x
+ θ(hx) ' f(x, y) + hx

∂f

∂x

So :
∂f(x, y)

∂x
' f(x+ hx, y)− f(x, y)

hx

31



We can then rewrite our Al2O3 equations in that manner, and resolve them.
The newly written equations read :

N(y, t+ dt)−N(y, t)

ht
=(Ntot −N(y, t))σnF

n(y, t)

F (y + dy, t)− F (y, t)

hy
=− n(Ntot −N(y, t))σnF

n(y, t)− α(y, t)Fp(y, t)

that is to say :

N(y, t+ dt) =ht(Ntot −N(y, t))σnF
n(y, t) +N(y, t)

F (y + dy, t) =− nhy(Ntot −N(y, t))σnF
n(y, t)− hyα(y, t)Fp(y, t) + F (y, t)

where we see that the different values are calculated for a certain number of
points. Thus, we have to carefully choose a mesh, where the point will be
calculated.

4.1.3 The 1D algorithm

We used the finite difference method in order to solve the rate equations.
Here is the algorithm we used, in the matlab language, for solving the rate

equations in 1D in Al2O3:

for i 0 =1:nt−1
for j =1:ny−1

N( i 0 +1, j )=ht* sigma *(u−N( i0 , j ) ) *F( i0 , j ) ˆn+N( i0 , j ) ;

n00 ( i 0 +1, j )=1+(ee ˆ2/(2*m* ep s i l o n0 ) ) *(u−Ntr ( i 0 +1, j )−N( i0
+1, j ) ) * f 12 /(w12ˆ2−wˆ2) ;

e p s i l o n r ( i 0 +1, j )=n00 ( i 0 +1, j )+F( i 0 +1, j ) *h*w* ch i3+(ee ˆ2/
ep s i l o n0 )*(−N( i0 +1, j ) * f cb /(m*(wˆ2+1 i *w/ tauep ) ) ) ;

alpha ( i 0 +1, j )=imag( sqrt ( e p s i l o n r ( i 0 +1, j ) ) ) *2*w/c ;

F( i0 , j +1)=F( i0 , j )*(1−hz* alpha ( i0 , j ) )−hy* sigma*n*(u−N( i0 ,
j ) ) *F( i0 , j ) ˆn ;

end
end

The mesh we choose was such that the depth probed (that is to say 1µm) was
divided into 500 points. The time scales from 0 to 1 ps by 10 fs step.

The algorithm gives us each parameters among depth (y) and time (s). For
example, in Fig.4.2, the intensity of the pump is given along the depth y and
the time t.

The phase shift is then calculated by :

for j 0 =1:ny
DeltaPhi1 (1 , j 0 )=trapz ( z , ( 2* pi/lambda ) *( real ( sqrt ( ep s i l on2 ( j0 , : ) )

)−n0 ) ) ;
end
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Figure 4.2: I(t,z)
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Figure 4.3: Example of a mesh for θ = 35°

Although sufficient in some case, this algorithm is restricted : it solves the
rate equations only in one dimension, and there is no way to choose the geometry
of the experiment, such as the incoming angle of the probe or the pump with
respect to the surface, or the actual position of the probe. In order to do that,
we have to solve the rate equations in 2D.

4.1.4 The 2D algorithm

All the code used in order to create the graphs is displayed in annex A.
The first thing we need to do is create the mesh. The points constituting the

mesh were chosen in order to facilitate the calculus : the idea was to use the 1D
algorithm along the choosen direction, the points on which the algorithm is to be
applied being chosen so that they are aligned along the direction of propagation
of the pump. In this way, we can choose freely the angle of incidence of the
pump. The result can be seen Fig.4.3.

Then we apply the 1D algorithm rewritten for this configuration over each
of the lines of points. The result can be seen Fig.4.4:

We can freely choose the characteristics of the probe, that is to say the
position of its center, its radius, and the angle it makes with respect to the
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Figure 4.4: Fp at t = 5.7 · 10−13, for θ = 35° and FMHW=150fs

35



Figure 4.5: Density of excitation and probe at t = 5.7 · 10−13

sample surface. This is shown in Fig.4.5. The stars in the top graph correspond
to the propagation of the center of the probe. The bottom graph reprents the
excitation density of the material along the path of the center of the probe. This
is shown in Fig.4.5. The stars in the top graph correspond to the propagation
of the center of the probe. The bottom graph reprents the excitation density of
the material along the path of the center of the probe.

