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Chapter 1

Introduction

The project of my master thesis that I report in this manuscript has been carried out at the

Laboratoire Systèmes de Référence Temps-Espace (SYRTE) in Paris Observatory as part of

the ForCa-G project. The ForCa-G project, which stands for CAsimir FORce and Gravitation

at short range, aims at measuring different short range interactions such as the Casimir-Polder

force and at realizing a test of Newtonian gravity, searching for possible deviations to Newton

gravity theory. Such deviations are made possible by new gravitational-type interactions within

the range of the micrometer, as considered by various unification theories. Considering those

new forces as modifications of the Newtonian gravity, one adds a so-called Yukawa potential to

the Newtonian potential:

UY = UN (1 + αe−
r
λ )

with UN = GM1M2
r the Newtonian potential, with r the distance between the two massive

objects, α and λ being respectively the amplitude and the characteristic length of the deviation.

One can represent today’s research of new interactions on a map (α − λ) (see figure 1.1

where the colored zones represent the parameter subspace excluded by the observations and

measurements). At long range, interactions are pretty well described by Newtonian gravity. For

example, at 1km range, the Yukawa potential is at least one thousand times weaker than the

Newtonian potential. Eventual deviations to Newton gravity theory are thus negligeable when

compared with Newtonian gravity. At short range though, interactions such as Van der Walls

forces or Casimir forces prevail over the Newtonian potential. As a consequence it is hard to

measure the Newtonian potential and thus to measure any eventual deviations from it. Thanks

1



2

to the ForCa-G experiment, we will be able to probe and exclude new zones on the (α−λ) map.

The blue curve on figure 1.1 describes the predicted range of sensitivity of our experiment.

Fig. 1.1: Map (α− λ) of the deviations to Newtonian gravity at long and short ranges.

This challenging project was born in 2007 with the proposal made by P. Wolf to use trapped

atoms in an optical lattice to measure short range forces [15]. Famous for its numerous experi-

ments with cold atoms, the SYRTE laboratory in Paris had all the necessary know-how to host

such a project. The SYRTE laboratory is a leader in time and frequency metrology. It has in

charge several international services and is responsible for the national reference time in France.

Building extremely precise atomic clocks at first, the laboratory is now developing several sen-

sors such as gravimeters, gradiometers and gyroscopes which are also using cold atoms. Today

a new generation of clocks, “optical clocks”, is being investigated [14]. Such clocks, trapping

cold atoms in an optical lattice to measure narrow transitions in the visible spectrum, did of

course motivate the ForCa-G project as well. In the ForCa-G experiment, we trap 87Rb atoms

in a vertical optical lattice.

After this short introduction to the ForCa-G project and to the SYRTE laboratory, I will

firstly explain the principle of the experiment and also the necessity of my work which consisted

in building a new laser for the experiment. I will then focus on the development of this laser

and I will finish with the successes and the few setbacks which stopped me from completing the

project.



Chapter 2

ForCa-G Experiment

Cold atoms have proven to be a tool extremely well suited for metrology. The possibility to

coherently control with high precision both the internal and external atomic states of an atomic

cloud makes it a first choice technology to test the gravity (today free-fall atomic gravimeters

can reach a sensitivity of ∆g = 2.9 × 10−10g as described in [10]). It is this very same tool

which is used in the ForCa-G experiment. Based on atomic interferometry of trapped atoms,

the experiment allows absolute measurements of the gravity with good accuracy and sensitivity

(∆g = 1.7× 10−7g).

In this section, I first present shortly the principle of the experiment and introduce to you

the basics of atomic interferometry via the Ramsey interferometer. I describe next how atoms

can be trapped in an optical lattice and how we can manipulate them with a Ramsey-Raman

interferometer. To finish, I explain the necessity of trapping the atoms in a supperlattice if one

wants to measure the Casimir-Polder force.

2.1 Principle Of The Experiment

The principle of the experiment is based on atomic interferometry. It consists in the separa-

tion of the wavefunctions of atoms trapped in a vertical optical lattice. The system is thus a

superposition of wave packets localized in different wells of the optical lattice (so at different

heights). After a certain time during which the phases of the wave packets evolve independently,

they are recombined. One deduces from their phase difference the difference in potential energy

they have been submitted to (depending on their position in the optical lattice). In a vertical
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optical lattice, the difference in potential energy is nothing but the difference in the gravitational

potential.

A few tenth of µm close to a surface, however, this potential is strongly dominated by the

Casimir-Polder force (see figure 1.1). Realizing such a measurement close to a surface would

allow us to study the Casimir-Polder force. The phase difference between atoms of different

wells ( ie: at different distances from the surface) would be indeed the difference in the Casimir-

Polder potential experienced by the atoms (see figure 2.4). At this moment of the experiment,

the atoms are trapped far away from any surface so that one measures only the gravitational

potential. The current set-up that I describe briefly in this chapter allows atomic interferometry

between the wells of the optical lattice and so a measurement of the gravitational potential

[1][13][12][16]. The next step is to reproduce the same measurements close to a surface (the

mirror used to reflect the lattice beam as described in section 2.3) in order to measure the

Casimir-Polder force and eventual deviations to Newton gravity theory.

2.2 Atomic Interferometry

In 1923 Louis De Broglie suggested that matter presented the same wave-particle duality that

had been verified for light since Einstein and the discovery of the photoelectric phenomenon

in 1905. At that time, optical interferometry had already achieved great success with the

Michelson-Morley experiment (1887), or with the Sagnac experiment (1913). When in 1927

the wave aspect of matter was verified experimentaly with the diffraction of electrons on a Ni

crystal [8], atomic interferometry was predicted to meet a great success. It should for example

lead to some extremely precise measurements of time (atomic clocks) or of the gravity (atomic

gravimeters, gradiometers). In 1990-1991, atomic interferometry was born [5] and it met in the

last two decades the foreseen success.

2.2.1 Cooling Atoms

Cooling atoms is the first step towards atomic interferometry. At low temperatures (about some

µ-Kelvins) matter is more likely to show its wave aspect as well as strong quantum-mechanical

properties. At room temperature an atom has a high velocity and its DeBroglie wavelength is

small. When decreasing its velocity - an atom cooled down to 1µ-K has a velocity of 1cm/s -

the atomic wavelength increases. It is then easier to highlight its wave characteristics and so



2.2. Atomic Interferometry 5

to perform atomic interferometry. Besides a cold atomic cloud can be easily manipulated with

electric or magnetic fields and is well suited to simulate several problems of Condensed Matter

Physic. For example, a system of trapped atoms in an optical lattice is similar to a system of

electrons in a perfect crystal and follows the same Bloch theorem (see section 2.3). To reach

such low temperatures, atoms are usually pre-cooled with magneto-optical trap (MOT) to a few

µ-Kelvins and further cooled down to a few hundreds of n-Kelvins with evaporative cooling in

an optical or a magnetic trap. Our team recently optained a Bose-Einstein condensate thanks

to evaporative cooling in an dipolar trap. A process I won’t develop in this report.

