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Abstract 
Fine-pitch ferroelectric domain gratings are extensively used for generation of light in the visible 
and near-infrared spectral regions through quasi-phase matched (QPM) frequency conversion. 
Sub-µm QPM devices enables demonstration of nonlinear optics with counterpropagating waves, 
a field of nonlinear optics which remains sparsely explored due to the difficulty of fabricating 
high quality gratings.  

In recent years, bulk Rb-doped KTiOPO4 (RKTP) has emerged as a highly promising 
nonlinear materials for fabrication of fine-pitch QPM devices through periodic electric-field 
poling. RKTP possesses large optical nonlinearity and high resistance to optical damage, while 
demonstrating improved material homogeneity and lower ionic conductivity than its isomorphs 
which are important features for poling. Although fine-pitch QPM gratings, as well as large 
aperture QPM devices, have been demonstrated, fabrication of sub-µm high quality QPM 
devices remains a challenge.  

The primary aim of this research was to develop a reliable method to fabricate high-quality 
sub-µm periodically poled RKTP crystals (PPRKTP) and exploit them in novel optical 
applications. For this purpose, a novel poling method was developed. It was based on periodic 
modulation of the coercive field through ion exchange, where K+ ions are exchanged with Rb+ in 
the crystal, to modulate the coercive field and the ionic conductivity. This enables periodic 
poling of higher quality and with shorter period than ever before.  

High quality PPRKTP with a period of 755 nm were fabricated and used to demonstrate the 
first cascaded mirrorless optical parametric oscillator (MOPO), as well as the first MOPO 
pumped by a Q-switched laser. PPRKTP samples for blue light generation were fabricated, and 
second harmonic generation (SHG) was investigated with a high power 946 nm fiber laser. Up to 
2 W of blue power was demonstrated for bulk samples, where the output power was limited by 
absorption of the SHG, leading to thermal dephasing of the devices. Laser-written waveguides 
were fabricated in PPRKTP for the first time, and a record high, SHG power of 76 mW was 
obtained.  

Finally, the high-temperature stability of ferroelectric domain gratings was investigated. This 
is of utmost importance when a PPRKTP crystal is used as a seed for crystal growth. It was 
found that for charged domains walls, the domain-wall motion was highly anisotropic with rapid 
movement in y-direction while only small movements were observed in the x-direction of the 
crystal.  
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Sammanfattning 
Ickelinjära ferroelektriska kristaller med artificiella domängitter med perioder av några 
mikrometer används idag för generering av ljus i de synliga och nära-infraröda 
våglängdsområdena, genom kvasifasmatchad (QPM) frekvenskonvertering. Med sub-μm QPM 
domängitter kan man åstadkomma ickelinjära optiska effekter med motpropagerande 
parametriska ljusvågor. Detta är ett område av den ickelinjära optiken som fortfarande är 
tämligen outforskat på grund av svårigheten med att tillverka högkvalitativa domängitter. 

 Under de senaste åren har Rb-dopat KTiOPO4 (RKTP) blivit ett mycket lovande ickelinjärt 
material för tillverkning av QPM-gitter med mycket korta perioder genom periodisk elektrisk fält 
polning. RKTP kristallen har en hög optisk ickelinejäritet och den tål höga optiska intensiteter, 
samtidigt som materialet har bättre materialhomogenitet och lägre jonledningsförmåga än vad 
dess isomorfa kristaller har. De två senare egenskaperna har visat sig viktiga för att få en lyckad 
polning. Fastän QPM-gitter med kort periodicitet, liksom QPM-gitter med stor apertur, har 
demonstrerats, är tillverkningen av högkvalitativa QPM-kristaller med sub-µm perioder 
fortfarande en utmaning. 

Det primära syftet med denna avhandling var att utveckla en pålitlig metod för att tillverka 
högkvalitativa sub-μm periodiskt polade RKTP kristaller (PPRKTP) och utnyttja dem i nya 
optiska tillämpningar. I detta syfte utvecklades en ny polningsmetod. Den baseras på periodiskt 
jonutbyte, där K+ joner byts mot Rb+ i kristallen, vilket resulterar i en samtidig modulation av 
materialets koerciva fält och jonledningsförmåga. Detta möjliggör i sin tur periodisk polning av 
högre kvalitet och med kortare perioder än någonsin tidigare har uppnåtts.  

Högkvalitativa PPRKTP kristaller med en period på 755 nm tillverkades och användes för att 
demonstrera den första kaskaderade spegelfria optiska parametriska oscillatorn (MOPO), liksom 
den första MOPO processen pumpad av en Q-switchad laser. Vidare utvecklades PPRKTP-
kristaller för generering av blått ljus via frekvensdubbling. Dessa utvärderades med hjälp av en 
högeffekts-fiberlaser vid 946 nm. Upp till 2 W av blått ljus erhölls för bulkkristallerna. 
Uteffekten begränsades av absorption av det blåa frekvensdubblade ljuset, vilket ledde till 
urfasning i QPM-gittret p.g.a. termiska effekter. Laserskrivna vågledare tillverkades sedan i 
PPRKTP för första gången, och en rekordhög effekt på 76 mW erhölls via frekvensdubbling.  

Slutligen undersöktes stabiliteten hos de periodiskt polade domängitterna vid höga 
temperaturer. Det är viktigt att domängittrena är stabila när PPRKTP kristallerna används som 
ympämne för kristalltillväxt. Det visade sig att instabila domänväggar flyttade sig mycket 
anisotropt, med en snabb rörelse i kristallens y-riktning och en långsam rörelse i kristallens  
x-riktning. 
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1 Introduction 
Second order nonlinear optics is the most powerful technology for generation of coherent 
electromagnetic radiation at optical frequencies which are needed for a wide range of 
applications such as research, medicine, biology, material processing, quantum information, 
remote sensing, aerospace and defense applications, and optical signal processing.  Second order 
nonlinear optical processes were first experimentally demonstrated in 1961, by second harmonic 
generation (SHG) in a crystalline quartz plate [1]. Since then, numerous nonlinear optical 
processes have been demonstrated in several materials, for generation of light from the UV to the 
far-IR spectral region.  

In order to ensure efficient energy transfer from the pump wave to the generated waves in 
any optical nonlinear process, the interacting optical waves should propagate in phase throughout 
the nonlinear material; a condition called phase matching. However, due to the material 
dispersion, this condition is seldom automatically fulfilled. The most common method to obtain 
phase matching is to use the natural birefringence of the nonlinear material, so-called 
birefringent phase matching (BPM). Although widely used, BPM suffers from drawbacks such 
as Poynting vector walk-off and polarization dependent nonlinearity, effectively limiting the 
interaction length, the obtainable spectral range and the efficiency of the nonlinear process.  An 
alternative method to obtain phase matching is the so-called quasi-phase matching (QPM). The 
idea behind QPM is to periodically reset the phase mismatch between the interacting waves.  
This method enables phase matching within the full spectral range of the material, and the 
possibility to utilize the largest nonlinear coefficient of the material, overcoming the drawbacks 
of BPM. QPM can be implemented in a variety of materials using a range of different 
techniques [2–4]. However, today the most extensively used and reliable method is by 
periodically reversing the spontaneous polarization by application of an external electric field in 
a ferroelectric material, so-called periodic electric field poling, or periodic poling. Typically, a 
periodic metal grating is fabricated through photolithography on one of the polar crystal surfaces 
to select the regions where domain reversal is desired as the external electric field is applied to 
the crystal. The poled ferroelectric domain structure is dependent on a vast amount of variables 
such as crystal structure, material homogeneity, pulse shape and magnitude of the applied 
electric field, to mention a few. 

The electric field poling was first demonstrated in LiNbO3 in 1993 [5]. Since then, electric 
field poling has been thoroughly investigated in both LiNbO3 and LiTaO3, two optically 
nonlinear materials which are inexpensive and commercially available. Problems such as large 
coercive fields (~21 kV/mm) and sensitivity to photorefractive damage have been alleviated by 
improved stoichiometry and MgO-doping of the material [6–10]. Nevertheless, LiNbO3 and 
LiTaO3 have a trigonal crystal structure which favors formation of trigonal and hexagonal 
domains, making it extremely challenging to fabricate domain structures with periods shorter 
than 6 µm for apertures larger than 500 µm which is required in most laser applications. 
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On the other hand, KTiOPO4 (KTP) has high optical nonlinearity, excellent mechanical and 
thermal properties, high resistance to optical damage and does not suffer from photorefractive 
damage. Therefore, it is considered a superior material for frequency conversion within its 
optical transparency range pumped by light with wavelength of ~1 µm. The coercive field of 
KTP is an order of magnitude lower than that of LiNbO3 [11], which, combined with the chiral 
crystal structure of KTP, enables fabrication of fine-pitch, large aspect-ratio QPM devices 
through periodic poling.  Indeed, large aperture and fine-pitch QPM gratings have previously 
been demonstrated through electric field periodic poling in KTiOPO4 (KTP)  [12,13]. However, 
despite its excellent qualities, KTP suffers from large ionic conductivity as well as poor material 
homogeneity which greatly affect the quality of the periodically poled QPM structure. Moreover, 
the ionic conductivity of KTP has been linked to the photochromatic damage which occurs at 
high powers in the green and blue spectral region and is detrimental for the performance of the 
fabricated QPM crystals [14]. 

In recent years, bulk Rb-doped KTP (RKTP) with 0.3 % Rb-doping in the as-grown crystals 
has become commercially available and it is considered an attractive alternative for fabrication 
of fine-pitch QPM structures [15]. The light Rb-doping of the material results in a two order of 
magnitude lower ionic conductivity than for ordinary KTP, while maintaining excellent linear 
and nonlinear properties. The improved homogeneity of the material and the lower ionic 
conductivity greatly facilitates the fabrication of fine-pitch QPM gratings. Nevertheless, 
fabrication of sub-µm periodic domain gratings in this material remains largely unexplored. 
Large aperture QPM devices [16] and quasi-periodic sub-µm domain structures [17] have been 
demonstrated in RKTP, but fabrication of high quality sub-µm QPM structures still remains 
difficult [18]. The accurate control of the domain formation needed to fabricate sub-µm 
structures is partly obstructed by the domain broadening associated with the ionic conductivity in 
RKTP in combination with the fringing fields from the periodic metal electrodes used for electric 
field poling  [19]. An attractive alternative method would be fabrication of a coercive field 
grating in the bulk of the RKTP crystal, which potentially would allow electric field poling using 
planar electrodes, thereby alleviating the domain broadening. 

Sub-µm QPM devices enables nonlinear optical processes not achievable by BPM, such as 
nonlinear optics with counterpropagating waves. These processes, such as Mirrorless Optical 
Parametric Oscillation (MOPO) [13,20], backwards parametric amplification and backward 
second harmonic generation  [17,21], are sparsely explored due to the difficulty to obtain QPM 
devices with the required periodicity. However, counterpropagating nonlinear processes are 
potentially of great interest due to their unique spectral, tuning and coherence properties [22–24] 
with applications such as slow-light devices [25], ultrabright biphoton sources [26], frequency 
translators allowing transfer of photon quantum states from one wavelength to another [27], 
counter-propagating optical amplifiers with the expected self-compression of the counter-
propagating pulses [28], etc. 

The primary aim of this thesis was to develop a reliable method for fabrication of sub-µm 
ferroelectric domain gratings in RKTP, and to assess the optical performance of the fabricated 
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QPM devices. A novel poling technique based on the fabrication of a coercive field grating, 
through ion exchange, in the bulk of RKTP was developed to enable fabrication of high quality 
sub-µm devices [paper I]. The impact of the ion exchange process on the optical performance of 
the QPM devices was studied for SHG, and the possibility to engineer the linear and nonlinear 
refractive indices was explored simultaneously. The high quality of the sub-µm PPRKTP crystals 
enabled not only experimental demonstration of MOPO in RKTP, but also the first experimental 
demonstration of cascaded MOPO [paper II] and MOPO pumped by a Q-switched laser [paper 
III]. In addition, QPM devices were fabricated using conventional electric field poling for studies 
of the domain-wall stability [paper IV] and the optical performance of PPRKTP  in the blue 
spectral region, both in bulk crystals [paper VI] and in waveguides fabricated using laser-writing 
technology [paper V].  

The outline of the thesis 
This thesis is structured as follows: In Chapter 2, the basic concepts of nonlinear optics and QPM 
are presented, which provide the main incentive for fabrication of ferroelectric domain gratings. 
Chapter 3 discusses the principles of ferroelectricity and polarization switching in ferroelectric 
materials. In Chapter 4, the reader is introduced to the material RKTP and its most important 
properties. Chapter 5 describes the ion exchange technology in KTP isomorphs, which is a key 
technology for the fabrication of coercive field gratings in this work. In Chapter 6, periodic 
poling of RKTP is presented. Conventional electric field poling of RKTP is discussed, as well as 
electric field poling of RKTP crystals with an engineered coercive field grating. Finally, 
fabrication of sub-µm ferroelectric domain gratings in RKTP is demonstrated. Chapter 7 presents 
the optical performance of the fabricated PPRKTP crystals. Conventional PPRKTP crystals are 
evaluated for high power SHG in the blue spectral region. Laser-written waveguides are 
demonstrated in PPRKTP for SHG with record high power. Finally MOPO is demonstrated for 
the first time in PPRKTP, both in the picosecond and nanosecond regime. 
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2 Nonlinear optics 
This chapter briefly describes and explains the nonlinear processes relevant to this research. 
Starting from the fundamental concepts of nonlinear optics, quasi-phase matching, second 
harmonic generation and parametric interactions are discussed.   