From that point, we can then calculate the phase shift. We now have the
possibility to calculate more precise simulations. This will come handy in the
following.

4.1.5 Two pump pulses algorithm

In Al2O3 :
With two pump pulses, the equations are a little bit more complicated.
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∂N1

∂t
=Nvσn1

Fn1
1 +Nvσn2

Fn2
2

Nv =Ntot −N1

∂F1

∂y
=− n1Nvσn1

Fn1
1 − αF1

∂F2

∂y
=− n2Nvσn2F

n2
2 − αF2

In SiO2 :
We have to consider the reexcitation of the trapped electrons to the conduction

band. In general, one level of energy in the conduction band is described as :

∂Ni(z, t)

∂t
=βi,1Ni−1(z, t)F1(z, t) + βi,2Ni−1(z, t)F2(z, t)− βi+1,1Ni(z, t)F1(z, t)

− βi+1,2Ni(z, t)F2(z, t)− Ni(z, t)

τ
− ΓiNi(z, t)

with βi,1 and βi,2 being the cross section for 1 photon at the level i, τ being the
life time of the electrons on the level before being trapped, and Γi the impact
ionization coefficient for the ith level.

Overall, the new equations give for i=2 :

∂N1

∂t
=Nvσn1F

n1
1 +Nvσn2F

n2
2 −N1/τ − β1N1F1 − β2N1F2 + 2Γ2N2F2 + 2σn3NtrF

n3
2

∂N2

∂t
=β1N1F1 + β2N1F2 −

N2

τ
− Γ2N2F2

∂Ntr
∂t

=N1/τ +N2/τ − 2σn3
NtrF

n3
2

∂Nv
∂t

=Ntot −N1 −N2 −Ntr − Γ2N2F2

∂F1

∂y
=− n1Nvσn1F

n1
1 − αF1

∂F2

∂y
=− n2Nvσn2

Fn2
2 − αF2

Again, we use the finite difference method in order to resolve thoses equations
numerically.

4.1.6 Calculus of the deposited energy

In Al2O3 :
If we consider two levels of energy in the conduction band, the deposited

energy is calculated as [12]:
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Eabs =

ˆ

t

˚

V

(
2ω1

c
F1~ω1Im(

√
ε2) +

2ω2

c
F2~ω2Im(

√
ε2) + n1σn1

Fn1
1 + n2σn2

Fn2
2 )dV dt

The first two terms are the amount of energy absorbed by the plasma formed
at the surface of the sample. The next two terms represent the amount of energy
absorbed for the heating of the electrons. The expression is integrated over time
and volume. As can be seen, even though we do not have a second level on
energy, we can still calculate the amount of energy absorbed by the heating of
electrons.

In SiO2 :
If we consider two levels of energy in the conduction band, the deposited

energy is calculated as :

Eabs =

ˆ

t

˚

V

(
2ω1

c
F1~ω1Im(

√
ε2) +

2ω2

c
F2~ω2Im(

√
ε2) + n1σn1F

n1
1 + n2σn2F

n2
2 + 2n3σ3F

n3
2 )dV dt

The only difference compared to Al2O3 is that we consider the reexcitation
of the trapped electrons. The expression is integrated over time and volume.

4.2 Results for Al2O3

4.2.1 Phase simulation

In table 1 is written all the numerical values we used in the algorithm :
Name of the constant Abreviation Value

Initial valence electron density (cm−3) u 2.2 · 1022

Order of the multiphoton process in IR n2 6
Multiphoton cross section (cm8.s−3) in IR σ2 1 · 10−174

Oscillator strength for the CB fCB 1
Electron effective mass in the CB (kg) m* 0.5× 9.1 · 10−31

Electron-phonon scattering rate (s−1) 1/τe−p 1.5 · 1015

Electron trapping time (fs) τ 150

Effective third order susceptibility for IR χ
(3)
2 5 · 10−13

The results of the simulation can be seen in Fig.4.6 It can be compared to
Fig.3.3 in Fig.4.7.