2.2.2 Ramsey Interferometer

In this subsection I give a brief overview of an atomic interferometer via the simplest example

we know: the Ramsey interferometer. In a Mach-Zehnder optical interferometer, a light wave

is separated in two by a beam-splitter, travels in two different “arms” and is recombined with

a second beam-splitter. Similarly in a Ramsey atomic interferometer, the two different arms

correspond to the two states of the hyperfine structure of the atom (here 87Rb) : the ground

state |F = 1〉 with an energy ~ωg, and the first excited state |F = 2〉 with an energy ~ωe. In such

an interferometer, the atomic cloud is separated into the two states with a so called π/2 pulse,

evolves in these two different arms and is recombined with a second π/2 pulse. Such transitions

between the two hyperfine states of the 87Rb atom can be easily described by the light-matter

interaction. The hamiltonian of the system is the sum of the internal hamiltonian of the atom

Hat and the coupling hamiltonian HI :

Htot = Hat +HI

= ~ωe|e〉〈e|+ ~ωg|g〉〈g|+ ~Ωc cos(ωt− kz)|e〉〈g|+ h.c. (2.1)

with Ωc the coupling constant of the interaction. Ωc = −E0〈g|d̂|e〉
~ with d̂ the projection of the

atomic induced dipole along the axis of the electromagnetic field E0. ω is the pulsation of the

EM field. The wavefunction of the atom can always be written as a superposition of the ground

state and the excited state:

|Ψ(t)〉 = cf (t)e−iωgt|g〉+ ce(t)e−iωet|e〉 (2.2)
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with |cg(t)|2 + |ce(t)|2 = 1. Inserting 2.2 into the Schrödinger equation, we get the following

system: 
iċg(t) = Ω∗c

2 ei(δt+φ)ce(t)

iċe(t) = Ωc

2 e−i(δt+φ)cg(t) (2.3)

with δ = ω − (ωe − ωg). Solving the system assuming δ << ωHFS = ωe − ωg, one obtains:


cg(t) = (cos(ΩRt

2 )− i δΩR
sin(ΩRt

2 ))eiδt/2

ce(t) = −i Ωc

ΩR
sin(ΩRt

2 )e−iδt/2 (2.4)

with ΩR =
√
δ2 + Ωc

2 the Rabi frequency. The transition probability for the excited hyperfine

state is thus:

Pe(t) = Ωc
2

ΩR
2 sin2(ΩRt

2 ) (2.5)

The atom oscillates between the ground state and the excited state of the hyperfine structure

at the Rabi frequency ΩR. This is called the Rabi oscillations. To separate the atoms between

the two state (“arms” of the interferometer) one use a so called π/2 pulse at resonance. This

“beam splitter” is defined so that Pe = 0.5 (half of the atoms are in the excited state and

Fig. 2.1: The Ramsey interferometer, an extremeley precise way to measure the hyperfine frequency.

Calculations made with Mathematica.
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the other half remains in the fundamental state). From 2.5 one finds ΩRτRam = π/2 and

ω = ωHFS . Other types of beam splitter are also implemented such as Raman beams that I

describe in section 2.3.2. A Ramsey interferometer is made of two π/2 pulses separated by an

“interrogating” time TRam. If δ 6= 0, the phase difference in the two arms of the interferometer

can be written:

∆φ = δ · t = (ω − ωHFS)t and with t = TRam

= (ω − ωHFS)TRam

(2.6)

(2.7)

The wavefunction is now written:

|Ψ(t = τRam + TRam + τRam, δ)〉 = cg(t, δ)(1 + e−i∆φ)|g〉+ ce(t, δ)(1 + e−i∆φ)|e〉 (2.8)

which leads to a transition probability:

Pe = |〈e|Ψ〉|2 = 1
2(1 + C cos(∆φ)) (2.9)

One can observe interference fringes in the frequency space with a maximum centered on the

hyperfine frequency. Such an interferometer allows thus a better measurement of the hyperfine

frequency. See figure 2.1. The envelope has a full width at half maximum FWHM proportional

to 1
τRam

and the interfringe is given by FWHM ∝ 1
TRam

. The bigger the interrogating time TRam,

the thiner the fringes and the better the precision on ωHFS .

2.3 Bloch Oscillations

2.3.1 An Optical Lattice

In our experiment, a 532nm laser is retro-reflected on a mirror and therefore creates an optical

lattice. Let us indeed consider a retro-reflected electromagnetic wave E. It is the sum of two

contra-propagating waves with same frequency ω and opposite wavevectors k = ±2π
λ . Assuming

total reflection R = 1 and a phase-shift φ :

E = E+ + E− = E0e
i(ωt−kz) + E0e

i(ωt+kz+φ) (2.10)

The boundary condition on the mirror (z=0) at t=0 leads to E+ +E− = 0 and φ = π. We have

now:

E = 2iE0 sin(kz)eiωt (2.11)
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and the intensity I is:

I = E0 ·E∗0 = I0 sin2(kz) (2.12)

which is the expression of a standing wave of period λ/2.

Atoms in such a standing wave experience a periodic potential:

Fd = −
→
∇R (−d ·E(R)) (2.13)

with the induced dipole momentum

d = qere = <{ε0α0E0(R)ei(ωt−φ)}

<{α0} = − qe2

2meωε0

δ

δ2 + Γ
2

2

(2.14)

(2.15)

With δ = ω − ωHFS , and ωHFS the hyperfine frequency of the fundamental state of 87Rb. The

dipolar potential is then:

Ud = −ε04 <{α0}E2
0(R) (2.16)

E2(R) = I(R) and with 2.12, the dipolar potential is indeed periodic of period λ/2:

Ud = −ε0<{α0}E2
0

1− cos(2kz)
2 (2.17)

Depending on the sign of δ, the atoms are trapped in the maxima or minima of intensity.

If δ = ω − ωHFS < 0 (δ > 0) the lattice is said to be blue-detuned (red-detuned) and the

atoms are trapped in the minima (maxima) of intensity. In our case the laser is blue-detuned

(532nm<780nm) and the wells of the potential correspond to the minima of intensity. The

eigenstates of such a periodic potential follow the Bloch theorem which I won’t detail here [2].

They have the same periodicity than the potential and are delocalized on all the wells of the

optical lattice. They are called the Bloch states. As I explain in the next section, however,

Bloch theory doesn’t describe exactly our situation.