2.1 Basic concepts of nonlinear optics 
Light can be described as an electromagnetic wave with spatially and temporally varying field 
strengths. The electric, E(t), and magnetic, B(t), components of such a wave are orthogonal to 
each other as well as to the propagation direction of the light wave. As the light wave propagates 
in a dielectric medium, it interacts with the charged particles that constitute the material. 
However, in most dielectric materials, the interaction between the material and the magnetic 
field is so small it can be neglected compared to the impact of the electric field. From now on, 
only the electric field will be considered and it can be descried by the following expression: 

ࡱ  = ࢘࢑)൫݅݌ݔ݁࡭ − ൯(ݐ߱ + ܿ. ܿ. ,  
(2.1) 

where c.c. denotes the complex conjugate, ω is the angular frequency of the light and k denotes 
the wavevector of the light with the magnitude given by the relations 

|࢑|  = ݇ = ݊߱ܿ = ߣ݊ߨ2 ,  
(2.2) 

with λ being the wavelength of light and n is the corresponding refractive index at the given 
wavelength. 

As the light wave propagates in the dielectric material, the charged particles in the material 
are accelerated along with the electric field. The induced movement of the electrons is 
significantly larger relative to the movement of the nuclei of the atoms, as the nuclei are 
significantly heavier than the electrons. The separation of the charges induces a dipole moment, 
where the average value per unit volume is called the induced electric polarization (P). The 
polarization is dependent both on the electric field strength as well as on the susceptibility of the 
material to polarization. The polarization for a quasi-monochromatic wave, not too close to an 
absorption resonance can be described by a power series given by 

ࡼ  = ෍ (ே)ࡼ =ஶ
ேୀଵ ଴ߝ ෍ ே.ஶࡱ(ே)࣑

ேୀଵ  
 

(2.3) 

Here, P(N) is the n-th order polarization, ε0 the vacuum permittivity, and χ(N) the n-th order optical 
susceptibility, a tensor of rank n +1.  

At low electric field strengths, the response of the material is linear, which is the first term of 
the power series, P(1). This term describes the linear interactions such as refractive index, n, and 
the linear absorption, α. 
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For each Cartesian component, the induced second order polarization, Pi i = 1,2,3 = x,y,z, can 

be rewritten as follows: 

௜(ଶ)(߱௔)ࡼ  = (ଶ)ܦ଴ߝ ෍ ෍ ௜ܺ௝௞(−߱௔; ߱௕, ߱௖)ܧ௝(߱௕)௔௖௕௝௞   .௞(߱௖)ܧ
(2.6) 

Here, the summation is performed over the electric fields with frequencies ωb and ωc both being 
positive and negative so that the sum over all involved frequencies are –ωa + ωb + ωc = 0. 
Thereafter, the summation is performed over all Cartesian components to obtain the polarization 
component Pi. D(2) is a degeneracy factor given by D = 2 if the fields Ek and Ej are 
distinguishable, and D = 1 otherwise. The tensor character of the susceptibility allows for the 
polarization in Cartesian coordinates to be excited by electric fields of other polarizations. 

The susceptibility tensor, Xijk, is a third rank tensor containing 27 different elements. 
However, symmetries occur that reduce the number of nonzero elements. Furthermore, if the 
frequencies of the optical waves in the nonlinear processes are far enough from the absorption 
lines, i.e., the components of Xijk are frequency independent, the Kleinmann symmetry [29] is 
applicable and Xijk can be reduced to a second order tensor, d, with the components of d given 
by: 

 ݀௜௟ = 12 ௜ܺ௝௞(ଶ),  
(2.7) 

so that 

 ݀ = ൥݀ଵଵ݀ଶଵ݀ଷଵ  ݀ଵଶ݀ଶଶ݀ଷଶ
݀ଵଷ݀ଶଷ݀ଷଷ

݀ଵସ݀ଶସ݀ଷସ
݀ଵହ݀ଶହ݀ଷହ

݀ଵ଺݀ଶ଺݀ଷ଺൩ .  
(2.8) 

Applying Kleinmann symmetries further reduces the number of elements to 

 ݀ = ൥݀ଵଵ݀ଵ଺݀ଵହ  ݀ଵଶ݀ଶଶ݀ଶସ
݀ଵଷ݀ଶଷ݀ଷଷ

݀ଵସ݀ଶସ݀ଶଷ
݀ଵହ݀ଵସ݀ଵଷ

݀ଵ଺݀ଵଶ݀ଵସ൩ .  
(2.9) 

For SFG, the nonlinear polarization for each Cartesian coordinate of the generated wave can now 
be described by the following: 

 

቎ ௫ܲ(߱ଷ)௬ܲ(߱ଷ)௭ܲ(߱ଷ)቏ = ଴݀ߝ4 ×
ێێۏ
ێێێ
ۍ ௭(߱ଶ)ܧ௬(߱ଵ)ܧ௭(߱ଶ)ܧ௭(߱ଵ)ܧ௬(߱ଶ)ܧ௬(߱ଵ)ܧ௫(߱ଶ)ܧ௫(߱ଵ)ܧ + ௭(߱ଶ)ܧ௫(߱ଵ)ܧ௬(߱ଶ)ܧ௭(߱ଵ)ܧ + ௬(߱ଶ)ܧ௫(߱ଵ)ܧ௫(߱ଶ)ܧ௭(߱ଵ)ܧ + ۑۑے௫(߱ଶ)ܧ௬(߱ଵ)ܧ

ۑۑۑ
  . ې

(2.10) 
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2.3 Coupled wave equations 
The energy transfer between the interacting frequencies in a nonlinear process can be calculated 
using Maxwell’s equations combined with a wave equation combining the electric field, E, and 
the polarization, P. For plane waves propagating in a nonmagnetic nonlinear medium with no 
free charges and zero currents, the wave equation can be written as: 

 ∇ଶ۳(ω) + nଶcଶ ∂ଶ۳(ω)∂tଶ = − ଴ܿଶߝ1 ∂ଶࡼே௅(ω)߲ݐଶ . (2.11) 

Here, the nonlinearity of the material acts as a source term for the wave equation. To illustrate 
how the optical waves interact with each other, SFG is considered. The light propagating in the 
nonlinear medium is now assumed to be three planar, monochromatic waves with angular 
frequencies, ω1, ω2 and ω3, respectively. The two waves with angular frequency ω1 and ω2 are 
interacting with the nonlinear medium, and thereby generating a wave with frequency ω3. For 
simplicity, assume that the light waves propagate in the x-direction and are polarized in the  
z-direction. The applied optical fields and the nonlinear source term are then given by: 

,ݔ)ଵࡱ  (ݐ = ݔ൫݅(݇ଵ݌ݔଵ݁ܣ − ߱ଵݐ)൯ + ܿ. ,ݔ)ଶࡱ.ܿ (ݐ = ݎ൫݅(݇ଶ݌ݔଶ݁ܣ − ߱ଶݐ)൯ + ܿ. ,ݔ)ଷࡼ.ܿ (ݐ = ଷܲ݁݌ݔ(−݅߱ଷݐ) + ܿ. ܿ.,  
(2.12) 

where ଷܲ =  ଶ݁௜(௞భା௞మ)௫, with deff being the effective nonlinear coefficient correlatedܣଵܣ଴݀௘௙௙ߝ4
with the polarization of the three interacting waves. As the amplitudes of the interacting waves 
are assumed to change slowly compared to the wavelength of the interacting waves, the slowly-
varying-envelope approximation (SVEA) can be applied, meaning that the second order 
derivatives can be neglected: 

 ቤ݀ଶܣ௜݀ݔଶ ቤ ≪ ฬ݇௜ ݔ௜݀ܣ݀ ฬ.  
(2.13) 

Using Eq. (2.12), the wave equation can now be written for each of the interacting waves in the 
following way: 

ݔଵ݀ܣ݀  = 2݅݀௘௙௙߱ଵܿ݊ଵ ∗ଶܣଷܣ ݁௜∆௞௫, 
ݔଶ݀ܣ݀ (2.14) = 2݅݀௘௙௙߱ଶܿ݊ଶ ∗ଵܣଷܣ ݁௜∆௞௫, 

ݔଷ݀ܣ݀ = 2݅݀௘௙௙߱ଷܿ݊ଷ  ,ଶ݁ି௜∆௞௫ܣଵܣ
where Δk = k3 - k2 - k1 is the phase mismatch between the interacting waves. Eqs. (2.14) are 
commonly known as the coupled amplitude equations and they describe how the energy flows 
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between the interacting waves. The expressions above are specific to SFG but similar 
expressions are possible to derive for other second order nonlinear processes.  

2.4 Phase matching 
The amplitude of each wave, Ai, is obtained by solving the Eqs. (2.14) above. Thereafter, the 
intensity of each wave is given by the relationship: 

௜ܫ  = ଴ܿ݊2ߝ ∗.௜ܣ௜ܣ .  
(2.15) 

For planar waves, if the input amplitudes, A1 and A2, are approximately constant, the intensity of 
the generated wave is given by the expression: 

ଷܫ  = 8݀௘௙௙ଶ ߱ଷଶܫଵܫଶ݊ଵ݊ଶ݊ଷߝ଴ܿଶ ଶܿ݊݅ݏଶܮ ൬2ܮ݇߂ ൰ ,  
(2.16) 

where L is the propagation distance within the nonlinear material. It can be seen that the intensity 
grows quadratically with the length of the propagation distance. However, the intensity of the 
generated beam is also highly dependent on the product of the phase mismatch and the 
propagation distance, ΔkL. Fig. 2.2 shows the intensity as a function of ΔkL/2. 

The intensity has a maximum when ΔkL/2 = 0, i.e. when the phase mismatch of the 
interacting waves is zero. As |ΔkL/2| deviates from zero the intensity decreases and reaches zero 
as |ΔkL/2| = ±π. The propagation distance where |ΔkL/2| = ±π is defined as the coherence length, 
Lc, of the nonlinear process: 

௖ܮ  = |݇߂|ߨ . (2.17) 
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Fig. 2.2: Intensity of the generated wave as a function of phase mismatch. 

While the propagated distance is shorter than the coherence length, energy will be flowing 
into the generated wave from the pumping wave(s). However, as the coherence length is reached, 
energy will start being transferred back to the pumping wave(s) from the generated wave. Each 
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energy transfer cycle is two coherence lengths long and the cycle will repeat itself throughout the 
entire length of the nonlinear material. 

This fact shows that proper phase matching (Δk = 0) is essential in order to obtain an efficient 
nonlinear process. However, due to the dispersion of the material, this condition is normally not 
fulfilled. In order to obtain phase matching for a certain process, either birefringent phase 
matching or quasi-phase matching can be employed. 

2.4.1 Birefringent phase matching 
The technique of birefringent phase matching (BPM) utilizes the natural birefringence of most 
nonlinear optical materials, i.e., optical waves of different polarizations experience different 
refractive index, n, while propagating in the nonlinear material. 

A wave polarized perpendicular to a plane containing the optical axis and the propagation 
direction experiences the ordinary refractive index, no, and is, hence, named the ordinary wave. 
The ordinary refractive index remains the same independent of the propagation direction in the 
crystal. Meanwhile, a wave polarized parallel to the plane containing the optical axis and the 
propagation direction experiences the extraordinary refractive index, ne, and is named the 
extraordinary wave. The extraordinary refractive index varies with the angle, θ, between the 
optical axis of the crystal and the propagation direction. For a negative uniaxial crystal the 
extraordinary refractive index is given by [30]: 

 ݊௘(ߠ) = ݊௢ ത݊௘ඥ݊௢ଶ − (݊௢ଶ − ത݊௘ଶ) cosଶ(ߠ) .  
(2.18) 

 

Here, ത݊௘ is the principal value of the refractive index so that ne(θ) = ത݊௘ for θ = 90˚ and ne(θ) = no 
for θ = 0˚. 

BPM processes are divided in two groups of phase matching, Type I and Type II. Type I 
phase matching occurs when the two waves with the lowest frequencies are polarized in the same 
direction. Type II phase matching occurs when the two lowest frequency waves are polarized 
orthogonally to each other [31]. 

Although BPM is a straightforward and a considerably simple technique, it suffers from 
several drawbacks. While using the correct angle to obtain phase matching for a desired 
nonlinear process, if this angle θ ≠ 0,90˚, there will be a spatial walk-off between the interacting 
waves. The walk-off is due to the Poynting vector not being parallel to the propagation vector. 
This leads to a decreased spatial overlap of the interacting waves and, hence, a decreased 
conversion efficiency. However, if the birefringence of the material is temperature dependent, 
the spatial walk-off between the interacting waves can be avoided by setting the crystal angle to 
θ = 90˚ and adjust the temperature of the crystal to obtain the collinear phase matching. This 
technique is called noncritical phase matching. Moreover, while employing BPM it is not always 
possible to use all the elements of the nonlinearity tensor d. The components d11, d22 and d33 are 
not accessible when employing BPM because of the different polarizations of the optical waves 
involved in the process. Finally, not all spectral regions have large enough birefringence to be 
phase matched making several of the nonlinear processes unachievable.  
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௠ܩ  = ߨ2݉ sin(݉ܦߨ),  (2.22) 

where Λ is the period of the deff  grating, D being the duty-cycle of the grating, D = l/Λ, with l 
being the length of the inverted spontaneous polarization. The impact of the duty-cycle on the 
effective nonlinearity, deff, is shown in Fig. 2.4 for m = 1,2,3. As can be seen, the largest 
nonlinearity, and therefore, the most efficient nonlinear process, is obtained for first order phase 
matching with m = 1 and with D = 0.5. 

With D = 0.5 the Fourier coefficients Gm are now given by the following: 

௠ܩ  = ൝  0 , ݎ݋݂ ݊݁ݒ݁ , ߨ2݉݉ ݎ݋݂ ݀݀݋ ݉  (2.23) 

and the effective nonlinearity:  
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Fig. 2.4: The normalized effective nonlinearity as function of duty-cycle. 

Although the nonlinear coefficient is now scaled with a factor of 2/π, QPM can yield 
significantly effective nonlinearity than BPM, as shown in Fig. 2.5. QPM normally operates in 
what is called Type 0 phase matching, where all the interacting waves have the same 
polarization. Therefore, the diagonal nonlinear coefficients, d11, d22 and d33, are all accessible 
using this technique. These diagonal coefficients are normally the largest ones in the nonlinear 
tensor, d.  