4.2.2 Energy absorption

In Fig.4.8 are presented the results of the calculation of absorbed energy in
Al2O3. As can be seen, the amount of absorbed energy (black squares) is mostly
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Figure 4.6: Phase in Al2O3 for λ = 800nm

Figure 4.7: Comparison between experimental data and simulation in AlO2
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Figure 4.8: Damage threshold in Al2O3 for IR intensity (left scale), and calcu-
lated absorbed energy density (right scale)as a function of UV intensity

constant, except for the extreme values of IR intensities (black circle). We also
did the inverse calculus, that is to say calculate the IR intensity (empty circle)
required to have a constant absorbed energy (empty square). This gives small
corrections from the measured intensity, which lies into a reasonable error bar of
a few %. This makes absorbed energy the first candidate for an ablation criteria.
This is further confirmed by others experiments done in CNRS lab CELIA in
Bordeaux. Those results will give birth to an article publication.

4.3 Results for SiO2

4.3.1 Phase simulation

In table 1 is written all the numerical values we used in the algorithm :
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Figure 4.9: Phase in SiO2 for λ = 800nm

Name of the constant Abreviation Value

Initial valence electron density (cm−3) u 2.2 · 1022

Order of the multiphoton process in IR n2 6
Multiphoton cross section (cm8.s−3) in IR σ2 10 · 10−174

Oscillator strength for the CB fCB 0.005
Electron effective mass in the CB (kg) m* 0.5× 9.1 · 10−31

Electron-phonon scattering rate (s−1) 1/τe−p 1.5 · 1015

Electron trapping time (fs) τ 150

Oscillator strength for the first trap level f
(1)
tr 0.4

Oscillator strength for the second trap level f
(2)
tr 0.15

First trap level energy (eV) ω
(1)
tr 5.2

Second trap level energy (eV) ω
(2)
tr 4.2

Width of the first trap level (eV) 1/τ
(1)
tr 1.5

Width of the second trap leve (eV) 1/τ
(2)
tr 1

Impact ionization factor Γ 0.065
One photon cross section (cm2) β2 1 · 10−16

One photon cross section (cm2) β3 1 · 10−20

Effective third order susceptibility for IR χ
(3)
2 4 · 10−13

The simultaion gives Fig.4.9 for SiO2. It can be compared to the experi-
mental data in Fig.3.1 in fig4.7. As can be seen, the simulation gives very good
results.
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Figure 4.10: Comparison between experimental data and simulation in SiO2

4.3.2 Energy absorption

In Fig.4.11. is represented the amount of absorbed energy as a function of
UV and IR pulse intensity. Again, we see that the absorbed energy is mostly
constant, still giving more evidence that it is a good criteria for ablation.

4.4 Transmission measures

Having the same frequency of oscillations in the two experiments would be a
good way to confirm that what we see on our data is excited phonons. In Fig.4.12
is a comparison of the oscillations one can find in the phase shift experiment
and in the phonons excitation experiment. One can be seen, the two plots can
mostly be superposed, and the periods of oscillations are mostly thse same.
This is a strong hint that the oscillations are indeed due to phonons. Further
experiments are planned to have a definitive answer.
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Figure 4.11: Damage threshold in SiO2 for IR intensity (left scale), and calcu-
lated absorbed energy density (right scale)as a function of UV intensity

Figure 4.12: Phase shift (left) and transmission (right) vs time
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Conclusion

With the frequential interferometry technique using femtosecond laser pulses in a
pump-pulse experiment, we were able to follow the dynamics of excited electrons
in SiO2 and Al2O3, from the excitations processes to the relaxation processes.
We measured the lifetime of the auto-induced excitons created in SiO2, and we
simulated the dynamics of electrons. This gave us the opportunity to calculate
the amount of energy absorbed during the propagation of the pulse inside the
material, which made us question the ablation criteria. Indead, it does seem like
absorbed energy is a better ablation criteria than the excited density. We also
made an experiment where we excited phonons, and showed that the period of
oscillations is the same as the one in frequential interferometry, which seems to
show that we are also extiting phonons.