2.3.2 Manipulating Atoms In The Optical Lattice

In the ForCa-G experiment, the optical lattice is vertical so that atoms trapped in the lattice

don’t see the same potential depending on their vertical position. The gravity breaks the sym-

metry I described previously, and the eigenstates of the system are localized states. The atoms
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Fig. 2.2: The Wannier-Stark ladders for the fundamental state F=1 and for the hyperfine state F=2.

From [1]

are thus localized on a finite number of wells which makes it possible to manipulate them and

transport them from one well to another. Without going into the details of the theory, the wells

of the optical lattice are shifted by an energy:

e = m ·mRbg
λlatt

2 = m · hνB (2.18)

with νB the Bloch frequency, m the number of the well of interest. Figure 2.2 shows the increment

in energy induced by the gravity: it is a so-called Wannier-Stark ladder.

Measuring the local acceleration of gravity g at different distances from the retro-reflecting

mirror requires to be able to transport the atoms in the optical lattice from one well to an

Raman 1 
Raman 2 

wR1, kR1 wR2, kR2 

ΔRam = -3,4 GHz 

Fig. 2.3: Principle of stimulated Raman transition for 87Rb. From [11]
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other. To do so, we use the same ligth-matter interaction described in section 2.2.2. However

one must not only change the hyperfine state of the atoms but one must also transfer to the

atoms an additionnal energy so that they can jump from one well to another via tunnel effect.

Stimulated Raman transitions can induce such a change both in the internal and external states

of the atoms (see figure 2.3).

One use two counter-propagating Raman beams of frequency ω1,2 and wavevector k1,2 so

that ω1−ω2 = ω0 +m ·ωB and that k1 + k2 = keff ≈ klatt the lattice wavevector. In a Ramsey-

Raman interferometer (see figure 2.4) a first π/2 Raman pulse of duration τRam = π
2ΩR transport

half of the atoms in the state |e,m〉 while the other half remains in the state |g,m = 0〉. The

phases of the two atomic clouds evolve independantly in the two different lattice wells during

TRam. The atoms are then recombined with a second π/2 Raman pulse and one can measure

with extreme precision the Bloch frequency νB and so the gravity g since equation 2.18. The

interfringe being ∝ 1
TRam

the bigger TRam, the better the precision on νB and so on g.

m 

m+n 

m 

Mirror Mirror Mirror 

𝜋

2
 𝑝𝑢𝑙𝑠𝑒  

𝜋

2
 𝑝𝑢𝑙𝑠𝑒  𝑇𝑅𝑎𝑚 

∆𝜙 =  
1

ℏ
(𝑈𝑚+𝑛−𝑈𝑚)𝑇𝑅𝑎𝑚 = 2𝜋 · 𝑛𝜈𝐵 · 𝑇𝑅𝑎𝑚 

Fig. 2.4: The Ramsey-Raman interferometer in an optical lattice. The phase difference depends on the

bloch frequency νB .
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2.3.3 A Superlattice

As seen previously, each well has the same depth and the atoms are populating several wells

(because of the atomic cloud size ≈ 1.5mm diameter). During a Ramsey-Raman interferometer,

all the atoms in all the wells are transported at the same time of the same number of wells.

Close to the retro-reflecting mirror, the phase evolution of the atoms during the interferometer is

perturbated differently by the Casimir-Polder potential, depending on the distance between the

atoms and the mirror. Such phase differences will induce a contrast decay of the interferometer

or at best an average of the force among the different wells, leading to a less precise measurement.

A modulation of this periodic potential would break this symmetry and would allow us to select

atoms in only one well (in the ideal case) and regain a good contrast.

The superposition of a second laser with a different wavelength creates such a modulation

of the periodic potential. This is called a superlattice. Let us consider two standing waves of

wavevectors k1 = 2π
λ1

and k2 = 2π
λ2
. Since the two beams have different wavelengths, they don’t

interfere and we sum their intensities.

I = I1 + I2 = I10 sin2(k1z) + I20 sin2(k2z) (2.19)

Fig. 2.5: Plots of the superlattice for different intensity ratios. On the left I10/I20 = 1 and on the

right I10/I20 = 3/4. Note that the length of the super-periode is λsuplatt/2. Calculations made with

Mathematica.
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Assuming I10 = I20,

I = I10(1 + cos((k1 + k2)z) cos((k1 − k2)z)) (2.20)

In our experiment, the two lasers of the superlattice are obtained by second harmonic generation

of 1064nm and 1083nm lasers. At these wavelengths, the period of the superlattice is given by

(from the expression 2.20)

P = λsuplatt/2 = 1
2
λ1 −

2
λ2

= 15µm (2.21)

with λ1 = 532nm, λ2 = 541.5nm.

Figure 2.5 shows two plots of the superlattice for different intensity ratios. I10/I20 = 1 and

I10/I20 = 3/4.

The first laser at 532nm is a 12W Verdi laser which is already used in the experiment to trap

the atoms in a normal lattice. The second laser at 541.5nm is the one I built during this master

project and which I will install on the experiment next year. High-power continuous-wave green

lasers usually use frequency doubling from infrared lasers. In the next chapters I detail how I

used second harmonic generation to develop such a laser.



Chapter 3

Building The Laser

The powerful current-wave green laser I built during this master project is made of three principal

elements:

• A distributed feedback (DFB) laser diode as a seed laser,

• A 50W fiber amplifier

• A non-linear crystal for frequency doubling.

3.1 The DFB Laser Diode

The seed laser is a butterfly DFB laser diode from Eagleyard (EYP-DFB-1083-00030-1500-

BFY02-0000). In a DFB laser, the gain medium is designed as a diffraction grating. It selects a

narrow bandwidth and creates the optical feedback. This laser diode emits light at 1083nm with

an extremely narrow bandwidth of 2MHz and can be finely tuned by changing the input current

(0.003nm/mA) or the operating temperature (0.06nm/K). It is a very useful characteristic for

phase-matching in second harmonic generation (see section 4.2.4). The laser diode has integrated

Thermal Electric Cooler (TEC) and Thermistor sensor. A TEC driver remains to be built.

3.1.1 The TEC Driver

When any electric current is applied to a laser diode, it overheats quickly, causing missfunctions

and strong damages to the diode. That is why every laser diode needs a TEC device to stabilize

its temperature. The TEC drivers developed in the lab use the feedback of the thermistor of

the diode in a control loop mechanism called PID controller (proportional-integrator-derivative

13
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controller). PID controllers provide an easy and efficient solution for control loop feedback sys-

tems, combining at once precision, rapidity and stability. The proportional is a simple controler

which increases the loop bandwidth and so the rapidity. It improves the precision and the dis-

turbance rejection, but not the stability of the control. Indeed the higher the gain the less stable

the system. Besides it has a static error. The proportional-integrator is more precise than the

proportional alone. Finally, adding a derivator increases the rapidity of the system.