 ݀௘௙௙ = ݀௜௟ ߨ2݉ .  (2.24) 
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Perfect phase matching, ΔkQPM = 0, for a given process, can only be achieved for one value of 
m. However, the non-phase-matched higher order Fourier components causes the intensity of the 
generated wave to grow oscillatory, as can be seen in Fig. 2.5. 

The phase mismatch of the nonlinear process can now be expressed as: 

ொ௉ெ݇߂  = ݇ଷ − ݇ଶ − ݇ଵ −   .௠ܭ
(2.25) 

From Eq. (2.25), and the requirement for perfect phase matching for a nonlinear process to be 
efficient, the grating period can now be expressed as follows: 

߉  = ௖ܮ2 = ݉݊ଷߣଷ − ݊ଶߣଶ − ݊ଵߣଵ ,  
(2.26) 

where the refractive indices, ni, can be obtained from the Sellmeier equations for the given 
material.  

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1st-order QPM with 
d33 (only m = 1)

perfect phase 
matching with d33

1st-order QPM with d33

BPM with d32  

N
or

m
al

iz
ed

 in
te

ns
ity

 (a
.u

)

x/Lc

no phase
matching

 

Fig. 2.5: Comparison of different phase matching conditions in a KTiOPO4 crystal for a nonlinear 
frequency conversion process. 

2.5 QPM Second Harmonic Generation 
Second Harmonic Generation (SHG) is the χ(2) nonlinear process where two pump photons are 
converted into one photon with the double energy, ωSH = 2ωF (ω1 = ω2 = ωF, ω3 = ωSH), and at 
one half of the pump wavelength, λSH = λF/2. This process is extensively used for frequency 
conversion of light in the near infrared range into light in the visible range. The phase mismatch 
in this process is given by the expression: 
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ொ௉ெ݇߂  = ݇ௌு − 2݇ி − ௠ܭ . (2.27) 

When the process is phase matched (Δk = 0), the grating period can be deduced as: 

ௌுீ߉  = ௖ܮ2 = ி2(݊ௌுߣ݉ − ݊ி) . (2.28) 

2.5.1 Tuning and tolerances 
Although QPM is a robust technology, with several advantages over BPM, it is sensitive to 
various parameters such as wavelength, temperature and angle [39]. From Eq. (2.16) the full-
width-half-maximum of the output power can be calculated as the following expression: 

2ܮ݇߂  =   .ߨ0.4429
(2.29) 

This expression can now be expanded as a function of wavelength, angle or temperature, from 
which the wavelength acceptance bandwidth, angular acceptance bandwidth and temperature 
acceptance bandwidth also can be found. 

The angular acceptance bandwidth for a QPM device can be deduced from Eq. (2.29) as [39]: 

ߠ߂  = 2ඨ1.772 ݊ଶ݊ଵ ܮ௖ܮ ߠݏ݋ܿ .  
(2.30) 

Altering the temperature of the QPM device can be employed for tuning of the phase 
matching condition. Temperature changes will alter the refractive index as well as change the 
QPM period due to thermal expansion. The temperature tuning bandwidth is given by [39]: 

ܶ߂  = ܮிߣ0.4429 ቤ߲݊ௌு߲ܶ ฬ బ் − ߲݊ி߲ܶ ฬ బ் + ௌு݊)ߙ − ݊ி)ቤିଵ .  
(2.31) 

Changing the temperature can also be used to evaluate the uniformity of the QPM structure. 
From Eq. (2.29), the wavelength acceptance bandwidth can be derived as [39]: 

ிௐுெߣ߂  = ܮߣ0.4429  ฬ݊ௌு − ݊ிߣ + ߲݊ி߲ߣ − 12 ߲݊ௌு߲ߣ ฬିଵ.  
(2.32) 

The wavelength acceptance bandwidth provides information on the bandwidth limitations of 
the fundamental laser source that can be used in the nonlinear process.  

2.5.2 SHG with Gaussian beams 
Lasers generally have a Gaussian intensity distribution. When such a beam is being focused into, 
e.g., a nonlinear crystal, the depth of the focus is limited by diffraction of the beam. The amount 
of diffraction spread increases as the beam waist in the focus is decreased. With this trade-off in 
mind, between interaction length and beam size, Boyd and Kleinmann [40] derived the following 
expression of the second harmonic conversion efficiency as follows: 
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ߟ  = 2݀௘௙௙ଶ ߱ிଶ݇ி ிܲߝߨ଴݊ிଶ݊ௌுܿଷ ,ܤ)ℎܮ   .(ߦ
(2.33) 

Here, h(B,ξ) is the Boyd-Kleinmann focusing factor, ξ = L/b where b = 2πnFw0
2/λ is the confocal 

parameter for a beam waist of w0.  
For noncritical phase matching, i.e., with no spatial walk-off B = 0, there is a maximum in 

the efficiency, η, for the parameters ξ = 2.84 and h(B,ξ) = 1.068. However, the second harmonic 
conversion efficiency remains within 10 % of this maximum value for the range 1.52 < ξ < 5.3. 

Normalizing the conversion efficiency, η, with respect to the device length, L, and the input 
power, P, makes it possible to compare the performance of different QPM devices: 

௡௢௥௠ߟ  = 2݀௘௙௙ଶ ߱ிଶ݇ிߝߨ଴݊ிଶ݊ௌுܿଷ ℎ(ܤ, (ߦ .  
(2.34) 

Another measure of the quality of the QPM device is the effective nonlinear coefficient, deff, 
which is given by the expression: 

 ݀௘௙௙ = ඨ ଷ݊ிଶ݊ௌுߝߨ ௌܲு݉ଶ2 ଵ߱ଶ݇ଵ ிܲଶܮℎ(ܤ, (ߦ .  
(2.35) 

2.5.3 SHG in waveguides  
In an optical waveguide, the light is propagating being confined in a region of the material with 
an increased refractive index [41]. Such a refractive index increase can be obtained by, e.g., 
alteration of the material composition or be stress-induced [41–43]. The transverse intensity 
distribution of the light propagating in the waveguide is given by the so-called modes, i.e., the 
eigenstates of the light in the waveguide, which are determined by the waveguide shape, its 
dimensions and the wavelength of the propagating light. The confinement of the light 
propagating in the waveguide enables propagation over long distances without suffering from 
diffraction. A typical example of such a waveguide, which is extensively used in modern 
photonics, is the optical fiber, where the light in the fiber typically is propagating in a high 
refractive index core [44].   

Waveguides made from a nonlinear material can be employed for efficient frequency 
conversion of pump sources of low or moderate powers, as the necessary high intensities can be 
obtained in the waveguide. The efficiency of a SHG process in a waveguide is given by the 
expression:  

ߟ  = ଶ݀௘௙௙ଶߨ8 ிܲܿߝ଴݊ௌுீ݊ிଶܣ଴   ,ଶܮ
(2.36) 

where A0 is the so-called overlap area of the fundamental beam and the second harmonic defined 
by [45]: 
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of the nonlinear material, rotation of the crystal, tuning of the pump wavelength or by rotation of 
the resonator.  

From the coupled amplitude equations, Eqs. (2.14), the Manley-Rowe relations can be 
derived [46]. It describes the energy flow between the three interacting fields through the 
relationship: 

 − 1ω୮ dI୮dz = 1ωୱ dIୱdz = 1ω୧ dI୧dz .   
(2.38) 

By integrating the coupled amplitude equations in the non-depleted pump approximation, the 
single-pass amplification for a parametric device of length L can be written as follows: 

(଴)ܫ(௅)ܫ  = 1 + Γଶ sinhଶ ቆܮටΓଶ − ቀΔ2݇ ቁଶቇ
Γଶ − ቀΔ2݇ ቁଶ ,   

(2.39) 

when assuming that the incident signal wave is weak and that the depletion of the pump is low. 
Here, the parameter Γ2 is defined as: 

 Γଶ = ߢ,௣ܫߢ = ௜ߣ௦ߣଶ݀௘௙௙ଶ߳଴ܿ݊௣݊௦݊௜ߨ8 .   
(2.40) 

The pump energy threshold for an SRO, operating with nanosecond pulses, is given by the 
expression [47]: 

 ℇ௧௛ = 0.6൫ݓ௣ଶ + ଶܮߢ௦ଶ൯ݓ ൤25݈߬ܿ + 12 ln 2ܴ(1 −    ,൨ଶ(ܣ
(2.41) 

where R is the reflectivity of the output coupler, A accounts for the losses in the cavity, τ is the 
FWHM of the pulse length, L is the crystal length, l the optical cavity length, wp and ws are the 
mode radius of the pump and the signal, respectively. When the threshold is reached and the 
OPO is operating, the signal and the idler will deplete the pump source so that the gain and the 
losses in the process are equal.  

As a measure of how well the OPO is working, both the pump depletion and the efficiency of 
the OPO can be measured. The efficiency of the OPO is given by the expression: 

 ݊௘௙௙ = ℇ௦௢௨௧ + ℇ௜௢௨௧ℇ௣௢௨௧ .   
(2.42) 

Here, ℇ is the measured energy of each of the interacting waves. If the energy of the signal or the 
idler is not measured, it can be calculated from the expression ℇ௜ = ℇ௦ߣ௦/ߣ௜ (ℇ௦ = ℇ௜ߣ௜/ߣ௦)  
from the Manley-Rowe relation, Eq. (2.38).  

The nonlinear loss of the pump in the OPO process is named the pump depletion. It is 
measured by comparing the total loss of the pump energy in the process to the linear loss of the 
pump energy below the oscillation threshold. By letting ℇ* denote the measured energy below 
threshold, the pump depletion can be written: 
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In the MOPO process, the energy flow between the pump and the two parametric waves can 
be described by the coupled wave equations. Assuming that the MOPO operates with planar and 
monochromatic waves, the coupled wave equations for the MOPO process are given by the 
expressions:  

ݔ௙݀ܣ݀  = 2݅݀௘௙௙߱௙ܿ݊௙ ∗௕ܣ௣ܣ , 
ݔ௕݀ܣ݀ (2.44) = − 2݅݀௘௙௙߱௕ܿ݊௕ ∗௙ܣ௣ܣ , 

ݔ௣݀ܣ݀ = 2݅݀௘௙௙߱௣ܿ݊௣ ௕ܣ௙ܣ . 
The MOPO oscillation is established once the counterpropagating parametric wave has reached 
sufficient intensity while propagating in the material. The pump intensity at threshold for the 
MOPO process can be derived by solving Eqs. (2.44) in the non-depleted pump regime, with the 
boundary conditions Af(0) = 0 and Ab(L) = 0, as [53]: 

௣,௧௛ܫ  = ଶ݀௘௙௙ଶܮ௕2ߣ௙ߣ଴ܿ݊௣݊௙݊௕ߝ .  
(2.45) 

Once above the threshold, the pump wave is converted into the signal and the idler waves while 
the pump and counterpropagating waves are spatially overlapping in the QPM device. However, 
it should be noted that the generated co- and counterpropagating waves do not overlap spatially 
in the device, thereby preventing up-conversion back to the pump wavelength. Furthermore, the 
assumption of monochromatic and planar waves is indeed a simplification, and more accurate 
calculations require numerical modelling, as performed by Strömqvist et al. [23]. 

For the MOPO process, the QPM condition, illustrated in Fig. 2.7 (b), is given by the 
expression: 

 ݇௣ = ௠ܭ + ݇௙ − ݇௕ .  
(2.46) 

Here, the indices i = p,f,b correspond to the pump, the forward/co-propagating wave and the 
backward/counterpropagating waves, respectively.  

From the QPM condition and the energy conservation requirement, the wavelength of the 
generated counterpropagating wave can be expressed as: 

௕ߣ1  = 1݊௙ − ݊௕ ቆ1߉ − ݊௣ − ݊௙ߣ௣ ቇ .  
(2.47) 

It is worth observing that the generated wavelengths of the MOPO are dependent on the pump 
wavelength and the dispersion of the material, as well as on the period of the QPM grating. For 
KTP, the contribution of the QPM grating is typically much larger than the contribution of the 
pump wavelength and the dispersion, resulting in a strong dependence on the QPM grating 
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period. In contrast, due to the energy conservation requirement, the dependence of the co-
propagating wave is the opposite, being mainly dependent on the pump wavelength and the 
dispersion of the material. 

The spectral properties of the generated parametric waves can be considered by studying the 
impact of the pump spectrum on the generated forward and backward propagating parametric 
waves, which can be derived by differentiating the QPM condition with respect to the pump 
wavelength, resulting in the relations: 

Here, ε1 is introduced as a dimensionless parameter measuring the group velocity difference 
between the pump wave and the co-propagating parametric wave. For any given values of the 
group velocities, the values of the derivatives are significantly different, as indicated by the 
minus sign. Moreover, if the dispersion of the material is low, as e.g., in KTP, then |ε1| << 1, 
indicating that the frequency of the co-propagating wave changes along with the frequency of the 
pump wave while the frequency of the counterpropagating wave remains essentially constant. 
Therefore, the relations between the temporal phases of the counterpropagating, the co-
propagating, and the pump waves in the MOPO can be expressed as: 

 ߲௧߶௕ ≃ 0 ,߲௧߶௙ ≃ ߲௧߶௣ .  
(2.49) 

The temporal phase of the counterpropagating wave is slowly varying compared to that of the 
co-propagating and the pump waves. Also, the phase of the pump wave will be coherently 
transferred to the generated co-propagating parametric wave in the MOPO process. When strict 
equality applies in Eq. (2.49), the phase of the counterpropagating wave is constant. Therefore, 
the bandwidth of the counterpropagating wave is then determined by the pulse length, as it is 
transform limited. Moreover, from Eq. (2.48) it can be seen that the counterpropagating wave 
contains approximately |߲߱௕/߲߱௣|/ห߲߱௙/߲߱௣ห  ≃ -ଵ| times the frequency content of the coߝ| 
propagating wave, thereby further proving a very narrow bandwidth of the counterpropagating 
wave. These unique spectral properties are a result of the counterpropagating geometry of the 
MOPO, and  have been experimentally verified by Strömqvist et al. [22,23]. 