Further experiments will come in order to gather more proofs that absorbed
energy is indeed a better ablation criteria than the excitation density and that
multiphoton absorption is the most efficient excitation process. Moreover, it
would also be interesting to see if the same effects occur in the bulk of the
material when instead of focusing the beams on the surface of the sample, we
focus into the bulk.
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Annex

A. The final code

First we need to create the adaptative mesh. Here is the code for that :

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Mesh Creation

i 0 =1;
j0 =1;
theta=pi/2−35*2*pi /360 ;
CC=c e l l ( 1 , 5 1 ) ;

i f theta<pi/4
x=0;
y=L ;
p=0;

while y>=0 && p<2
y0=y ;
while y0>=0 && x<=L && y0<=LWe

M(1 , j0 )=x ;
M(2 , j 0 )=y0 ;
j 0=j0 +1;
x=x+hx*cos ( theta ) ;
y0=y0+hy* sin ( theta ) ;

end
CC{1 , i 0}=M( : , : ) ;
M= [ ] ;
y=y−sqrt (2* ( hxˆ2+hy ˆ 2 ) ) ;
i f y<0

y=0;
p=p+1;

end
j 0 =1;
i 0=i0 +1;
x=0;

end

nbrPy=i0 ;
x=sqrt (2* ( hxˆ2+hy ˆ2))/ tan ( theta ) ;
y=0;

while x<=L
x0=x ;
while x0<=L && y<=L

M(1 , j0 )=x0 ;
M(2 , j 0 )=y ;
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j 0=j0 +1;
x0=x0+hx*cos ( theta ) ;
y=y+hy* sin ( theta ) ;

end
CC{1 , i 0}=M( : , : ) ;
M= [ ] ;
x=x+sqrt (2* ( hxˆ2+hy ˆ2))/ tan ( theta ) ;
j 0 =1;
i 0=i0 +1;
y=0;

end

nbrPx=i0−nbrPy ;

else

x=L ; e−174
y=0;
p=0;

while x>=0 && p<2
x0=x ;
while x0>=0 && y<=L && x0<=L

M(1 , j0 )=x0 ;
M(2 , j 0 )=y ;
j0=j0 +1;
x0=x0+hx*cos ( theta ) ;
y=y+hy* sin ( theta ) ;

end
CC{1 , i 0}=M( : , : ) ;
M= [ ] ;
x=x−sqrt (2* ( hxˆ2+hy ˆ2))
i f x<0

x=0;
p=p+1;

end
j 0 =1;
i 0=i0+1
y=0;

end

nbrPx=i0 ;
y=sqrt (2* ( hxˆ2+hy ˆ2))* tan ( theta ) ;
x=0;

while y<=L
y0=y ;
while y0<=L && x<=L

M(1 , j0 )=x ;
M(2 , j 0 )=y0 ;
j 0=j0 +1;
x=x+hx*cos ( theta ) ;
y0=y0+hy* sin ( theta ) ;

end
CC{1 , i 0}=M( : , : ) ;
M= [ ] ;
y=y+sqrt (2* ( hxˆ2+hy ˆ2))* tan ( theta ) ;
j 0 =1;
i 0=i0 +1;
x=0;

end
nbrPy=i0− nbrPx ;

end
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Then we shall create the path of the probe :

%
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Probe i n i t i a t i o n

the=pi/2−45*2*pi /360 ; % Incoming Angle of the probe
nn=0;
f r a c=tan ( the ) *cos ( theta ) /( sin ( theta )+cos ( theta ) *tan ( the ) ) ;
nnn=f r a c *(abs (CC{2} (1 ,1)−CC{1} (1 ,1) ) ) /( hy*cos ( theta ) ) ;
p=1;
ly=CC{nbrPx−1}(2 ,2)−CC{nbrPx−1}(2 ,1) ;
l x=CC{nbrPx−4}(1 ,1)−CC{nbrPx−3}(1 ,1) ;
nbrPoint=approche ( ( tan ( the ) * l x ) / ly ) ;

for i 0 =1: length (CC) /2
i f abs (nnn−approche (nnn) )<=0.3

nn=approche (nnn) ;
p=i0 ;