The transfer function of such a PID corrector is:

C(p) = K
(1 + τip)(1 + τDp)

τip
(3.1)

Where p = jω with ω the frequency, K the gain, τi the integration time-constant and τD

the derivation time-constant. These parameters have to be chosen wisely to provide a fast and

stable response to a perturbation. On figure 3.1, I plotted the four possible responses to a

Fig. 3.1: Different responses to a perturbation at t=0. a) Oscillating Regime. b) Pseudo-Oscillating

Regime. c) Attenuating Regime d) The ideal case. Plots made with Mathematica.
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perturbation. The order is set to 0. The perturbation has an amplitude of 1. If the gain of the

controller is too high, the system never stabilizes to 0. It oscillates with a free oscillatory period

Tosc. This is the oscillating regime. If the time constants of the PID are too long, the response

is too slow, the oscillations are damped, it is a pseudo-oscillating regime. Choosing the right set

of resistors and capacitors so that τi = 2τD = Tosc leads to an attenuating regime close to the

ideal case.

3.1.2 Laser Diode’s Characteristic

Once the TEC driver and the power supply were built, I could test the characteristics of the

laser diode. The laser diode has a threshold at 51mA and reaches a maximum power of 41mW

at 150mA. (see figure 3.2).
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Fig. 3.2: Laser Diode’s Characteristic.
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3.2 The NUFERN Amplifier

Amplifying a 30mW signal into a powerful laser beam of 50W is not an easy thing at all. Fortu-

nately, such an amplifier was already designed to that purpose and available in the laboratory.

NUA-1064-PC-0050-D0 is a polarization maintaining 50W optical amplifier from NUFERN com-

pany and was designed to amplify 1064nm laser beams. It can however amplify wavelengths

between 1030nm and 1100nm. I used it to amplify the 1083nm laser beam of my DFB laser

diode. If the design of such an amplifier is not detailed by the manufacturer, it is probably a

two level Yb-doped fiber amplifier. Before reporting the performances of the amplifier, I will

shortly speak about two essential elements, the chiller and the isolator.

3.2.1 The Chiller

A chiller is a device aimed at cooling lasers or amplifiers to insure high quality performances

and long life. A pump circulates a liquid through the amplifier’s heat-dissipating components

and the chiller removes the heat from the liquid via vapor-compression cycle. One uses distilled

water to prevent any minerals from damaging the chiller. We added 5% of alcohol to prevent

any bacteries from developing in the water.

3.2.2 The Isolator

An optical isolator is a device aimed at transmitting light along one direction only. It prevents

possible backlight from following the reverse path and damaging optical components such as

amplifiers or laser diodes. Most of optical isolators are based on the Faraday effect. In the

presence of an axial magnetic field, the Faraday effect induces a rotation of the polarization of

a propagating light wave. The angle of rotation depends on the wavelength and is given by:

α = V Bd

with V = α
dB = −1

2
e
m
λ
c
dn
dλ

A combination of polarizing cubes and a Faraday rotator as you can see in figure 3.3 provides

an intelligent optical isolator.
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+45° 

Fig. 3.3: Principle of a Faraday Optical Isolator. A suitable polarized beam can propagate from left to

right (red) whereas no kind of polarized beam can propagate in the opposite direction (green).

Since the rotation angle α depends on the wavelength, by turning the second cube one

can slightly change the working bandwidth of the isolator. Developped for 1064nm lasers, I

experimentaly modified it so to use it with my 1083nm laser. I reached a -31dB attenuation in

the backward direction with a forward transmission of 84%.

3.2.3 Output Of The Amplifier

The output power

Once the chiller and the isolator were set, I turned on the amplifier and measured its perfor-

mances. This mono-mode amplifier designed for a nominal wavelength of 1064nm might show

different performances with my 1083nm diode laser. The figure 3.4 is a plot of the characteristic

of the amplifier. For each point I waited about 5mn to estimate the fluctuations around the

mean value. I wasn’t disapointed by such high performances. This amplifier can reach a maxi-

mum power of 63W. However, for some current values the fluctuations reach more than 5% of

the mean power. An interesting test was to change the seed power. I realized that it induced

a short-term change in the output power of the amplifier which later stabilizes always on the

same power value. Such an observation will be important to keep in mind for section 4.2.4.
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Fig. 3.4: Output power of the fiber amplifier as a function of the input electric current.

The output beam

After looking at the output power of the amplifier, I measured the quality of the output beam.

Measured by the manufacturer to be of the order of M2 < 1.3, I was strongly surprised by

its profile. As you can see on figure 3.5, the beam isn’t gaussian at all (for measurements see

section 4.2.2). One can see indeed a fine-scale granular pattern : this is speckle.

When highly coherent light (such as laser light) is reflected from a surface, one can observe

such a speckle pattern in the scattered spot. The same goes (to a smaller extent) for transmitted

light through a lens. In fact any real surface is rough compared to the optical wavelength and

scatters coherent light, creating interferences. However, in our experiment such a significant

speckle can’t be explained only by the roughness of the optics. By looking at the beam directly

after the fiber (under no amplification) one can observe that the speckle comes from the fiber

or the amplifier itself. Unfortunately, no scratches or digs could be seen on the fiber under a

microscope. I tested the amplifier with a 1064nm seed laser. The output beam presented the

same speckle pattern. After discussion with the manufacturer, the amplifier needed to be sent
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Fig. 3.5: Output beam after the fiber amplifier.

back for reparation. I postponed the reparation assuming that the quality of the beam may not

affect the second harmonic generation much. Once the laser will be used to trap atoms however

one will have to solve this issue. Non-uniformity of a beam due to speckle induces a random

dipolar force and thus a random velocity variation of the atoms, which can strongly affects the

contrast of the interferometer [7].



Chapter 4

Second Harmonic Generation

Non-linear optics plays today a key role in several applications to light sources and optical

processing of information. As we have seen in section 2.3.3 second harmonic generation (SHG)

is commonly used for the development of powerful lasers and is the option we chose for our

experiment. In this section I present a short theory of SHG and detail how I used frequency

doubling to build my laser.

4.1 A Short Theory

4.1.1 Induced Dipoles

Non-linear optic finds its origin in light-matter interaction. A static field applied on an atom acts

on the electrons trajectories via the Lorentz force F=q.E. It induces a change in position of the

center of mass of the electrons ∆x. As a consequence the atom behaves as a dipole p(t) = q∆x(t)

So when an electromagnetic field of frequency ω is applied to an atom, the induced dipole starts

to vibrate due to the competition between the Lorentz force and the restoring force that links

the electronic cloud to the nucleus. Lets assume an EM field propagating along the z direction

and polarized along the x direction. We write it :

E(z, t) = E0 cos(ωt− kz)ex

= (E(ω)e−i(ωt−kz) + E∗(ω)ei(ωt−kz))ex

= (E(ω)e−i(ωt−kz) + E(−ω)ei(ωt−kz))ex since for a purely real field E∗(ω) = E(−ω)

20
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In linear media the induced dipole oscillates at the same frequency ω than the EM wave. There-

fore the macroscopic polarization can be written:

P(t) = Nq∆x(t) ∝ E (4.1)

with N the number of atoms (N identical dipoles).