With the wavelength of the counterpropagating wave being mainly dependent on the QPM 
grating (Eq. (2.47)) and the spectral content being mainly transferred to the co-propagating wave 
(Eq. (2.49)) in the MOPO process, the tuning with respect to temperature and angle of the 
counterpropagating wave in the MOPO is limited [13,22,23]. Meanwhile, the co-propagating 
wave will be tuned according to the pump wave to maintain the energy conservation condition 
and the phase matching condition.  

 ߲߱௙߲߱௣ = ௚௕ߥ௚௙൫ߥ + ௚௕ߥ௚௣൫ߥ௚௣൯ߥ + ௚௙൯ߥ ≡ 1 + ଵ , ߲߱௕߲߱௣ߝ = ௚௕ߥ௚௙൫ߥ − ௚௕ߥ)௚௣ߥ௚௣൯ߥ + (௚௙ߥ ≡ ଵߝ− .  (2.48) 
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3 Ferroelectricity 
In this chapter, the basic concepts of ferroelectricity and polarization switching that are relevant 
to this research will be introduced.  

3.1 Ferroelectric materials 
A crystalline material can be described as a material with all its constituents arranged in a highly 
ordered manner, forming a crystal lattice which extends in all directions of the crystal. The unit 
cell is the smallest recognizable pattern in the crystal lattice.  The composition of the unit cell 
governs the electrical as well as the optical properties of a crystalline material. 

Crystalline materials can be divided into point groups depending on their response to 
symmetry operations, such as translations, rotations and reflections, which map the crystal back 
on itself. Out of the total 32 point groups, 11 are centrosymmetric, i.e., the center of the positive 
and the negative charges coincide [54]. Of the non-centrosymmetric 21, groups 20 are 
piezoelectric.  Piezoelectric materials exhibit an electric polarization along a certain direction 
when a mechanical stress is applied to the material. The induced polarization is proportional to 
the magnitude of the applied mechanical stress. Moreover, when an electric field is applied to the 
crystal, a stress is induced in the material causing it to contract or expand. 

 Of the 20 piezoelectric groups, 10 are so-called pyroelectrics. Pyroelectric materials exhibit 
a polarization of the material for a certain range of temperatures when an applied electric field is 
not present, so-called spontaneous polarization, Ps, Due to Ps originating from the dipole 
moment, caused by the separation of the charges in the crystal unit cell, this groups of materials 
are called polar materials. Moreover, pyroelectric materials develop a surface charge as the 
material is heated or cooled due to the change of polarization with the temperature, and the 
conduction in the crystal can most often not compensate for this change. The ferroelectric 
materials are a subgroup of the pyroelectric materials, as illustrated in Fig. 3.1. In a ferroelectric 
material, Ps can be reversed or reoriented by an applied electric field [55]. The possible 
directions of the Ps are called orientation states. All orientation states of the ferroelectric material 
have the same crystalline structure, but differ in the direction of Ps in the absence of an applied 
electric field.  

As mentioned above, Ps is temperature dependent and above a certain temperature 
ferroelectric materials undergo a phase transition into a paraelectric phase where Ps = 0. The 
temperature at which this phase transition occurs is called the Curie temperature, Tc. This phase 
transition can be classified in two groups. When Ps disappears abruptly at Tc, the phase transition 
is defined as a first order phase transition, e.g. in BaTiO3 [56]. The phase transition is classified 
as a second order transition if Ps decreases continuously to the point where it disappears, e.g. in 
KTiOPO4 [57]. 
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Fig. 3.2: Gibbs free energy as function of the polarization below, at and above Tc. 

The electric displacement in a material as an effect of the applied electric field and the 
polarization given by the expression: 

ܦ  = ܧߝ + ܲ .  
(3.3) 

Given Gauss law, the free charge density ρ in a material is given by: 

 ∇ ∙ ܦ = ߩ .  
(3.4) 

Using Eq. (3.3) and Eq. (3.4) for a ferroelectric crystal resulting in: 

 ∇ ∙ ܧ = ଴ߝߝ1 ߩ − ∇ ∙ ௦ܲ .  
(3.5) 

Assuming the crystal is perfect and of infinite dimensions, ∇ ∙ ௦ܲ = 0. In reality crystals are not 
infinitely large and often contain defects. At any discontinuities, e.g., at the crystal surface or due 
to a defect in the crystal, ∇ ∙ ௦ܲ ≠ 0, and a charge will be present at the position of the 
discontinuity. This charge is called a bound charge, and gives rise to an electric field, the so-
called depolarization field, oriented antiparallel to the spontaneous polarization [56]. The 
depolarization field can be compensated for by internal or external charges, or by creation of 
regions with antiparallel direction of Ps.  

A region in a ferroelectric material with the same orientation spontaneous polarization is 
called a ferroelectric domain [55]. The boundary between two adjacent antiparallel ferroelectric 
domains is called a domain wall. As the crystal transitions from the non-polarized paraelectric 
state to the ferroelectric state, the crystal forms domains to minimize the energy from the 
depolarization field and the strong elastic fields within the crystal.  
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3.2 Polarization reversal 
One important feature which distinguishes ferroelectrics from other pyroelectrics is the 
possibility to reverse and reorient the spontaneous polarization with an applied electric field. The 
response of the polarization to an electric field in a ferroelectric, Eq. (3.2), at a constant 
temperature, below Tc, can be described by the hysteresis loop, i.e. a P-E curve. A standard 
hysteresis for a ferroelectric material is shown in Fig. 3.3. The polarization of the material is 
saturated at large electric fields, with all the dipoles in the material aligned along the direction of 
the electric field, as for a standard dielectric material. The magnitude of the Ps is given at large 
electric fields, as indicated in Fig. 3.3. The polarization attains a non-zero value called the 
remnant polarization, Pr, as the magnitude of the electric field is decreased to E = 0. When the 
electric field is absent, some dipoles return to their original reversed state due to internal stresses 
in the material. Therefore, Pr is normally smaller than Ps. To change the polarization from Pr to 
zero the value of the applied electric needed is called the coercive field, Ec. Ec depends of a 
number of parameters such as temperature, electrodes, waveform and frequency of the electric 
field, pressure, etc. By application of an electric field with magnitude larger than Ec it is possible 
to change the direction of Ps, so-called poling. The energy required to twice change the direction 
of Ps is given by the area under the loop in Fig. 3.3.  

Ec

Ec

Pr

Pr

Ps

P

E

Ps

 
Fig. 3.3: A typical hysteresis loop for a ferroelectric material.   

The process of polarization reversal can be described by the following four steps: nucleation 
of an antiparallel domain, expansion along the polar axis, lateral growth and finally merging of 
domains. Nucleation of new antiparallel domains is normally considered a statistical effect, with 
the probability to nucleate a new domain exponentially proportional to the applied electric 
field [58]. According to the theory developed by Merz [59] and Landauer [60], nucleation of a 
new domain yields a total energy change given by 

ܹ߂  = ௪ܹ + ாܹ − ࡰ ∙   ,ܸࡱ
(3.6) 
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where WW and WE are the domain wall and depolarization energy , respectively of the nucleus. 
D·EV is the electrostatic energy of the nucleus of volume V in the applied electric field E. With 
the assumption that within the nucleus both the polarization and the electric field are uniform, the 
rate of nucleation is proportional to exp(-ΔW/kT). The probability to nucleate domains due to 
thermal fluctuations in the bulk of the crystal is small due to the large energy required. The 
energy required to nucleate new domains is significantly smaller at the surfaces, by defect sites 
or by walls of already existing domains. The Landauer theory does assume an ideal insulating 
ferroelectric crystal containing no defects or free carriers. In order to account for defect assisted 
nucleation several theories have been developed to extend the Landauer theory  [61,62]. Today, 
the most accepted model of domain nucleation is the one by Gerra et al. [63]. This model 
includes the ferroelectric-electrode coupling and defects in its interface, and the nucleated 
domains have the shape of prolate semispheroids. Eq (3.6) can now be adjusted to: 

ܹ߂  = ௪ܹ + ாܹ − ࡰ ∙ ܸࡱ − ߦߨ ௦ܲݎଶ,  
(3.7) 

with r being the base radius of the domain, and ξ being the local surface field. 
Following nucleation of an antiparallel domain, the domain will grow along the polar and the 

lateral directions. Along the polar axis the growth velocity normally follows an inverse 
exponential dependence on the electric field [64]. The domains normally grow easily along the 
polar axis due to the kinks and ledges available in this direction. Furthermore, the growth 
velocity along the polar axis is normally significantly faster than the growth velocity along the 
lateral directions. For instance, in KTP the domain growth velocity is orders of magnitude larger 
along the polar axis than along the lateral directions [65]. 

In the lateral directions, there are two possible ways for the domain walls to move, either by 
direct movement of the domain wall, or by nucleation of new domains adjacent to an existing 
domain wall. The energy needed for a domain wall to move one lattice spacing sideways is on 
the same order of magnitude as the energy of the domain wall itself.  Also, the energy gained by 
such movement of the domain wall is not very large. Therefore, this kind of wall sideways wall 
motion is highly unlikely [56]. It is more likely that domain walls move by nucleation at the 
crystal surface, adjacent to an already existing domain wall, causing the domain wall to move in 
a step-wise manner, as illustrated in Fig. 3.4 [66]. For this stepwise motion of the domain walls, 
the most energetically favorable shape of the nucleated domain is triangular, as seen in Fig. 3.4. 

The dynamics of the polarization reversal is dependent on the magnitude of the electric field. 
The nucleation and the switching dynamics can be characterized by applying an electric field to 
the material and measuring the switching current due to polarization reversal in the material as a 
function of time [59]. Both the switching time and the domain velocity are important parameters 
to understand the polarization-switching characteristics of a material. 
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et al. [69] and Urenski et al. [70] reported similar polarization switching behaviors for KTP in 
two different regimes. At low fields, the polarization switching behavior is dominated by the 
nucleation rate of the new domains, while at high fields the polarization switching is governed by 
the domain-wall motion. 

3.3 Role of defects 
Defects in a crystalline lattice cause deformations of the crystal lattice and modify its local 
electric fields. The impact of the defect on the polarization switching characteristics of the 
material is governed by the type of the defect, the location of the defect in the lattice and the 
defect-host interaction. An acentric defect creates a dipole moment given by: 

 Δμതതതത = Δμୢ + ෍ ௜௜ݔ߂௜ݍ .  
(3.12) 

Here, Δµd is the change in dipole moment, Δxi displacement of charge qi in surrounding lattice 
due to the defect. Assuming the defect concentration, N, is small enough, the interaction between 
the different defects can be neglected. The change in macroscopic polarization is then given by: 

 ΔP = NΔμതതതത.  
(3.13) 

The contribution ΔP to the polarization of the material may or may not reverse when an electric 
field is applied to the material for polarization switching. If ΔP is reversed during polarization 
switching, the hysteresis loop will be altered due to the presence of the defects. In general, the 
presence of defects in a material tends to increase the magnitude of Ec. If all dipoles are ordered 
in the same direction, the hysteresis loop will appear biased. However, if the dipoles are 
completely random, the loop will show an increased Ec. If ΔP does not reverse under an applied 
electric field, the defects might act as initial nucleation sites, or be the cause of backswitching, 
i.e., domains returning to their previous state when the applied electric field is removed. 

The defects might also cause domain wall pinning, i.e., that the domain wall motion is 
hindered by the coupling between the domain wall and the defects [64]. To overcome this, larger 
magnitude or longer pulse length of the applied electric field might be needed. When accurate 
control of the domain wall motion is needed, e.g. during fabrication of QPM devices, materials 
of high quality with low defect concentrations are desired. 



27 
 

4 Properties of KTP and RKTP 
The nonlinear crystal used throughout this work is flux-grown bulk Rb-doped KTP (RKTP), 
which is an isomorph of KTP. In this chapter the material properties of KTP and RPKTP are 
presented. 

KTP and its isomorphs do not exist in nature, but needs to be synthesized. The first synthesis 
of KTP was reported in 1890 [71], however it was not until the 1970s [72] the material attracted 
a considerable interest as a nonlinear media for frequency conversion due to its excellent 
properties, such as large optical nonlinearity, high damage threshold, excellent mechanical and 
thermal properties and high resistance to optical damage [73]. Today KTP and its isomorphs are 
well-established materials used in nonlinear optics, both for BPM, and for QPM using 
periodically poled crystals. 

The crystalline structure of KTP was determined by Tordjman et al. [74] in 1974. The 
ferroelectric properties, enabling periodic poling, were first reported in 1980 [57]. Several 
techniques have been developed to obtain periodic poling of KTP, such as electric field poling at 
room temperature  [75], poling by electron beam writing [76] , poling at low temperature [77] 
and electric field using chemical patterning [78]. 

4.1 Crystal structure 
The KTP isomorphs are characterized by the unit formula MTiOXO4, where M is K, Rb, Cs or 
Tl and X is P or As. KTP and its isomorphs are optically biaxial crystals. Their crystal structure 
is orthorhombic and belongs to the 2mm point group and the Pna21 space group [73]. The lattice 
constants of KTP are a = 12.819 Å, b = 6.299 Å, and c = 10.583 Å [79]. The crystallographic 
axes a,b,c correspond to the x,y,z optical axes, and the crystal exhibits spontaneous polarization 
along the z-axis. KTP undergoes a ferroelectric phase transition at 934 ˚C to the paraelectric 
state, where the crystal structure becomes centrosymmetric [57]. 

 Each KTP unit cell contains four asymmetric units with two formula units per cell. The 
crystal structure is made up by TiO6 octrahedra forming helical chains along the [001] direction, 
linked together by PO4 tetrahedra. There are eight oxygen atoms binding to both the Ti and P 
atoms, while two oxygen atoms bind only to the Ti atoms. Since the Ti atoms are slightly 
displaced in the TiO6 octahedra, the length of the Ti-O bonds alternates between long and short 
in the helical chain.  The TiO6 octahedra and PO4 tetrahedra form a crystal framework with 
cavities where the K+ ions are accommodated, as illustrated in Fig. 4.1. The K+ ions can occupy 
two non-equivalent sites in the crystal structure, the eight-fold coordinated K(1) site or the nine-
fold coordinated K(2) site. As seen in Fig. 4.2 the cavities in which the K+ ions are situated are 
slightly stretched along the polar direction and form open channels in this direction. The K+ ions 
are loosely bound in the cavities, and can move via a hopping mechanism within the channels, 
being the cause of the ionic conductivity in the KTP isomorphs.  
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the crystal structure. At low doping concentrations, the Rb+  ions prefer to occupy the larger K(2) 
position in the crystal lattice [87].  