break ;
else

nnn=f r a c *(abs (CC{2+ i0 } (1 ,1 )−CC{1} (1 ,1) ) ) /( hy*cos ( theta ) ) ;
end

end

%
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%Probe creat ion
a=0;
b=0;
a1=0;
b1=0;

absxy=c e l l (1 ,20 ) ;
c o e f f xy=c e l l (1 , 20 ) ;
r r =0;
b=0;
i 0 =0;
j0 =0;
for r0=length (CC) :−1:1

i f theta==pi/2 && the˜=0
for m0=0:500

i f 1+m0*p>length (CC)
f=m0;
break

else
i f 1+r r *nn+nn*(m0)>=length (CC{1+m0*p})

f=m0;
break

else
absxy{ r r +1}(1 ,m0+1)=CC{1+m0*p}(1 ,1+ r r *nn+nn*(m0) ) ;
absxy{ r r +1}(2 ,m0+1)=CC{1+m0*p}(2 ,1+ r r *nn+nn*(m0) ) ;
c o e f f xy { r r +1}(1 ,m0+1)=1+m0*p ;
c o e f f xy { r r +1}(2 ,m0+1)=1+rr *nn+nn*(m0) ;
b=1;

end
end

end
e l s e i f the==0 && tetha==pi/2

r r =0;
else

[ a , b]= s ize (CC{ r0 }) ;
i f abs (CC{ r0 } (1 , b)−L) <0.001
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for m0=0:500
i f theta˜=pi/2

i f r0+m0*p>length (CC)
f=m0;
break

else
s=approche (CC{ r0+m0*p} (2 ,1 ) /(1* l y ) ) ;
[ a1 , b1]= s ize (CC{ r0+p*m0}) ;
i f b+m0*nn−s>b1 | | b+m0*nn−s<=0

f=m0;
break

else
absxy{ r r } (1 ,m0+1)=CC{ r0+m0*p} (1 , b+m0*nn−s ) ;
absxy{ r r } (2 ,m0+1)=CC{ r0+m0*p} (2 , b+nn*m0−s ) ;
c o e f f xy { r r } (1 ,m0+1)=r0+m0*p ;
c o e f f xy { r r } (2 ,m0+1)=b+nn*m0−s ;
b=1;

end
end

end
pop=m0;

end
end

end
i f b==1

r r=r r +1;
end
b=0;

end

i f theta==pi/2
i f length ( absxy )/2==f loor ( length ( absxy ) /2)

for i 0 =1: length ( absxy ) /2

M=absxy{ i 0 } ;
absxy{ i 0}=absxy{ length ( absxy )+1− i 0 } ;
absxy{ length ( absxy )+1− i 0}=M;
M=coe f f xy { i 0 } ;
c o e f f xy { i 0}=coe f f xy { length ( c o e f f xy )+1− i 0 } ;
c o e f f xy { length ( c o e f f xy )+1− i 0}=M;

M= [ ] ;
end

else
for i 0 =1: length ( absxy ) /2−0.5

M=absxy{ i 0 } ;
absxy{ i 0}=absxy{ length ( absxy )+1− i 0 } ;
absxy{ length ( absxy )+1− i 0}=M;
M=coe f f xy { i 0 } ;
c o e f f xy { i 0}=coe f f xy { length ( c o e f f xy )+1− i 0 } ;
c o e f f xy { length ( c o e f f xy )+1− i 0}=M;

M= [ ] ;
end

end
end

b=0;
for r0 =1: length (CC)

i f the˜=pi/2
for m0=0:500

i f r0+m0*p>length (CC)
f=m0;
break

else
s=approche (CC{ r0+m0*p} (2 ,1 ) /(1* l y ) ) ;
i f 1+m0*nn−s<=0 | | 1+m0*nn−s>length (CC{ r0+m0*p})

f=m0;
break
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else

absxy{ r r } (1 ,m0+1)=CC{ r0+m0*p}(1 ,1+nn*m0−s ) ;
absxy{ r r } (2 ,m0+1)=CC{ r0+m0*p}(2 ,1+nn*m0−s ) ;
c o e f f xy { r r } (1 ,m0+1)=r0+m0*p ;
c o e f f xy { r r } (2 ,m0+1)=1+m0*nn−s ;
b=1;