To demonstrate this expression one must solve the equation of motion for ∆x(t) (which we

write x in the following). In the case of a classical harmonic oscillator :

d2x

dt2
+ α

dx

dt
+ ω2

0x = − e

m

x
|x| ·E (4.2)

with αdxdt the damping term in a classical harmonic oscillator and ω2
0x the restoring force of a

linear medium. The solution for a steady-state can be written :

x(t) = A(ω)e−i(ωt−kz) + c.c. (4.3)

Inserting 4.3 in 4.2, we find A(ω) = −eE(ω)
D(ω) with D(ω) = ω2

0−ω2− iαω and we obtain finally :

P(z, t) = ε0χ
(1)E(ω)e−i(ωt−kz) + c.c. (4.4)

with the linear susceptibility χ(1) = Ne2

ε0mD(ω) .

4.1.2 Second Order Nonlinear Polarization

In non-linear media, the restoring force depends on the displacement of the center of mass of the

electronic cloud. The equation of motion isn’t linear anymore. Taking into account the second

order nonlinearities, the restoring force is now written ω2
0x + βx2 with ω2

0x >> βx2. The new

equation of motion is :
d2x

dt2
+ α

dx

dt
+ ω2

0x+ βx2 = − e

m

x
|x| ·E (4.5)

Solving this problem as a perturbated solution of the former expression, we search for a solution:

x(t) = λ1x
(1)(t) + λ2x

(2)(t) (4.6)
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with λ1,2 ∈ [0, 1] the strength of the perturbation. After inserting 4.6 in 4.2, since x(1) is

solution of 4.2, the equation of motion becomes:

d2x(2)

dt2
+ α

dx(2)

dt
+ ω2

0x
(2) = −β(x(1)2 + x(2)2) ≈ −βx(1)2

= −β(A2(ω)e−2i(ωt−kz)

+ 2A(ω)A(−ω)e−2i(ωt−kz)

+A2(−ω)e2i(ωt−kz))

(4.7)

(4.8)

Searching for a steady-state solution for x(2), it can be written :

x(2)(t) = B(0) +B(2ω)e−2i(ωt−kz) +B(−2ω)e2i(ωt−kz) (4.9)

Inserting 4.9 into 4.8 we derive:

B(0) = − 2βe2E(ω)E(−ω)
m2D(0)D(ω)D(−ω)

B(±2ω) = − βe2E2(±ω)
m2D(±2ω)D(±ω)D(±ω)

(4.10)

(4.11)

We finally obtain the expression of the 2nd order non-linear macroscopic polarization:

P(z, t) = P(1)(z, t) + P(2)(z, t)

= ε0χ
(1)(ω)E(ω)e−i(ωt−kz)

+ ε0χ
(2)(ω,−ω)E(ω)E(−ω) + ε0χ

(2)(ω, ω)E(ω)E(ω)e−2i(ωt−kz)

+ c.c.

(4.12)

with the linear and non-linear susceptibilities χ(1) = Ne2

ε0mD(ω) and χ
(2)(ω1, ω2) = Nβe2

ε0m2D(ω1+ω2)D(ω1)D(ω2)

with ω1,2 = ±ω.

In the special case of ω1 = ω2, according to 4.12, the fundamental wave at frequency

ω induces a vibrating dipole at frequency 2ω. This is called second harmonic generation (or

frequency doubling).

4.1.3 Quasi Phase-Matching

In SHG, due to the normal dispersion in the crystal, the two waves at frequencies ω and 2ω travel

at different phase velocities determined by the refractive indices nω < n2ω. As a consequence,
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the power flow oscillates between the fundamental and the second-harmonic waves and the SHG

power can’t grow. Lets indeed start with the non-linear wave equation in the medium.

→
∇ ×

→
∇ ×E(ω) = ω2

c2 E(ω) + ω2µ0P(ω) (4.13)

Writing for the linear case

D = ε0E + P(1) = ε0(1 + χ)E = εE (4.14)

assuming E = E(ω)eikre, we obtain the Fresnel’s equation:

k× k× e + ω2

c2 ε(ω)e = 0 (4.15)

In the second order non-linear case and for frequency doubling, the Fresnel’s equation becomes,

k× k× e + 4ω2

c2 ε(2ω)e = 4ω2µ0P(2)(2ω) (4.16)

Assuming that the SHG wave is propagating along the r direction, E = A2ω(r)eik2ωre, 4.16
becomes:

−(k× (k× e) + 4ω2

c2
ε(2ω)e)A+ i(

→
∇ A× (k× e) + k× (

→
∇ A× e))+

→
∇ (
→
∇ A× e) = 4ω2µ0P(2)(2ω)e−ik2ωr

(4.17)

Using both 4.15 and the assumption of a slow variation of the field amplitude on a characteristic

length λ, the wave equation is reduced to:

i(
→
∇ A× (k× e) + k× (

→
∇ A× e)) = 4ω2µ0P(2)(2ω)e−ik2ωr (4.18)

For a propagating wave along the z direction, multiplying 4.18 by e,

2i
→
∇ A · ((k× e)× e) = 4ω2µ0eP(2)(2ω)e−ik2ωr (4.19)

In the coordinate system (D,B,k) we write (see figure 4.1)

− tan(α)∂A
∂x

+ ∂A

∂z
= iω

n2ωcε0 cos2(α)eP
(2)(2ω)e−ik2ωr (4.20)

One can neglect the walk-off angle α (defined figure 4.1) and finally:

∂A

∂z
= iω

n2ωcε0
eP(2)(2ω)e−ik2ωr (4.21)

Using the second order polarization of 4.12 into 4.21:

∂A2ω
∂z

= iω

n2ωc
A2
ωeχ(2)(ω, ω)ee · ei(2kω−k2ω)z (4.22)
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Fig. 4.1: Vectors in the coordinate system. The angle α between the wavevector k and the Poynting

vector Π is called the walk-off angle.

To highlight the phase miss-matching we can write ∆k = 2kω − k2ω and introduce the scalar

effective susceptibility χ(2)
eff = eχ(2)(ω, ω)ee, we obtain in the end:

∂A2ω
∂z

= iω

n2ωc
A2
ωχ

(2)
effe

i∆kz (4.23)

In the undepleted pump approximation regime (Aω(z) = Aω(0)), we find:

A2ω(z) = iω

n2ωc
A2
ωχ

(2)
effsinc(

∆kz
2 )zei

∆kz
2 (4.24)

For non phase-matched situation, equation 4.24 describes the oscillating behaviour of the in-

tensity (see figure 4.2). The generation of the second harmonic wave occurs on a characteristic

length Lcoh = π
∆k which is called the coherent buildup length. One can notice that the intensity

of the second harmonic wave is proportionnal to the square intensity of the fundamental wave.