The very light Rb-doping of RKTP grants very similar linear and nonlinear optical properties 
as KTP. Nevertheless, RKTP has proven to have decreased susceptibility to grey-tracking [88–
90]. Moreover, the Rb-doping in RKTP significantly decreases the ionic conductivity compared 
to undoped KTP, which greatly affects the domain-wall movement during the periodic 
poling [19], which, in turn, enhances the quality of the fabricated QPM structures. 

Polarization switching in RKTP was first demonstrated by Jiang et al. [91]. However, Wang 
et al. demonstrated the first periodically poled RKTP crystals [92]. In recent years, the material 
has attracted more and more interest for fabrication of fine pitch QPM gratings, particularly 
demonstrated in this work. The material shows improved homogeneity compared to undoped 
flux-grown KTP, making it possible to obtain homogenous periodically poled structures over 
larger areas [16].   

4.4 Ionic conductivity 
As mentioned above, the ionic conductivity in KTP is caused by a vacancy hopping mechanism 
of the K+ ions in the crystalline lattice. The K+ ions can move through the open channels formed 
by the oxygen atoms in the framework, as illustrated in Fig. 4.1 and Fig. 4.2. Potassium 
vacancies have been found to be the main contributor to the ionic conductivity in KTP 
isomorphs. The potassium vacancies originate from the growth process of the crystal. At the 
elevated temperatures where crystal growth occurs, oxygen atoms tend to escape out of the 
crystal lattice leaving a charge unbalance. This charge unbalance is compensated for by removal 
of K+ ions leaving a crystal with oxygen and potassium vacancies. 

The magnitude of the ionic conductivity therefore depends of the growth process, as well as 
on the isomorph composition [93]. Flux grown KTP typically has a conductivity of 10-5 S/m [15] 
while hydrothermal KTP has an ionic conductivity of 10-7 S/m [94], owing to the lower 
concentration of vacancies in the hydrothermally grown material. 

The RKTP crystals used in this work has significantly lower conductivity than flux grown 
KTP, due to the Rb-doping of the material [15]. The Rb+ ion is larger than the K+ ion which 
tends to block the hopping channels along the polar axis. This corresponds to higher activation 
energy for the Rb+ ion, which effectively reduces the conductivity.  

The ionic conductivity of the as-purchased RKTP wafers is measured prior to poling. It is 
done by application of an electric field with a magnitude well-below the coercive field while the 
current is monitored. To avoid any risk for poling, the electric field is applied parallel to the non-
switching direction. A typical wafer map is shown in Fig. 4.5 [15]. 
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with am, m = 0,1,2,3, being material coefficients. For wavelengths above 1 µm, the temperature 
corrections have been derived by Emanuelli and Arie [100] on the form: 

௭݊߂  = ݊ଵ(ܶ − (ܥ˚25 − ݊ଶ(ܶ −   ,ଶ(ܥ˚25
(4.4) 

with 

 ݊ଵ,ଶ = ෍ ܽ௠ߣ௠ଷ௠ୀ଴ .  
(4.5) 

The coefficients am are given in Table 4.2. 
Wavelength range Coefficient 

a0 a1 a2 a3 

λ < 1 µm  [99] 10-5/˚C 1.2415 -4.4414 5.9129 1.2102 

λ > 1 µm [100] 
n1, 10-6 9.9587 9.9228 -8.9603 0.6603 

n2, 10-8 -1.1882 10.459 -9.8136 3.1481 

Table 4.2: Temperature correction coefficients for KTP for wavelengths below and above 1 µm. 

The resistance to high optical intensities is important as it ultimately limits the nonlinear 
process. There are several forms of damage, and the most sever is catastrophic damage where the 
material breaks down irreversibly. The threshold for this type of optical damage in the crystal is 
determined by several factors such as wavelength, transient behavior of the pump laser (pulsed 
or continuous wave regime), pulse length, polarization of interacting waves as well as the 
individual crystal quality, etc. Most damage threshold studies are performed in the nanosecond 
regime. A recent study showed that the damage threshold for KTP and RKTP is approximately 
10 GW/cm2 for 1 µm and 2 µm radiation using 11 ns pulses at 100 Hz polarized along the  
z-axis [101]. This study further showed that the damage occurred mainly at the crystal surfaces, 
suggesting the surface quality was the main limiting factor, rather than the wavelength. Other 
studies showed slightly different results depending of measurement parameters [73,102–104]. 
Compared to other nonlinear crystals, e.g. LiNbO3 [105], the resistance to optical damage is 
significantly larger. 

As the wavelength decrease towards the lower limit of the KTP transmission range, the KTP 
isomorphs become more and more absorbing, as seen in Fig. 4.7. The absorption at these 
wavelengths leads to thermal dephasing of the QPM device and, hence, to decreased conversion 
efficiency, long term stability and lower resistance to optical damage [90,106]. Moreover, at 
visible wavelengths KTP isomorphs suffer from so-called grey-tracking. Grey-tracking is 
formation of color centers in the crystal due to absorption of light in the blue and the green 
spectral range, leading to an increased absorption of infrared light. Recent studies have shown 
RKTP is significantly less prone to grey-tracking, which is attributed to the  lower ionic 
conductivity compared to KTP [88,89]. This can be understood by considering the dynamics 
associated with the color center formation. It has been indicated by electron-paramagnetic-
resonance (EPR) studies that the formation of the color centers can be associated with the 
emergence of Ti4+/Ti3+ electron traps and O2-/O- hole traps on the oxygen ion adjacent to the Ti 
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Here, ε is the relative permittivity of the material, µ the ion mobility, V the applied voltage, L the 
crystal thickness, Ps the spontaneous polarization and A is the area over which the voltage is 
applied. The ionic current depends quadratically on a linearly ramped applied electric field, 
while the switching current should appear as a sharp peak at the coercive field [111], provided 
that  the ramp rate of the external electric field is properly chosen, so that the switching current is 
not masked by the dominating ionic contribution. Fig. 4.8 shows a typical coercive field 
measurement of a RKTP crystal. 

 
Fig. 4.8: The measured current under an applied linearly ramped electric field for a 1 mm thick 

RKTP sample. 

As can be seen, the RKTP crystal measured in Fig. 4.8 has a coercive field of 5.02 kV/mm. 
Here, the ramp rate of the applied electric field was 550 V/ms. It is worth mentioning that the 
magnitude of the coercive field is strongly dependent on the ramp rate of the external electric 
field. For a linearly ramped pulse, the ramp rate is determined by the peak magnitude of the 
electric field and the pulse length. When the peak magnitude of the applied electric field pulse is 
kept constant, the coercive field varies with the pulse length as [112]: 

௖ܧ  = (߬)lnߙ − ln(ߛ),  
(4.7) 

where α is the activation field, τ is the pulse length and γ is a parameter independent on the 
applied electric field. In RKTP, Zukauskas reported a variation of the coercive field of  
3.8-6.5 kV/mm for ramp rates ranging from 2.56 kV/ms to 284 V/ms [15].  

Moreover, to accurately fabricate domain inverted structures, it is crucial to understand the 
dynamics of the domain formation. For this purpose, it is meaningful to study the switching time, 
the domain wall velocities and the domain-nucleation rate of RKTP. The polarization switching 
time gives an estimate of the time scale at which new domains form. The switching time is 
dependent on the magnitude of applied electric field, as discussed in chapter 3.  

The domain wall velocities can be measured using the so-called Miller-Savage method [67]. 
Electric field pulses are applied to the sample and the resulting domain structure is observed by 
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selective etching in between each pulse. The domain velocity in each direction is defined as the 
average domain width divided by the length of the electric field pulse. For KTP, the domain wall 
velocity is at least two orders of magnitude faster in the polar direction compared to the nonpolar 
directions. In the nonpolar x- and y-directions, the domain wall velocity is approximately 30 
times faster along the y-direction than along the x-direction [65], resulting in a large anisotropy 
in the domain-wall velocity. 

For KTP, it has been reported that the domain-nucleation rate is significantly larger on the z- 
surface compared to that of the z+ surface [65]. A plausible explanation is that the preferred 
nucleation on the z- surface is caused by the movement of the K+ ions in the crystal structure. 
When an external electric field is applied to the crystal, the K+ ions will move towards the z- 
surface, where an accumulation of K+ ions is created. The accumulation of K+ ions might 
increase the nucleation probability at this surface. Moreover, the rate at which new domains 
nucleate is highly influenced by the interface between the material and the electrode. It has been 
experimentally observed that it is possible to further enhance the domain nucleation rate by 
deposition of an aluminum film on the z--surface [11,15]. 
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5 Ion exchange  
The ion exchange technology in KTP was developed in 1980’s by Bierlein et al. [113] to enable 
the fabrication of waveguides. The K+ ions in the KTP structure are exchanged for Rb+, Cs+, or 
Tl+ ions, resulting in an increase of the refractive index, which can be used for waveguiding of 
light in the high refractive-index region. Moreover, ion exchange processes were also used for 
controlled domain reversal before the electric field poling technique was developed to fabricate 
QPM devices [2]. Furthermore, the ion exchange technology can be used to engineer the 
coercive field and the ionic conductivity of the KTP crystals [78,113]. Risk et al. utilized the 
coercive field difference between ion-exchanged and non-exchanged regions to fabricate 
periodically poled, segmented waveguides for QPM applications [78]. However, this approach 
was never tested for fabrication of bulk ferroelectric domain gratings. 

In this work, the ion exchange process in RKTP has been exploited for engineering of bulk 
devices: both in terms of coercive field engineering for subsequent periodic poling and bulk 
refractive index engineering in the crystal. In this chapter, the ion exchange process in KTP is 
reviewed and the impact of the various ion exchange parameters is studied. The resulting optical 
properties of the fabricated devices will be discussed in Chapter 7. 

5.1 Introduction to ion exchange 
The process of ion exchange in a solid material, where ions in the material are exchanged for 
dopant ions, can be used to alter the chemical composition of the material and its properties. In 
practice, the process of ion exchange is seemingly simple, but good knowledge and 
understanding of diffusion in solid materials, and the interplay between diffusion, ionic 
conductivity, ionic species and temperature is needed to fully comprehend the process and 
engineer the material properties. Typically, the ion exchange is performed by submersion of a 
solid material (e.g. a crystal) into a liquid containing the dopant ion at elevated temperatures, 
thereby allowing host ions to be replaced by dopant ions from the liquid through a diffusion 
process. The ion exchange is driven by the chemical potential of the system, i.e., the 
concentration gradient of the host and dopant ions, and the gradient of the electric potential in the 
material [114]. The gradient of the electric potential is built up by the ion exchange process 
itself, even if no external applied electric field is present. The electric potential is a result from 
formation of vacancies as host ions diffuse out of the material, leaving a charge unbalance. The 
charge unbalance, in turn, attracts ions from the liquid to diffuse in to the material, to neutralize 
it. Meanwhile, the system will aim to reach a chemical equilibrium state, where the concentration 
of host and dopant ions on the surface of the solid material is in chemical equilibrium with the 
concentrations of the ionic species in the liquid. The process of ion exchange can therefore be 
described by the chemical reaction [115]: 

 ܼଶܣ௓భା(݈݅݀݅ݑݍ) +ܼଵܤ௓మା(݈݀݅݋ݏ)⇆ ܼଶܣ௓భା(݈݀݅݋ݏ) + ܼଵܤ௓మା(݈݅݀݅ݑݍ),  (5.1) 
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where Z1 and Z2 are the charge of the dopant ion A and host ion B , respectively. To maintain 
charge equality in the process, the total charge of the in-diffused dopant ions must equal the total 
charge of the out-diffused host ions.  

Diffusion of ions in a solid material is motivated by thermal vibrations of the ions, causing 
random jumping of ions to the nearest empty space in the matrix, e.g., a vacancy in a crystal 
lattice. The process of random jumping to adjacent sites makes diffusion a highly statistical 
process, although temperature dependent. When the temperature of the system is increased, the 
amplitude of the thermal vibrations increases, thereby making the random jumps between 
adjacent sites more probable.  From a macroscopic point of view, diffusion of an ionic or atomic 
species at any given interface in the material can be described by Fick’s first law: 

௜ܬ  = ௜௝ܦ− ݀ܿ݀ ௝ܺ , (5.2) 

where Ji is the atomic flux, Xj the gradient direction, c the concentration of the diffusing species 
and Dij the diffusion coefficient for the given atom in the diffusion direction. J and X are both 
vectors while D is a second order tensor given by the structure of the material. The minus sign in 
Eq. (5.2) indicates a fundamental property of diffusion. Ions will diffuse so that the chemical 
potential, i.e. the concentration difference, of the system is minimized by moving from highly 
concentrated regions to regions with lower concentration [114]. 

The diffusion coefficient, D, can be described by the Arrhenius relationship: 

ܦ  = ଴ܦ exp ൬− ܴܳܶ ൰ , (5.3) 

where Q is the activation energy, R the universal gas constant, D0 a temperature independent 
factor and T the absolute temperature. Eq (5.3) emphasizes the relation between diffusion and 
temperature, while Q can be correlated to the energy required to initiate diffusion of a given 
ionic species, which is dependent on the structure of the material as well as the charge, weight 
and radius of the ion of interest.  

The temporal behavior of diffusion can, in turn, be described by Fick’s second law: 

ݐ߲߲ܿ  = ௜௝ܦ ߲ଶ߲ܿ ௝ܺଶ .  (5.4) 

From Fick’s second law, it can be understood that the rate of the diffusion is correlated to the 
concentration difference in the gradient direction. The diffusion process slows down as the 
concentration difference, i.e.  chemical potential of the system, decreases. Once the system is in 
chemical equilibrium, the diffusion will seize. 