end
end

end
else

for m0=0:500
i f m0+1>length (CC{ r0 })

break
else

absxy{ r r } (1 ,m0+1)=CC{ r0 } (1 ,m0+1) ;
absxy{ r r } (2 ,m0+1)=CC{ r0 } (2 ,m0+1) ;
c o e f f xy { r r } (1 ,m0+1)=r0 ;
c o e f f xy { r r } (2 ,m0+1)=m0+1;
b=1;

end
end

end
i f b==1

r r=r r +1;
end
b=0;
% [ r0 , r0+m0*p , l eng th (CC) ,1+m0*nn−s , l eng th (CC{r0 }) ]

end

The two pump pulses are then created :

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I n i t i a l i z a t i o n o f the pump pu l s e s

for dt =0: ht : ht*nt−ht
FFp1(1 , f )=( I01 /(h*wl1 ) )*exp(−(dt−t a r r i v e e 1 )ˆ2/(2* s i g 1 ˆ2))*exp(−( xar r ivee1−xa r r i v e e1 )ˆ2/(2* s i gx1 ˆ 2 ) ) ;
FFp2(1 , f )=( I02 /(h*wl2 ) )*exp(−(dt−t a r r i v e e 2 )ˆ2/(2* s i g 2 ˆ2))*exp(−( xar r ivee2−xa r r i v e e2 )ˆ2/(2* s i gx2 ˆ 2 ) ) ;

f=f +1;
end

And finally the algorithm occurs :

for i 0 =1: length (CC)
for dt =1:nt−1

for dy=1: length (CC{ i 0 })−1
i f Nv(dy , dt )==0;

PIIP=0;
end
NN(dy , dt+1)=2*PIIP*FFp2(dy , dt )*h*wl2*ht*NN3(dy , dt)−beta2 *ht*NN(dy , dt )*FFp2(dy , dt )

−beta1 *ht*NN(dy , dt )*FFp1(dy , dt)+ht* sigma1*Nv(dy , dt )*FFp1(dy , dt )ˆ np1
+ht* sigma2*Nv(dy , dt )*FFp2(dy , dt )ˆnp2−ht*NN(dy , dt )/ tau+NN(dy , dt )
+ht *2*NNtr (dy , dt )* sigma3*FFp2(dy , dt )ˆ np3 ;

i f NN(dy , dt+1)>u
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0
[ i0 , dy , dt ]
return

end

NNtr (dy , dt+1)=ht*NN(dy , dt )/ tau+ht*NN3(dy , dt )/ tau+NNtr (dy , dt )
−ht *2*NNtr (dy , dt )* sigma3*FFp2(dy , dt )ˆ np3+ht*NN2(dy , dt )/ tau ;

NN2(dy , dt+1)=−beta22 *ht*NN2(dy , dt )*FFp2(dy , dt)−beta12 *ht*NN2(dy , dt )*FFp1(dy , dt )
+beta2 *ht*NN(dy , dt )*FFp2(dy , dt)+beta1 *ht*NN(dy , dt )*FFp1(dy , dt)+NN2(dy , dt )
−ht*NN2(dy , dt )/ tau ;

NN3(dy , dt+1)=+beta22 *ht*NN2(dy , dt )*FFp2(dy , dt)+beta12 *ht*NN2(dy , dt )*FFp1(dy , dt )
+NN3(dy , dt)−h*wl2*FFp2(dy , dt )*PIIP*ht*NN3(dy , dt)−ht*NN3(dy , dt )/ tau ;

Nv(dy , dt+1)=u−NN(dy , dt+1)−NNtr (dy , dt+1)−NN2(dy , dt+1)−NN3(dy , dt+1)
−FFp2(dy , dt )*PIIP*ht*NN3(dy , dt )*h*wl2 ;

i f NNtr (dy , dt+1)<0
NNtr (dy , dt+1)=0;
NN(dy , dt+1)=NNtr (dy , dt )+2*h*wl2*FFp2(dy , dt )*PIIP*ht*NN2(dy , dt )