Fig. 4.2: Oscillating behaviour of the intensity of the 2nd harmonic generation in non phase-matched

situation.
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The most commonly used method to accomplish phase-matching is to use birefringent crys-

tals. The refractive index of such crystals depends both on the polarization direction and the

propagation direction of the EM wave. This property makes it then possible to have the fun-

damental wave and the SHG wave travelling at the same speed in the crystal, satisfying the

phase-matching condition. Lets consider for example Type I phase-matching in a positive uni-

axial birefringent crystal. In positive uniaxial crystals, the extraordinary and ordinary indices ne
and no verify the relation ne(θ) > no(θ) with θ the angle between the axis of the crystal and the

propagation direction of the beam. We assume the fundamental wave to be extraordinary polar-

ized and the SHG wave to be ordinary polarized. One can chose θ so that ne(θ, ω) = no(θ, 2ω).

As a result:
∆k = 2kω − k2ω

= 2ne(θ, ω)ω
c

− no(θ, 2ω)2ω
c

= 2ω
c

(ne(θ, ω)− no(θ, 2ω))

= 0

In isotropic materials however it is possible to realize Quasi Phase-Matching (QPM). The

idea is to make the susceptibility of the crystal depending on z. For ferroelectric crystals (such

as Lithium Tantalate), this can be obtained by applying electric pulses to periodic electrodes

patterned on the faces of the crystal. Such “Periodically Poled” crystals provide an efficient

solution to QPM (see figure 4.3). In such crystals the susceptibility is:

χ
(2)
eff = χ

(2)
eff0cos(Kz) with K = 2π

2Lcoh
(4.25)

Inserting 4.25 into 4.23 we get:

∂A2ω
∂z

= iω

n2ωc
A2
ωχ

(2)
eff0 cos(Kz)ei∆kz

= iω

n2ωc
A2
ωχ

(2)
eff0

eiKz + e−iKz

2 ei∆kz

= iω

n2ωc
A2
ω

χ
(2)
eff0
2 (1 + e2i∆kz) with K = ∆k = 2π

2Lcoh
(4.26)

Integrating 4.26 gives:

A2ω(z) = iω

n2ωc
A2
ω

χ
(2)
eff

2 z + oscillating term (4.27)
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Fig. 4.3: Periodically poled crystals and effective susceptibility.

The mean amplitude increases linearly with z and quadratically with the fundamental power.

Achieving QPM is interesting for many reasons. It allows phase-matching using isotropic ma-

terials or materials which are too little or too much birefringent at the wavelength of interest.

One can also use nonlinear coefficients which couple waves of the same polarization. Top of all

it provides a solution for SHG at any chosen wavelength and temperature.

4.2 Our Experiment

4.2.1 PPSLT Crystal

Today most commun materials for QPM SHG are Periodically Poled KTiOPO4 (PPKTP)

and Periodically Poled stoichiometric LiTaO3 (PP:sLT). Based on the comparison made by S.

Chaitanya Kumar and al. in [6], we chose to use PP:sLT in our experiment. This material

provides a better temperature conductivity and thus a more stable SHG power. They also

noticed a better beam quality (96% circularity) of SHG at high fundamental power 29.5W.
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As we have seen in 4.1.3, the period of the PP:sLT must be chosen so that:

Lcoh = π

∆k

= λ

4(nω − n2ω)

= P
2 with P the period of the grating

(4.28)

(4.29)

From the Sellmeier equation for the dispersion in stoichiometric lithium tantalate [4], one can

deduce the pair of parameters {P, T} for the fundamental wavelength of interest 1083nm (see

figure 4.4).

Fig. 4.4: For different grating periods, the phase-matching temperature as a function of the wave-

length.Calculations made with Matlab

The Sellmeier equation gives results with an accuray of ±1.5nm for SHG. The graph verifies

this accuracy. From this simulation, four working points are interesting for us : {8.4µm, 60.7◦C},

{8.3µm, 106.5◦C}, {8.2µm, 148.5◦C}, {8.1µm, 187.2◦C}. The manufacturer (Deltronic Crystal

Industries) delivered to us a crystal with different periods {8.0, 8.2, 8.4, 8.6, 8.8, 9.0, 9.2}. Lim-

ited by the oven performances (T < 200◦C) the only two possible pairs of parameters are
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Fig. 4.5: Temperature tuning curve, for a fundamental power of 1.3W.

{8.2µm, 148.5◦C} and {8.4µm, 60.7◦C} (or {8.2µm, 135◦C} and {8.4µm, 50◦C} according to

the manufacturer). So I began with the 8.4 µm period and at low fundamental power I ploted

the temperature tuning curve to find the phase-matching temperature (see figure 4.5). The

resolution of the oven temperature controller is 0.1◦C. A fit of the curve with a sinc(x)2 func-

tion gives a phase-matching temperature of 46.76◦C and a temperature acceptance bandwidth

(FWHM) of 0.87◦C. A value a bit lower than the expected 0.96◦C using the Sellmeier equation

and the relation [9]:

∆T = 0.4429λω
L

[
∂n2ω
∂T

− ∂nω
∂T
− α(n2ω − nω)

]
(4.30)

I progressively started increasing the IR fundamental power. Due to thermal effects in the

crystal introduced by the fundamental beam, the phase-matching temperature decreases (see

figure 4.7). Finding back the phase-matching temperature for each fundamental power takes

time since the response of the oven is long (a few minutes).



4.2. Our Experiment 29

60 80 100 120 140 160

0,0

0,2

0,4

0,6

0,8

1,0 Model : P1*Sinc(w*(x-T0))^2 

Chi^2/DoF = 0.00425
R^2 =  0.97025
  
P1 1.02282 ±0.03509
w 0.03466 ±0.00127
I0 104.00114 ±0.42352

N
or

m
al

iz
ed

 S
H

G
 P

ow
er

LD Current (mA)

T = 46,6 °C
ξ ξ ξ ξ  = 2,00

PIR ~ 1,3 W
PSHG ~ 30 mW

∆∆∆∆ I ~ 30 mA  

Fig. 4.6: Spectral tuning curve, for a fundamental power of 1.3W

However as we said in section 3.1, the bandwidth of the laser diode can be tunned by changing

the current. Increasing the input current increases the wavelength. By knowing roughly of how

much I changed the current, I can thus deduce of how much the oven’s temperature needs to

be shifted. One must yet be cautious to just change lightly the seed power not to affect the

amplifier output power (discussed in section 3.2.3). I plotted the efficiency of the SHG with

respect to the input current of the laser diode (figure 4.6). The wavelength increases linearly

with the current. To a FWHM of 30mA in current corresponds a FWHM of 0.003nm× 30 =

0.09nm. Using the acceptance spectral bandwidth relation from [9]:

∆λ = 0.4429λω
L

[
n2ω − nω

λ
+ ∂nω

∂λ
− 1

2
∂n2ω
∂λ

]
(4.31)

one obtains a FHWM acceptance bandwidth of 0.2nm. This result is close to what I measured

experimentaly. This quantifies the finesse of the spectral tuning required for optimizing the

SHG.