Moreover, the diffusion of a given ion is closely related to the ionic conductivity, σ, of a 
material through the Nernst-Einstein equation: 

ߪ  = ଶ݇ܶݍ݊ܦ ,  (5.5) 
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with q being the charge per ion, k the Boltzmann’s constant, T the absolute temperature, n the 
number of charge carriers per unit volume and D the diffusion coefficient. Although the ionic 
conductivity is commonly used to describe the response to an applied electric field, it is, indeed, 
a diffusive process where ions in the material move to minimize the electric potential of the 
system. Moreover, the ionic conductivity of a material can be easily measured by application of 
an external electric field, and thereby makes it possible obtain an estimate of the diffusion 
dynamics of the material.  

In an ion exchange process, not only one ionic species should be considered, but both the 
host and the dopant ionic species. In a binary system, the diffusion of the two species through a 
given plane can be described by the Nernst-Planck equation: 

௜஺ܬ  = ෡஺ܦ− ቆ݀ܿ஺݀ ௝ܺ − ܿ஺ܼܨଵܴܶ ܸ݀݀ ௝ܺቇ ௜௕ܬ, = ෡஻ܦ− ቆ݀ܿ஻݀ ௝ܺ − ܿ஻ܼܨଶܴܶ ܸ݀݀ ௝ܺቇ .  
(5.6) 

Here, ܸ݀ ݀ ௝ܺൗ is the potential gradient, F the Faraday constant, and ܦప෡  diffusion coefficient of the 

binary process that is connected to the self-diffusion coefficient Di through: 

෡஺ܦ  = ஺ܦ ൭1 − ܿ஺ܿ஻ ൬݀ ln ஺݀ߛ ln ܿ஻൰൱ ,
෡஻ܦ = ௕ܦ ൭1 − ܿ஻ܿ஺ ൬݀ ln ஻݀ߛ ln ܿ஺ ൰൱ ,  

(5.7) 

where γi is the activity coefficient of the ions A and B , respectively.  From here, it is obvious 
that the diffusion of the dopant ions into the solid and the out-diffusion of host ions are 
interconnected. 

5.2 Ion exchange in KTP and RKTP  
In the KTP isomorphs, ion exchange has traditionally been performed by submerging the crystal 
into a nitrate melt, typically heated to 330-450 °C, containing dopant ions Rb+, Cs+ or Tl+ ions, 
thereby substituting the K+ ions in the crystal structure [113]. The crystal is heated up alongside 
the melt to avoid breaking from thermal stress [116], and then submerged in the nitrate melt for 
the ion exchange. The ion exchange process is stopped by removing the crystal from the melt 
and subsequent cooling to room temperature. The range of temperatures at which ion exchange is 
performed is limited by the melting point of the nitrate melt, for cooler temperatures, and etching 
of the sample, at higher temperature [113]. Although ion exchange has been performed with a 
variety of monovalent and divalent dopant ions [113,116–118] in KTP, most of the thorough 
studies have been done on exchanges involving Rb+ ions. In waveguides, a refractive index 
increase sufficient to guide one or two modes is desired. The larger polarizability and radius of 
the Cs+ and Tl+ ion result in large increases of the refractive index, and thereby multimode 
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waveguides, even for shallow ion-exchange depths [113]. Additionally, Cs+ and Tl+ are 
radioactive and very poisonous ions, thereby making handling of the nitrate salts highly 
hazardous. 

The ion exchange in this work is mainly performed with Rb+ ions, thereby creating a mixed 
RbaKa-1TiOPO4 structure, where a is the dopant concentration ranging from 0 to 1. Therefore, 
from here on, the dopant cation can be assumed to be Rb+ unless otherwise mentioned. Ba2+ and 
K+ ions were also added to the nitrate melt to enable engineering of the process, as will be 
discussed later on in this chapter. The work was performed in RKTP, with ca 0.3 at% Rb+ 

present in the material from the growth process. However, the low doping of RKTP, compared to 
KTP, makes it reasonable to assume that the ion exchange dynamics are very similar. 

5.2.1 Ion exchange using a monovalent RbNO3 melt 
As discussed in Chapter 4, the K+ ions are loosely bound in the KTP crystal structure, and can 
move by a vacancy hoping mechanism in the channel network, hence being the cause of the ionic 
conductivity. At elevated temperatures, the amplitude of the thermal vibrations of the K+ ions 
increases, causing an increased diffusion of the ions. When submerged in a nitrate melt with 
dopants, the K+ ions close to the surface diffuse out of the crystal into the melt and leave behind 
a negatively charged potassium vacancy. These negatively charged vacancies, in turn, 
electrostatically attract the dopant ions in the melt, whereby they diffuse into the crystal to 
compensate the charge unbalance. Moreover, already preexisting vacancies, obtained during the 
crystal growth, can also attract dopant ions from the melt [119]. In general, the ion exchange 
process in KTP can be described by  [119]: 

௅௡ାܯ  + ௌାܭ݊ ⇆ ௌ௡ାܯ + (݊ − 1) ௄ܸ +  ௅ା.  (5.8)ܭ݊

Here, M is the dopant ion with charge n, VK a potassium vacancy and S and L are the solid and 
liquid phase, respectively. When ion exchange is performed using a monovalent ion, the 
concentration of dopant ions diffusing into the KTP crystal is equivalent to the out-diffusion of 
K+ ions. However, if the dopant ion is divalent, formation of additional vacancies is required to 
maintain charge neutrality. 

As the Rb+ ions diffuses in to the crystal and replaces K+ ions, the preferred occupancy of the 
Rb+ ion is in the larger nine-fold coordinated K(2) site [120]. Therefore, the majority of the Rb+ 
ions diffusing into the crystal will first be situated in the K(2) site and only occupy the K(1) site 
at large Rb+ concentrations in the sample. It has also been suggested by Thomas et al. that the 
Rb+ ions in ion exchanged KTP also partially occupy the nine-fold coordinated hole site, h(1), as 
a residual charge density could be found in close proximity to this hole site [87].  

The Rb+ ion (and other monovalent dopant ions) has a larger ionic radius than the K+ ion. In 
order to accommodate the larger Rb+ ion in the exchange, the lattice needs to adjust. It has been 
found that during ion exchange, the crystal lattice expands along the x- and y-direction taking 
intermediate values between those of KTP and RTP, listed in Table 5.1 [79,120], depending on 
the dopant ion concentration. In contrast, the lattice contracts in the z-direction during ion 
exchange, creating a distorted unit cell [119]. 
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 a(x) (Å) b(y) (Å) c(z) (Å) 

KTP [79] 12.819 6.339 10.584 

RTP [120] 12.974 6.494 10.564 

Table 5.1: Lattice constants of the isomorphs KTP and RTP. 

The ion exchange process is initially rapid, and then slows down the further the process 
proceeds, as K+ ions are released into the nitrate melt and dopant ions incorporated in the crystal, 
as indicated by Fick’s second law (Eq. (5.4)). Moreover, the rate of exchange is orders of 
magnitude faster in the KTP isomorphs along the polar z-direction, compared to the non-polar  
x- and y-directions. This is an effect of the ionic mobility being order of magnitudes larger along 
the polar direction than in the non-polar directions, which is connected to the KTP crystals 
structure (see Section 4.4). Furthermore, the ion exchange rate in KTP, in a monovalent melt, is 
larger in the z- direction than the z+ direction. The polar nature of KTP results in a preferential 
movement of the K+ ion towards the high temperature, paraelectric, position [116]. Therefore, 
the rate of exchange is higher in the z- direction, and the resulting ion exchanged layer is slightly 
deeper as compared to exchange structures on the z+ surface.  

In the purely monovalent melt, the diffusion rate of the dopant ion in the KTP crystal, along 
the channels in the crystal structure, is strongly dependent on the sample conductivity, as it is 
largely dependent on the preexisting K+ vacancy concentration [113,121]. The Rb+ ion has a 
larger ionic radius and higher activation energy than the K+ ion, and it will therefore be much 
less mobile in the crystal structure. The in-diffused Rb+ ions ends up blocking the conduction 
channels in the crystalline structure close to the crystal surface and only diffuse a few µm into 
the crystal, preventing K+ ions situated deeper in the crystal to diffuse out. The concentration of 
Rb+ ions is at maximum at the surface, at the interface with the nitrate melt, and then decreases 
with depth in the bulk of the crystal. Typically, the thickness of the ion-exchanged layer varies 
between 1-10 µm.  

If not interrupted, the ion exchange process continues until a chemical equilibrium state has 
been established between the crystal and the melt. The concentration of Rb+ ions incorporated 
into the ion exchanged crystal is directly correlated to the ratio between the concentration of Rb+ 
ions and K+ ions in the melt [119]. In a pure RbNO3 melt the largest possible dopant 
concentration in the crystal at equilibrium is 65 % [119]. If the concentration of RbNO3 in the 
melt in decreased and KNO3 added to the melt the surface concentration of the dopant ion will be 
decreased, as demonstrated by Roelofs et al. [119]. In order to obtain concentrations of Rb+ ions 
larger than 65 % the KTP crystal needs to be ion exchanged in several subsequent RbNO3 
melts  [119].  

The concentration of the various atoms and ions in the crystal structure can be measured 
using a variety of techniques, such as energy dispersive X-ray spectroscopy, in a scanning 
electrode microscope (SEM-EDX) or by the electron microprobe technique (EMP). Bierlein et 
al. reported that the distribution of the in-diffused Rb+ ions follows a complementary error 
function when scanned from the surface into the bulk of the crystal along the polar direction in 
the sample [113]  
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(ݖ)ܥ  = ௦ܥ ∙ ݂ܿݎ݁ ቀ݀ݖቁ ,  
(5.9) 

where C is the Rb+ concentration, Cs the Rb+ surface concentration, and d the depth of the ion 
exchanged region.  

The refractive index increase normally scales with polarizability of the dopant ion, i.e., with 
the charge difference between the K+ ion and the dopant cation. The refractive index profile 
along the polar axis of such devices is normally derived by measurement of the guided modes in 
the structure, followed by calculations using the inverse WKB method [122]. In agreement with 
the dopant ion concentration, the refractive index profile induced by the ion exchange follows a 
complementary error function written on the form [113,116]: 

(ݖ)݊  = ݊௦ ∙ ݂ܿݎ݁ ቀ݀ݖቁ + ݊௄்௉ .  
(5.10) 

Here, ns is the magnitude of the surface refractive index and d the depth of the ion exchanged 
structure. It can be observed that the refractive index increase is proportional to the concentration 
of dopant ions given by Eq. (5.9). 

In similarity to what is reported for ion exchange in KTP, the isomorph RKTP also presents a 
refractive index profile of a complementary effort function when subject to a shallow ion 
exchange process, as shown in Fig. 5.1. For the waveguide structures, the refractive index profile 
can be correlated, one to one, to the distribution of the Rb+ ions in the sample [113].  
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Fig. 5.1: Refractive index profile of a planar waveguide in a RKTP crystal, exchanged in a pure 
RbNO3 melt at 345 ˚C for 90 min. 

5.2.2 Addition of Ba2+ to the RbNO3 melt 
To obtain ion exchange depths larger than tens of micrometers and to gain more accurate control 
of the diffusion rate, as well as thickness of the ion exchanged structure, a divalent ion can be 
added to the nitrate melt. Most commonly, addition of Ba2+ ions are used for this purpose. The 
Ba2+ ion is slightly smaller than the K+ ion and can therefore move more easily within the crystal 
lattice. The divalent Ba2+ ions and potassium vacancies have an electrostatic attraction which 
creates a bond between the cation and the vacancy. This bond does, however, occupy two 
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potassium sites, resulting in nearby K+ ions being repelled from the Ba2+ ion [123]. Addition of 
Ba2+ creates additional potassium vacancies to maintain the charge neutrality of the system, as 
seen in Eq.(5.8). These additional potassium vacancies are available for the monovalent dopant 
ions at the crystal surface. Therefore, the monovalent ion exchange rate is significantly increased 
and the impact of the sample conductivity is greatly reduced, resulting in an increased 
reproducibility of the process. Moreover, addition of divalent ions to the nitrate melt prevents the 
surface to saturate with monovalent dopant ions and keeps the conduction channels open, thereby 
allowing for the dopant ions to diffuse deeper into the crystal structure. 

However, it has been observed that addition of Ba2+ into the nitrate melt sometimes causes 
reversal of the spontaneous polarization during the ion exchange process [2]. The domain 
reversal from the ion exchange process has only been observed close to the z--surface, even if the 
ion-exchanged structure is considerably deeper, as shown in Fig. 5.2. This suggests the domain 
reversal occurs where the Rb+ ion concentration is the largest, and therefore creates the largest 
strain in the crystal lattice. The combined large Rb+ concentration and the relief of strain induced 
by the Ba2+ ion could, indeed, be a plausible explanation for this phenomenon. It has been 
suggested that the domain reversal is correlated to the charge difference between the Ba2+ ion 
and the K+ ions since the Ba2+ ion is more electronegative than the K+ ion and will pull the 
oxygen framework around itself as it exchanges for a K+ ion in the crystal framework [119,123]. 
This, in turn, causes local expansions of the framework in the surrounding regions, which helps 
in accommodating the larger Rb+ ion. At the same time, these local contractions are also 
considered to be mechanism for relieving strain in the ion-exchanged region. It is believed that 
this release of strain in the crystal structure is related to the domain reversal. Moreover, as 
previously mentioned, the Rb+ ions prefer the nine-fold K(2) site in the crystal lattice. Only at 
high concentrations, the Rb+ ions start occupying the K(1) site.  It is also possible for the Rb+ 
ions to fill the hole sites, h(1) and h(2), which both are larger than corresponding K-sites. These 
sites are readily available for the Rb+ ions, especially when ion exchange is performed from the 
z- surface. When the Rb+ ions are situated in the hole sites, the crystal structure resembles that of 
the inverted Ps. Nevertheless, the complete dynamics of the domain reversal during ion exchange 
remains to be fully understood and requires further research. It is also unclear whether domain 
reversal occurs during the ion exchange process, or when the crystal is removed from the melt 
and cooled down. 
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surface, a stop layer was fabricated. The conduction channels in the KTP crystal structure can be 
blocked, and hence ion exchanged prevented, either by a metal mask or by plasma etching of the 
surface  [113,124]. In this work mainly oxygen plasma etching has been used [PAPER I], which 
has previously not been reported. During the plasma etching, the crystal surface is bombarded by 
oxygen ions. It can be suggested that the plasma etching destroys the surface and subsurface 
crystal structure, and therefore blocks out- and in-diffusion of ions. This effect has also been 
reported using argon plasma etching [124]. However, the reason why ion plasma etching blocks 
the conduction channels remains unclear and further investigation is needed. 