−beta2 *ht*NN(dy , dt )*FFp2(dy , dt)−beta1 *ht*NN(dy , dt )*FFp1(dy , dt )
−ht*NN(dy , dt )/ tau+NN(dy , dt)+ht *2*NNtr (dy , dt )* sigma3*FFp2(dy , dt )ˆ np3
+ht* sigma1*Nv(dy , dt )*FFp1(dy , dt )ˆ np1
+ht* sigma2*Nv(dy , dt )*FFp2(dy , dt )ˆ np2 ;

Nv(dy , dt+1)=u−NN(dy , dt+1)−NNtr (dy , dt+1)−NN2(dy , dt+1)−NN3(dy , dt+1)
−FFp2(dy , dt )*PIIP*ht*NN3(dy , dt )*h*wl2 ;

end

i f Nv(dy , dt )==0;
Nv(dy , dt+1)=0;

end

i f NN(dy , dt+1)<0
NN(dy , dt+1)=0;
NN2(dy , dt+1)=NN(dy , dt)−beta22 *ht*NN2(dy , dt )*FFp2(dy , dt )

−beta12 *ht*NN2(dy , dt )*FFp1(dy , dt)+NN2(dy , dt)−ht*NN2(dy , dt )/ tau ;
NN3(dy , dt+1)=+beta22 *ht*NN2(dy , dt )*FFp2(dy , dt)+beta12 *ht*NN2(dy , dt )*FFp1(dy , dt )

+NN3(dy , dt)−h*wl2*FFp2(dy , dt )*PIIP*ht*NN3(dy , dt)−ht*NN3(dy , dt )/ tau ;
NNtr (dy , dt+1)=NNtr (dy , dt)−ht *2*NNtr (dy , dt )* sigma3*FFp2(dy , dt )ˆ np3

+ht*NN2(dy , dt )/ tau+ht*NN3(dy , dt )/ tau ;
Nv(dy , dt+1)=u−NN(dy , dt+1)−NNtr (dy , dt+1)−NN2(dy , dt+1)−NN3(dy , dt+1)

−FFp2(dy , dt )*PIIP*ht*NN3(dy , dt )*h*wl2 ;
end

i f Nv(dy , dt+1)<0
Nv(dy , dt+1)=0;
PIIP=0;
NN(dy , dt+1)=Nv(dy , dt )+2*h*wl2*FFp2(dy , dt )*PIIP*ht*NN2(dy , dt )

−beta2 *ht*NN(dy , dt )*FFp2(dy , dt)−beta1 *ht*NN(dy , dt )*FFp1(dy , dt )
−ht*NN(dy , dt )/ tau+NN(dy , dt)+ht *2*NNtr (dy , dt )* sigma3*FFp2(dy , dt )ˆ np3 ;

NNtr (dy , dt+1)=ht*NN3(dy , dt )/ tau+ht*NN(dy , dt )/ tau+NNtr (dy , dt )
−ht *2*NNtr (dy , dt )* sigma3*FFp2(dy , dt )ˆ np3+ht*NN2(dy , dt )/ tau ;

NN2(dy , dt+1)=−beta22 *ht*NN2(dy , dt )*FFp2(dy , dt)−beta12 *ht*NN2(dy , dt )*FFp1(dy , dt )
+beta2 *ht*NN(dy , dt )*FFp2(dy , dt)+beta1 *ht*NN(dy , dt )*FFp1(dy , dt )
+NN2(dy , dt)−h*wl2*FFp2(dy , dt )*PIIP*ht*NN2(dy , dt)−ht*NN2(dy , dt )/ tau ;

NN3(dy , dt+1)=+beta22 *ht*NN2(dy , dt )*FFp2(dy , dt)+beta12 *ht*NN2(dy , dt )*FFp1(dy , dt )
+NN3(dy , dt)−h*wl2*FFp2(dy , dt )*PIIP*ht*NN3(dy , dt)−ht*NN3(dy , dt )/ tau ;

i f NN(dy , dt+1)<0
NN(dy , dt+1)=0;
NN2(dy , dt+1)=Nv(dy , dt)+NN(dy , dt)−beta22 *ht*NN2(dy , dt )*FFp2(dy , dt )