For different fundamental powers, without optimizing anything but the temperature (and also

the spectral tunning), I measured the SHG power (see figure 4.7). At about 25W of fundamental

power, the temperature locking system of the oven doesn’t work anymore. The laser heats the

crystal too much. The oven is meant to heat up the crystal and not to cool down the crystal.

As a result the quasi phase-matching condition can’t be reached. I decided then to switch to

the second period {8.2µm, 135◦C}. The final results with the 8.2µm period are presented in

subsection 4.2.4.
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Fig. 4.7: On the left is a plot of the second harmonic generation power as a function of the fundamental

power in the 8.4µm period. On the right is a plot of the evolution of the Phase-matching temperature

versus the fundamental power in the 8.4µm period. At 25W the temperature phase-matching condition

can’t be reached.

4.2.2 Focus In The Crystal

The focusing parameter

A very important geometric parameter for SHG is the focusing parameter ξ. This parameter

defined as

ξ = L

b
(4.32)

quantifies the ratio of the length of the crystal L over the Rayleigh length of the fundamental

beam in the crystal zr = b/2. Let’s recall for a gaussian beam that the Rayleigh length is directly

related to the waist of the beam by

zr = πw0
2

λ

= πw0
2n

λ0

with n the refractive index of the crystal, λ0 the fundamental wavelength in vacuum and w0

the waist of the fundamental beam. According to the work of Boyd and Kleinman [3], in our

situation (for a double refraction parameter B=0), the optimal focusing parameter is ξ = 2.84

(see figure 4.8)

Applied to our situation with L=40mm,

w0 =
√

Lλ

2ξπn

= 33.7µm

(4.33)
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Fig. 4.8: SHG power as a function of the focusing parameter ξ and the double refraction angle parameter

B. Calculations and figure from [3]

Characterizing ξ

A small set of lenses can be used to obtain such a waist. I spent a long part of my project

characterizing this focusing parameter for different focusing lenses and fundamental powers. To

measure the beam waist at different positions after the focusing lens, I used a CCD camera

(BeamAge-0.3 from Gentec). As the camera software didn’t work properly, I had to write a

Matlab script to process the images. The matlab script I developed measures the waist of a

gaussian beam both along the vertical and horizontal directions. Since the common bitmap

files recorded by the CCD software are of no use to quantify the beam intensity, I had to work

with .txt files. The script creates a 2D matrix of the size of the image. It sums all the lines

(respectively the columns) to average possible speckle. It fits then the gaussian beam with the

matlab function lsqcurvefit which solves problems in the least-squares sense, and determines the

beam waist along the vertical (respectively the horizontal) direction (see figure 4.9).

Characterizing ξ in my experiment was not without any complications. Indeed the speckle

I presented in section 3.2.3 strongly affects the quality of the beam profile. The beam isn’t

gaussian and doesn’t follow the gaussian laws for beams propagation. The figure 4.10 presents

this work. In gaussian optics, the evolution of the waist of a gaussian beam in free space is given

by:

w(z) = w0

√
1 + λz

πω2
0

2

= w0

√
1 + z

zr

2
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Fig. 4.9: Example of my script window

with zr = πω2
0
λ the Rayleigh range.

From this kind of plots one could estimate the quality of the beam profile. A real beam

doesn’t follow the gaussian laws of propagation. The Rayleigh range is reduced by a factor

M2 (the beam quality factor). Unfortunately I made these measurements between the Rayleigh

range so that one can not deduce M2 by fitting these curves. It is however interesting to notice

that if at low power (1.3W) the beam profiles look gaussian and circular (ωx ≈ ωy), strong

astigmatism (between 2 and 6 mm) appears at high power (30W). Top of all, when the power

increases the medial focus is translated backwards. This can be explained by thermal effects

in the lenses, either in the output collimator or in the focusing lense (see the scheme of the

doubling 4.11). An intelligent set up of cubes and half-wave plates placed before the focusing

lenses could answer that question. This phenomenom needs anyway to be taken into account

while optimizing the alignement of the crystal for SHG (see figure 4.13).

One can deduce the focusing parameter ξ from such waist measurements. However since

the beam is not gaussian, a proper characterisation of ξ would have required a measurement of

the divergence of the beam at long range (not within the Rayleigh range as I did). Although

to get an idea of ξ, I decided to calculate the focusing parameter with equation 4.33 and the

measured waist value (see table 4.1). I chose to use the 200mm focal lense which induce a
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Focal Length (mm) Power Waist (µm) ξ

150 1.3 W 27.3 4.34

150 30 W 29.7 3.66

200 1.3 W 40.2 2.00

200 30 W 43.8 1.68

250 1.3 W 47.9 1.41

250 30 W 52.15 1.19

Tab. 4.1: Table representing the focusing parameter for different configurations.

focusing parameter close to the optimum. The beam is less focused than it should be to have

the best efficiency but it will reduce thermal effects in the crystal.
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Fig. 4.10: Thermal effects. Different waists measurements at different power. Top Left : after a lense of

focal length f=150mm. Top Right: after a lense of focal length f=200mm. Bottom : after a lense of focal

length f=250mm.
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4.2.3 Scheme Of The Doubling

Figure 4.11 shows the set up of the experiment. The first half-wave plate corrects the polarization

to inject the beam in the optical isolator with a maximum of transmission (see 3.3). Both

the collimator and the optical isolator are at 60mm high whereas all the optics in ForCa-G

experiment are at 40mm high. The two mirrors placed after the isolator form a periscope to

work at 40mm high. The second half-wave plate sets the required polarization for SHG in

the crystal. The lens L1 focuses the beam into the crystal {f ′ = 200, 150, 100}. The crystal

1.0mmx8.2mmx40mm is placed in a specific oven of length 40mm+20mm and diameter 50.8mm.

The mounting system I developed with the workshop team of SYRTE allows two directions

of translation for the crystal (figure 4.12). One along the axis of the crystal to follow the

displacement of the waist when I increase the power (see previous section). And the second

along the transverse direction to choose between the periods of the multi-grating QPM crystal.

Fig. 4.11: Scheme of the SHG experiment.