The ion exchange process in RKTP was studied using 3 different nitrate melts with constant 
Ba2+ concentration and varying Rb+/K+ ratio: the “Rb-rich” composition (73 mol% RbNO3/ 7 
mol% Ba(NO3)2/ 20 mol% KNO3), the “half-Rb-K” composition (47 mol% RbNO3/7 mol% 
Ba(NO3)2/46 mol% KNO3) and the “Rb-poor” composition (20 mol% RbNO3/7 mol% 
Ba(NO3)2/73 mol% KNO3) listed in Table 5.2. The RKTP crystals were ion exchanged for 4 h at 
375 ˚C in one of three different melts. With the Ba2+ ion concentration being constant it can be 
assumed the amount of additional vacancies is the same for all three melts. The Rb+ ion surface 
concentration was estimated to 47 %, 13 % and 0.3 %, respectively, for the different 
compositions. 

Recipe Ion-exchange melt composition 
(molar %) 

Ionic 
conductivity
@ 8 kV/mm

(S/m) 

Coercive 
field 

(kV/mm) 

Estimated Rb 
surface 

concentration 
(%) 

Virgin -     1.15∙10-5 5.02 - 

Rb-poor 20 % RbNO3 / 73 % KNO3/ 7 % 
Ba(NO3)2 

2.83∙10-5 - 3.5 

Half-Rb-K 47 % RbNO3 / 46 % KNO3/ 7 % 
Ba(NO3)2 

2.13∙10-5 6.08 13 

Rb-rich 73 % RbNO3 / 20 % KNO3/ 7 % 
Ba(NO3)2 

5.88∙10-6 6.72 47 

Table 5.2: Melt compositions used for ion-exchange, σion, Ec and estimated surface concentration 
for each melt composition when ion-exchange was performed at 375 ˚C for 4 h [paper I]. 

The resulting coercive field and ionic conductivity was measured for each melt composition 
by monitoring the current as an electric field with 550 V/ms linear ramp-rate was applied to the 
crystal to obtain polarization reversal. Fig. 5.3 shows the current response of three RKTP ion 
exchanged crystals, as well as that of a virgin crystal, and the linearly ramped electric field. The 
ionic current in all RKTP crystals responds quadratically to the applied electric field, in 
agreement with the Mott-Gurney law [111]. The coercive field was measured at the peak of the 
switching field (see Section 4.6). The ionic conductivity was measured at 8 kV/mm applied 
electric field. 
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Fig. 5.3: Applied electric field (black, right axis) and corresponding current curves for a virgin 

(green) crystal, and for samples exchanged with the Rb-rich (red), half-Rb-K (purple) and the Rb-
poor (blue) melts, respectively [paper I]. 

The largest increase of the coercive field is obtained for the Rb-rich composition, with  
ΔEc = 1.7 kV/mm compared to the virgin sample. The ionic conductivity of this sample was 
decreased by 50 %. The half-Rb-K melt composition resulted in an increase of the coercive field 
by ΔEc = 1.06 kV/mm and an increase of the ionic conductivity by 85 %. The Rb-poor melt 
composition had so large increase of the ionic conductivity, that it was not possible to reverse the 
polarization in this sample. Several different pulse shapes, ramp rates and magnitudes of the 
electric field was applied to the crystal, but no polarization reversal could be observed for the 
crystal before reaching material breakdown. All data is summarized in Table 5.2. It can be 
observed that the Ba incorporation increases the ionic conductivity while the Rb decreases it, as 
expected. Similar results have been observed in KTP by Karlsson et al., Risk et al. and Roelofs 
et al. [75,78,119]. 

With the largest difference in the coercive field, and simultaneous decrease of the ionic 
conductivity, obtained for the Rb-rich melt, the impact of the ion exchange duration was studied 
for this melt. RKTP crystals were exchanged for varying durations between 4 h and 24 h, and the 
ionic conductivity and the coercive field were subsequently measured, as shown in Fig. 5.4.The 
coercive field increases 60 % (ΔEc ~ 3 kV/mm) for ion exchange durations longer than 8 h. The 
ionic conductivity simultaneously decreases by ~80 %. The magnitude of both the coercive field 
and the ionic conductivity saturates after ca 8 h, which is in agreement with results reported for 
KTP by Roelofs et al. [119]. 
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Fig. 5.4: Changes in Ec and σion with exchange time relative to virgin samples for the “Rb-rich” 

recipe [paper I]. 

The observed saturation indicates that the full area of the sample is saturated with the 
maximum dopant concentration. Once there is a critical amount of Rb+ ions in each of the 
conduction channels, the coercive field will reach its maximum magnitude and the ionic 
conductivity its minimum magnitude. Longer ion exchange durations will, indeed, result in 
thicker structures, but the magnitude of the electric response does not increase further.  

The concentration gradient of Rb+ and K+ along the polar axis was measured on the y-surface 
of the sample ion exchanged for 4 h using SEM-EDX. In Fig. 5.5 it can be observed that the Rb+ 
concentration is maximal at the z- surface of the RKTP crystal and decreases further in to the 
bulk. The maximum Rb+ concentration at the surface was measured to 43 %, in good agreement 
with the estimate of 47 %. The Rb+ distribution could be fitted to a complementary error 
function, erfc(z/d), with a diffusion depth, d = 22 µm. Although the depth of the ion exchange 
region is significantly deeper than what has been previously reported for KTP, the concentration 
of the Rb+ ions follow a complementary error function, in agreement previous reports of thinner 
ion exchanged structures in KTP. Moreover, it should be noted that in general the Ba2+ ions do 
not appear during SEM-EDX measurements as the Ba2+ ion typically are too light to be detected 
with this technique. 
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Additionally, patterning of the surface to be ion exchanged creates a discontinuity between 
the ion-exchanged regions and the masked regions. This discontinuity gives rise to enhanced 
electric field at the ion exchanged/masked region. This enhanced electric field might increase the 
rate of exchange in this region, and thereby further increase the exchange depth. Moreover, this 
discontinuity also forces the crystal structure in the interface to be somewhat distorted, as the ion 
exchanged region adjusts to accommodate the larger cation while masked regions remain 
unchanged. Under illumination in an optical microscope this effect can be observed, as seen in 
Fig. 5.6 (b). However, it remains an open question whether it is correlated to larger dopant ion 
concentrations or increased stress in the interface between ions exchanged regions and 
unchanged regions. 
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6 Periodic Poling of RKTP 
As mentioned earlier, a wide range of techniques have been developed for implementation of 
QPM structures for KTP family crystals, Today, the most commonly used technology is room 
temperature electric field poling  [75–78].  

To ensure efficient operation of the QPM device, the fabricated QPM grating needs to be 
uniform over the crystal aperture, and be of considerable length with minimal variations in the 
grating duty-cycle. Fabrication of such gratings is, however, not straight forward, since the final 
domain structure is dependent on a variety of interrelated parameters, such as crystal 
homogeneity and ionic conductivity, the properties of the applied electric field, ambient 
temperature etc. 

In this chapter, periodic electric field poling of RKTP is presented. A novel periodic poling 
technique based on coercive field engineering is introduced to facilitate fabrication of fine-pitch 
QPM gratings. This technique is exploited for fabrication of high-quality bulk sub-µm QPM 
gratings. 

6.1 Electric field poling with metal electrodes 

6.1.1 Sample preparation 
The RKTP crystals used in this work are commercial flux grown z-cut wafers. The as-purchased 
wafers are approximately 35 × 35 × 1 mm3 in size along the x-, y- and z-directions.  First, the 
ionic conductivity is mapped for each individual wafer. Typically, the ionic conductivity in the 
wafers varies along the y-direction of the wafer, while remaining essentially constant along the 
x-direction (see section 4.4). Therefore, to increase the poling yield, each wafer is cut into pieces 
which are typically 11 × 6 × 1 mm3 in size in the x-, y- and z-directions, to obtain crystals with as 
homogenous ionic conductivity as possible, and each crystal is then treated separately. 
Moreover, the anisotropy of the domain wall velocity in KTP isomorphs is exploited by aligning 
the grating vector in the x-direction and the electrode stripes along the y-direction. After cutting, 
the x-surfaces of each crystal are polished to an optical finish to allow for laser excitation. 

 Electrodes for the poling are fabricated on the z--surface using lithographic techniques. For 
KTP isomorphs, it is preferred to fabricate the poling electrodes on the z--surface, to exploit the 
higher domain nucleation rate compared to the z+-surface. Standard contact lithography is used to 
create a periodic photoresist pattern of desired periodicity above 2 µm. For periodicities below  
2 µm a different lithographic system is used, which will be discussed later on in this chapter. 
Electrodes are then fabricated on the crystal surface through evaporation of an Al film over the 
patterned surface to ensure electric contact in the openings of the photo resist. The photo resist 
layer is kept to act as an insulator where domain reversal is not desired during the poling process. 
The sample preparation is illustrated in Fig. 6.1. 
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structures [126]. A symmetric triangular electric field pulse provides a well-controlled poling 
process, as the majority of the domains nucleate close to the peak of the electric field pulse. The 
nucleated domain tips then propagates to the z+ surface, resulting in a homogenous grating.  

The formation of domain gratings in KTP isomorphs occurs in the millisecond time scale. 
Therefore, it is reasonable that the applied electric field has a pulse length in the same order of 
magnitude, typically 2.5-5 ms. Similar results were observed by Canalias et al. in KTP  [127].  

 If the domains growth and merging of domains occur under the isolating photoresist grating, 
so that a too large area is being poled, the sample is considered overpoled. This typically occurs 
when the magnitude of the applied electric field is too large or the pulse length is too long. In 
contrast, if the domains do not fully merge under the electrodes and the domain grating is not 
fully formed, the sample is deemed as underpoled. In this case, the magnitude of the applied 
electric field is too low or the pulse length too short.  

Formation of inverted domains outside of the metal electrodes, under the isolating 
photoresist, is the most common problem during the poling process. The electric field is 
enhanced at the edges of each electrode, as shown in Fig. 6.6. The fringing fields at the edge of 
the electrode also has a tangential component, Ex, in contrast to straight under the electrode 
where only the normal component, Ez, of the electric field is present [19]. The normal component 
of the electric field, Ez, is responsible for the switching and nucleation of new domains. In the 
polarization switching process, the depolarization energy is minimized by compensation charges 
supplied by an external voltage source. Due to the transverse field component, Ex, at the 
electrode edges some of the supplied charges can move under the insulated area, and cause 
nucleation of new domains in this region, thereby broadening the domains. The width of the 
domain broadening, Δa, under the isolated area is correlated to the switching time τsw and the 
crystal conductivity, σ, as [19]. 

ܽ߂  ∝ ߬௦௪ߪ.  
(6.1) 

In KTP isomorphs, the domain broadening can be mitigated by a decreased ionic 
conductivity  [75] and/or by using short pulses during the poling process [18].  

Moreover, the domain broadening can to some extent be compensated for by decreasing the 
width of the electrodes, i.e., by patterning with a duty-cycle D < 50 %. For considerably large 
periods, e.g. Λ ≈ 30 µm, it is not necessary to decrease the duty-cycle of the electrodes, as the 
impact of the fringing fields is considerably small. However, as the period decreases, the impact 
of the fringing fields on the final domain structure is increased. Therefore, the duty-cycle of the 
electrode needs to be decreased to prevent an erroneous duty-cycle of the final ferroelectric 
domain grating; e.g. for a grating period Λ = 2 µm the duty-cycle of the electrode was D = 15 % 
to enable formation of a domain grating with a final duty-cycle of approximately 50 %. 
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Here, η is the normalized conversion efficiency, PSHG the generated SHG power, PF the pump 
power of the fundamental beam, L the grating length and m the QPM order. High quality domain 
gratings in KTP isomorphs typically have a normalized conversion efficiency of  
η = 1 - 1.8 %W-1cm-1. The normalized conversion efficiency provides a quantitative measure of 
the quality of fabricated device while being a completely non-destructive method to evaluate the 
QPM device. 

6.2 Electric field poling with a coercive field grating 
Electric field poling with metal electrodes is the standard technique to fabricate ferroelectric 
domain gratings in KTP isomorphs. However, domain broadening associated with the fringing 
fields from the metal electrodes severely limits the lateral control of the domain growth as the 
grating period is decreased. An alternative route to gain accurate control of the domain formation 
is to periodically engineer the coercive field of the crystal, to select the regions where domain 
reversal is wanted. This allows for poling using planar electrodes, thereby mitigating the domain 
broadening associated with the fringing fields. 

A coercive field grating can be fabricated in the RKTP crystal bulk using an ion exchange 
process to periodically alter the chemical composition of the crystal, and thereby alter its 
coercive field. In this work, additional Rb-doping was used to engineer the coercive field of the 
RKTP crystals for subsequent periodic poling. A similar technique was suggested by Risk et al. 
for fabrication of QPM structures in KTP waveguides [78], but the technology has never been 
used in RKTP nor been studied for implementation of bulk gratings. 