−beta12 *ht*NN2(dy , dt )*FFp1(dy , dt)+NN2(dy , dt)−ht*NN2(dy , dt )/ tau ;
NN3(dy , dt+1)=+beta22 *ht*NN2(dy , dt )*FFp2(dy , dt)+beta12 *ht*NN2(dy , dt )*FFp1(dy , dt )

+NN3(dy , dt)−h*wl2*FFp2(dy , dt )*PIIP*ht*NN3(dy , dt)−ht*NN3(dy , dt )/ tau ;
NNtr (dy , dt+1)=NNtr (dy , dt)−ht *2*NNtr (dy , dt )* sigma3*FFp2(dy , dt )ˆ np3

+ht*NN2(dy , dt )/ tau+ht*NN3(dy , dt )/ tau ;
end
g=g+1;

end
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Eeps i lon2 (dy , dt)=1+Nv(dy , dt )* f 12 *Depl+FFp1(dy , dt )*h*wl1* ch i31+FFp2(dy , dt )*h*wl2* ch i32
+(ee ˆ2/ ep s i l o n0 )*(−(NN(dy , dt)+NN2(dy , dt)+NN3(dy , dt ) )* FreeE2+NNtr (dy , dt )* ( Tr21 ) ) ;

i f imag( sqrt ( Eeps i lon2 (dy , dt)))==− i n f
disp ( ’ Erreur , i n f i n i t é ’ )
3
[ i0 , dy , dt ]
return

end
FFp1( dy+1,dt)=−hy*Nv(dy , dt )*np1*h*wl1* sigma1*FFp1(dy , dt )ˆ np1

−(2*hy*wl1/c )* imag( sqrt ( Eeps i lon2 (dy , dt ) ) )*FFp1(dy , dt)+FFp1(dy , dt ) ;

i f FFp2( dy+1,dt)==i n f
disp ( ’ Erreur , i n f i n i t é ’ )
2
[ i0 , dy , dt ]
return

end

FFp2( dy+1,dt)=−hy*Nv(dy , dt )*np2*h*wl2* sigma2*FFp2(dy , dt )ˆ np2
−(2*hy*wl2/c )* imag( sqrt ( Eeps i lon2 (dy , dt ) ) )*FFp2(dy , dt)+FFp2(dy , dt ) ;

i f FFp1( dy+1,dt)==i n f
disp ( ’ Erreur , i n f i n i t é ’ )
1
[ i0 , dy , dt ]
return

end
ord1 (dy , dt)=real ( sqrt ( Eeps i lon2 (dy , dt )))−n0 ;
ord2 (dy , dt)=beta12 *NN2(dy , dt )*h*wl1*FFp1(dy , dt)+beta22 *NN2(dy , dt )*h*wl2*FFp2(dy , dt )

+beta1 *NN(dy , dt )*h*wl1*FFp1(dy , dt)+beta2 *NN(dy , dt )*h*wl2*FFp2(dy , dt )
+(2*wl1/c )* imag( sqrt ( Eeps i lon2 (dy , dt ) ) ) * ( FFp1(dy , dt )*wl1*h)
+(2*wl2/c )* imag( sqrt ( Eeps i lon2 (dy , dt ) ) ) * ( FFp2(dy , dt )*wl2*h)
+2*np3*h*wl2* sigma3*FFp2(dy , dt )ˆ np3 ;

PIIP=PII ;
end
dt

end

for dt =1: length ( t )−1
de l t aph i (1 , dt )=(2*pi/lambda2 )* trapz ( yy1 , ord1 ( : , dt ) ) ;

end

for dy=1: length (CC{ i 0 })−1
EE(1 , dy)=trapz ( t , ord2 (dy , : ) ) ;

end
Etot=trapz ( [ 0 : l y : length (CC{ i 0 })* ly−2* l y ] ,EE( 1 , : ) ) / Ly ;

end

As can be seen, the code is much more complex than for the 1D algorithm,
because they are more phenomena to simulate, and because we also added con-
trol sequences, so that for example the algorithm can handle the case when there
is no more electrons in the valence band.
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