To align the beam along the third direction (the vertical) and once again along the horizontal,

I use two mirrors with an extremely fine adjustement (Four D22 from Thorlabs with a pitch

: 0.5µm per graduation). Thanks to those four differential manual adjusters I can optimize

the SHG efficiency at high power whithout being likely to shoot outside the crystal. The lens

L2 collimates the beam. It is a double-V-coated lens made for high power lasers working at

1064/532nm such as YAG lasers. Finally three dichroic mirrors are placed on the beam trajectory

to get rid of the residual IR light.
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PPsLT Crystal 
1mm x 8,2mm x 40mm 

Oven 

8,2 mm 

5 cm 

5,5 cm 

Fig. 4.12: Mounting system developped at SYRTE with the workshop team.

4.2.4 Efficiency Of The Doubling

Thanks to this set up, I could reach good results within the state of the art for single-path

frequency-doubling in non-linear crystals. I used the 200mm focal lense which corresponds

to ξ ≈ 2.0. The two next graphs (4.13) show how thermal effects in the crystal or in the

lenses affects the SHG and how I compensate it. The phase-matching temperature drops by

2◦C between 1.3W and 30W of fundamental power. I translated the crystal of 15mm to
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Fig. 4.13: The compensation of thermal effects. On the left is a plot of the decrease in the phase-matching

temperature. On the right is a plot of the displacement of the crystal along the longitudinal direction



4.2. Our Experiment 36

compensate the displacement of the fundamental beam waist. This value is twice as much as

the waist displacement expected from graph 4.10. This can be explained by the fact that the

optical path in the crystal is multiplied by the refractive index n ≈ 2.

The SHG conversion follows well the expected quadratic dependence calculated in 4.27 for

low powers up to ≈ 17W of IR power (see figure 4.14). For higher fundamental powers, the

variation seems to be linear. Equation 4.27 doesn’t describe the conversion anymore. One can

certainly not use the undepleted pump approximation anymore. I could reach a SHG power of

10W with an efficiency of 34.2%. (see figure 4.15). These curves let us imagine that I may not

have reached the maximum SHG power the crystal can provide yet.

Unfortunately the crystal broke during an mechanical optimization of the SHG power. Due

to the waist displacements in the crystal, I had to optimize the alignment at high power for each

different fundamental power, a tricky operation. By translating the crystal too fast, I may have

created a temperature gradient, producing a thermal shock into the crystal. Another explanation

would be that a dust may have sticked to the crystal, heating it inhomogeneously and producing

a thermal shock as well. To prevent this from happening again, I will design a plexiglas box

around the oven to protect the crystal. This missfortune stoped me from completing my work.

Besides trapping the atoms in the supperlattice, it would have been interesting to test the

SHG with different set of lenses and to verify the work of Boyd and Kleinman on the focusing

parameter ξ.
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Fig. 4.14: The second harmonic generation power as a function of the fundamental power.
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Fig. 4.15: The efficiency of the second harmonic generation as a function of the fundamental power.
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Building the Superlattice

5.1 The Verdi

Already used in the first ForCa-G experiment, the Verdi laser is a 532nm laser created via second

harmonic generation of a Nd:YAG laser. It was developed by Coherent company.

5.1.1 Scheme Of The Alignement

As we have seen already in the subsection 2.3, the standing wave is created via a retro-reflective

mirror placed on the top of the vacuum chamber. Making sure that the standing wave is perfectly

vertical is not an easy thing to do. To do so, we firstly placed a liquid mirror (a glass filled

with water) on the top of the vacuum chamber to reflect the incident beam. The reflection

of interest is the one which doesn’t move when one tilts the glass. Playing with the mirrors,

we could make the reflected beam and the incident beam overlap. The optical lattice is then

perfectly vertical. Let us precise that working with a green laser had two practical advantages.

Since the human eye is fully sensitive to green light, we didn’t need infrared viewer and a few

mW of power was sufficient to realize such an alignment. The scheme of the Verdi alignment is

presented on figure 5.1 It is the light green part at the bottom of the scheme.

5.1.2 The AOM

An acousto-optic modulator (AOM) uses the acousto-optic effect to diffract a light wave. When

a sound wave is transmitted through the crystal of an AOM, its refractive index changes peri-

odically due to the pressure fluctuations into the crystal. This generates a diffraction gratting

38
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an leads to Bragg diffraction. At the output of the AOM, one can see the different orders of

diffraction which angles θm are given by : sin(θm) = mλ
Λ where Λ and λ are respectively the

wavelengths of the sound wave and the light wave, and m = -2,-1,0,1,2,... the order of diffraction.

One can control the amplitude and the frequency with a RF signal. In our experiment, we use

AOMs to be able to switch on/off the lasers. The zeroth order is sent to a beam dump while

the first order is directed towards the atoms.

5.2 My Laser

If the breakage of my crystal stopped me from installing my laser on the ForCa-G experiment, I

designed the set up I would have implemented and I added a scheme of it on the existing scheme

of the ForCa-G experiment (see figure 5.1). My laser with its optical path is represented in the

light blue part on the top right angle of the figure. The two lasers can be switched on or off

separately with two different AOMs. They are combined with a polarizing cube.
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Fig. 5.1: My laser on the ForCa-G experiment table.
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5.3 The Transverse Confinement

We should notice that our superlattice is only one dimensional. As a result nothing prevents

the atoms from distributing along the horizontal plane and thus from escaping the superlattice.

In order to keep our atoms in the superlattice, we use a red-detuned laser beam at 1064nm

focused on the atoms cloud position. This is the transverse confinement beam as you can see

on figure 5.2.

Fig. 5.2: The ForCa-G optical set-up. The atoms are trapped in the green lattice and confined transver-

sally with the IR beam. The two Raman beams perform atomic interferometry. From [11]



Chapter 6

Conclusion

I presented in this manuscript both the design and the realization of a 10W continuous-wave

green laser. This master project which has been carried out at the Laboratoire Systèmes de

Référence Temps-Espace (SYRTE) in Paris Observatory was part of the ForCa-G project.

Indeed essential to the ForCa-G experiment, the aim of my laser is to trap atoms in an optical

supperlattice in order to study short range forces such as the Casimir-Polder force. After pre-

senting briefly the principle of the ForCa-G experiment and the necessity to build such a laser,

I focused on the three different parts of development of this laser: the seed laser, the amplifier

and the second harmonic generation in a PPs:LT crystal. Unfortunately the breakage of the

non-linear PPs:LT crystal stopped me from building the supperlattice and trapping the atoms.

I demonstrated however that my laser fulfilled the requirements of the ForCa-G experiment.

During this master thesis, I learned a lot both about laser physics and atomic physics. I was

confronted to several experimental problems and I worked out different solutions. Optimizing

all the different parameters I discussed in this manuscript was not easy. However I learned that

the more parameters you can change the best chances you get to perform a good experiment.
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