6.2.1 Fabrication of the coercive field grating 
The first steps of sample preparation are equal to those described in Section 6.1.1, as illustrated 
in Fig. 6.9. After depositing a photoresist grating, the photoresist pattern, as well as the z+ 
surface, is exposed to oxygen plasma etching. The oxygen plasma creates a stop layer that 
prevents in- and out-diffusion of ions in the selected regions, thereby making it possible to select 
the areas for ion exchange. The photoresist is subsequently cleaned off the z- surface. Thereafter 
ion exchange is performed in a Rb-rich melt for the desired period of time to create the coercive 
field grating. Care should be taken when choosing the melt composition and the duration of the 
process. The concentration of Rb+ ions exchanging the K+ ions in the crystal structure increases 
as the ion exchange process proceeds, thereby inducing stress in the crystal. The increased stress 
causes the crystal to be more fragile or even break during the ion exchange process. Moreover, as 
showed in 5.3, the effect of the ion exchange process on the coercive field and the ion 
conductivity saturates after approximately 8 h. Therefore, ion exchange processes with durations 
longer than 8 h are not necessary. The melt composition should be chosen so that the ion 
exchanged regions experience a simultaneous increase of the coercive field and decrease of the 
ionic conductivity. The domain reversal during the periodic poling will start in the regions with 
lower coercive field, i.e. in the areas which are not ion exchanged. As discussed in Section 5.3, a 
simultaneous increase of the coercive field and decrease of the ionic conductivity can be 
achieved by ion exchange in a Rb-rich melt. 
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domain expansion by 0.4 µm was measured while a contraction by 0.6 µm was seen on the 
former z+ surface.  

Domain walls deviating from 180˚ will be charged and hence have a larger domain wall 
energy. Moreover, domain walls parallel to the (100) plane are energetically favorable since they 
do not cut the helical chains  [131]. Therefore, the domain walls along the x-axis will move to 
minimize their angle with the (100) plane. Domains with a head-to-head orientation will merge 
during the annealing process to obtain straighter domain walls. 

In contrast, there is no evidence that minimizing the angle with the (010) plane decreases the 
domain wall energy. Nevertheless, contraction of tens of µm is observed along the y-direction, 
which is explained by the domain wall velocity being approximately 30 times higher along the  
y-axis relative to the x-axis [132]. This indicates that the energy barrier for domain wall 
movement along this direction is significantly lower. This is in agreement with studies in near-
stoichiometric lithium tantalate (SLT) [133,134] and near-stoichiometric lithium niobate 
(SLN) [135] where the difference in domain wall stability is attributed to the lower energy of the 
walls in the y-direction of the material. 

Domains with sharp and rough edges have high domain wall energy, as the two rightmost 
domains in Fig. 6.15 (b). These walls have high energy and are therefore very mobile. These 
walls have larger than normal contraction or smoothening (the merged domain of Fig. 6.15 (b)). 
The higher propagating speed of these very rough domain walls can be explained by the 
competition between the formation of new domain steps by the wall and the growth of the steps, 
as previously explained for lithium tantalate [136]. 

Fig. 6.16 (a) shows the domain displacement along the y-axis on the z+ surface as a function 
of domain period. As evident, the displacement of the domain walls increases in a non-linear 
fashion as the periodicity of the domain grating decreases. For the crystal with Λ = 36.4 µm 
period only smoothening of the sharp domain wall edges was observed, in agreement with the 
observations by Masiello [129]. In the crystal with Λ = 2 µm, 250 µm domain wall displacement 
was observed, and the SARKTP crystals were completely switched back. Moreover, crystals 
with shorter periods also displayed more severe movement along the x-axis. In many cases 
individual domains merged into larger domains during the annealing process. Fig. 6.16 (b) shows 
merging in a domain grating with 2 µm periodicity. 
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7 Optical Applications of PPRKTP 
In this chapter, the optical performance of the devices fabricated throughout this work is 
discussed. It the first part, PPRPKTP crystals fabricated using conventional electric field poling 
with metal electrodes have been used to generate high power blue light through SHG, as well as 
to fabricate laser-written waveguides for QPM SHG operation. In the second part, PPRKTP 
crystals fabricated using coercive field engineering through ion exchange have been used to 
explore the possibility to integrate QPM devices with refractive index gratings. Finally, the high-
quality sub-µm PPRKTP crystals were evaluated as QPM MOPO devices in both the picosecond 
and nanosecond regime, thereby demonstrating MOPO processes never before realized. 

7.1 High-power blue generation in PPRKTP 
With the constant increase of available laser power, it is necessary to explore the material 
limitations of the nonlinear crystals. This is particularly relevant for new periodically poled 
materials, such as RKTP, where no data was available prior to this work. PPKTP and PPRKTP 
are considered to be the material of choice for low and medium power visible applications. To 
quantify the performance of the crystals a number of studies have been performed in the green 
spectral range [14,90,138,139], while only a few studies have been reported in the blue spectrum 
due to the lack of high power laser sources around 900 nm. Blue lasers have numerous 
applications in spectroscopy, underwater communication and material processing, which is why 
it is relevant to study the performance in this spectral range. Moreover, most studies are 
performed in KTP which has lower resistance to optical damage than the isomorph RKTP.  

The performance of a PPRTP with a QPM grating period of Λ = 6.03 µm is studied, for 
phase matching 946 nm, thereby generating 473 nm by SHG. The dimension of the PPRKTP 
crystal was 10 × 5 × 1 mm3 (x × y × z), with a QPM grating length of 8 mm. The PPRKTP was 
poled using conventional electric field poling and the resulting domain structure can be seen in  
Fig. 6.7. Neither of the crystal end faces was anti-reflection coated. 

Prior to the high power tests, the sample was evaluated using a continuous wave, tunable 
Ti:Sapphire laser. The effective nonlinearity was measured to be deff = 9.5 pm/V and the 
temperature acceptance bandwidth was 3 ˚C. Moreover, the linear absorption was measured to 
8.2 %/cm at the second harmonic wavelength 473 nm, which is in agreement with earlier 
reported data [140]. 

The RKTP crystal was pumped using an in-house built Nd:YAG single-crystal fiber 
oscillator operating at 946 nm, which was used as the fundamental source in the experiments. 
The laser could be operated both in continuous wave and Q-switched mode [141]. In continuous 
wave, it delivered up to 11.5 W of laser output power with a near-Gaussian intensity profile  
(M² < 1.3) and a spectral width < 0.04 nm. In the Q-switched mode, it delivered 10 W at 18 kHz 
with pulse widths of 45 ns and a similar beam profile to the cw operation.  

The experimental setup is illustrated in Fig. 7.1. The fundamental power incident on the 
PPRKTP crystal was controlled using a polarizer-waveplate arrangement. Furthermore, the 
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7.3 Optical properties of ion exchanged PPRKTP 
In the previous chapter, the advantages of using a coercive field grating formed by ion exchange 
for fabrication of QPM devices with short periods in RKTP were discussed. For devices with 
sub-µm periods, the formation of the coercive field grating by ion exchange in the crystal bulk 
was proven to be a crucial step in the fabrication process. 

It is well established that the ion exchange process increases the refractive index in the 
exchanged region and, if the ion exchanged region is deep enough, the refractive in the crystal 
bulk can possibly be engineered, and thus devices with a simultaneous linear and nonlinear 
grating can be obtained. For this purpose, it is essential to study the impact of the ion exchange 
process on the optical performance of the fabricated QPM devices.    

To do this, a representative PPRKTP crystal with period Λ = 3.16 µm exchanged for 4 h in a 
Rb-rich melt at 375 °C was evaluated in a single pass SHG experiment with a tunable, 
continuous wave, z-polarized Ti:Sapphire laser.  

Close to the patterned surface, in the ion exchanged region, the fundamental power was 
distributed in a wide range of waveguide modes, resulting in low power SHG over a broad 
wavelength range. In this case, each fundamental mode experiences its own refractive index and 
corresponding phase matching wavelength, all together leading to low conversion efficiency in 
this region.  

Below the ion exchanged region (i.e. ~70 µm) the conversion was uniform and efficient over 
the full aperture of the PPRKTP crystal. 3.4 mW of blue light was generated with 520 mW of 
fundamental power at λ = 795 nm, corresponding to a normalized conversion efficiency of  
1.7 %W-1cm-1 and an estimate of deff  = 10 pm/V. This is close to optimal deff for KTP, and 
similar performance to what has been obtained for conventional poling using metal electrodes in 
RKTP  [88]. 

The impact of the ion exchange process manifests itself as a refractive index gradient along 
the polar axis throughout the full thickness of the crystal, and not only in the ion exchanged 
region. This effect was evaluated by translating the crystal in steps of 50 µm along the polar 
direction, well below the ion exchanged region, while keeping the temperature of the PPRKTP 
constant and measuring the QPM wavelength of the fundamental beam, shown in Fig. 7.14 (a). 
The phase matched wavelength changes approximately linearly with distance from the patterned 
surface along the polar direction. The step-like appearance of the curve is an artifact from the 
limited resolution (0.05 nm) of the optical spectrum analyzer. The total change of the 
fundamental QPM wavelength is Δλ = 0.21 nm. It corresponds to a total refractive index change 
Δnf - ΔnSHG = 4·10-4 over the crystal thickness.  

The change in QPM wavelength was further verified by measuring the temperature tuning 
curves of at two positions in the crystal bulk, at 100 µm and 600 µm below the patterned surface, 
while the pump wavelength was fixed at λ = 784.98 nm. The tuning curves are shown in  
Fig. 7.14 (b).  Both curves have a full width half maximum of ΔTFWHM = 1.9 ˚C, confirming a 
high quality and homogeneity of the QPM grating over the full crystal depth. The QPM 
condition shifts towards higher temperatures as the distance to the patterned surface increases. 
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the secondary, cascaded MOPO process. This discrepancy can be attributed to a third MOPO 
process pumped by the secondary signal. The third MOPO generates a counterpropagating signal 
at 2762 nm and a forward-propagating idler at 5.9 µm, which is mainly absorbed by the material. 
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Fig. 7.16: The measured conversion efficiency of the primary signal (blue), primary signal and 

idler(red) and primary and secondary signal and idler (orange) along with the pump 
depletion(black) of the MOPO process [paper II]. 

The effective nonlinear coefficient, deff, can be estimated from the threshold of the primary 
MOPO using Eq. (2.45) as discussed in Section 2.7 . With the effective QPM grating length of 
6.4 mm the estimated nonlinear coefficient becomes deff = 9.77 pm/V, close to the value for a 
perfect QPM grating is KTP [150]. 

One of the unique features of the MOPO, resulting from the counter-propagating geometry of 
the interaction, is that the phase modulation of the pump is coherently transferred to the forward-
propagating parametric wave, while the counter-propagating wave retains a narrow 
bandwidth [23,151]. This implies that the positive frequency chirp of the pump will be 
transferred to s1, and, in turn, to s2. Fig. 7.17 compares the spectra of (a) the pump, (b) s1, and 
(c) s2 at different pump energies. Note that due to the linear chirp of the pump spectrum, the 
pump spectrum is not depleted uniformly. Depletion occurs first on the short wavelength side of 
the pump spectrum, here corresponding to the trailing edge of the pulse, reflecting the time delay 
required to establish the distributed feedback. As the pump energy is increased, the time delay is 
reduced, and longer wavelengths in the pulse spectrum also get converted efficiently. For 
instance, at the pump energy of 203 µJ, the remaining undepleted part of the pump has FWHM 
length of 93 ps, which is comparable to the cumulative time of 80 ps, which is required for the 
pump to travel through the QPM structure and the idler to travel back to the beginning of the 
structure. At the pump energy of 76 µJ, when only the primary MOPO process is active, the 
generated s1 pulse length can be estimated from the depleted part of the pump which has FWHM 
length of 141 ps. The measured FWHM frequency bandwidth of s1 at this pump energy is 2.8 
THz, which results in the s1 chirp rate of 125 mrad/ps2, close to the chirp rate of 124.5 mrad/ps2 
expected from the calculations based on the formula (Eq. (2.48)) by Strömqvist et al. [151].  
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At the pump energy of 131 µJ, the s1 spectrum broadens on the low frequency side, 
reflecting increased pump depletion at the lower frequency side of the spectrum. At the same 
time, at this pump energy, the secondary MOPO process is already active and starts depleting s1 
on the high-frequency side of the spectrum. This interplay of the two processes is even more 
clearly visible at the pump energy of 203 µJ, where the s1 FWHM spectral width is 2.55 THz, 
i.e. actually narrower that the one obtained at the pump energy of 76 µJ. Here, the energy from 
the s1 high-frequency part of the spectrum with the corresponding phase modulation was 
transferred to the s2 centered at 1897 nm. This depletion on the high-frequency side of the s1 
spectrum is clearly visible in the inset of the Fig. 5(c). The measured FWHM spectral bandwidth 
of the s2 was 0.863 THz, which for the chirp transfer rate from s1 to s2, 2 1/s sω ω∂ ∂  of 
1.005 [151], would give the s2 FWHM pulse length of about 43 ps.  
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Fig. 7.17: Spectra of (a) the pump, (b) s1 and (c) s2 at different pump energies, shown in the figures 

legends [paper II].  Inset in (c) – Normalized s1 spectra at different pump energies, showing s1 
depletion.  

The spectra of the backward-propagating waves generated in the cascaded MOPO processes 
measured at the pump energy of 203 µJ are shown in Fig. 7.18. The spectral resolution of the 
measurement was 0.1 nm, which corresponds to the frequency resolution of about 4 GHz in the 
spectral range of the idlers. As expected, the wavelengths of the idlers generated in the two 
cascaded MOPO processes, i1 and i2, change rather little as compared to the large steps in the 
central wavelengths of s1 and s2. This can be attributed the counter-propagating wavelength 
being mainly dependent on the QPM period. The idler wave i1 is centered at 2763.3 nm, and i2 
is centered at 2739.7 nm. The measured FWHM spectral-width of i1 and i2 were 17 GHz and 10 
GHz, respectively. From the MOPO signal- and idler-chirp ratios the expected bandwidth can be 
estimated. In the first MOPO process (s1, i1) of the cascade the theoretical ratio is 84, while for 
the second process (s2, i2), the ratio is substantially larger and equal to 201. This indicates that 
the bandwidth of the i2 is expected to be narrower than that of i1, as indeed is the case. From the 
spectral bandwidth of the corresponding signals, the expected i1 and i2 bandwidths were 
estimated to be 33 GHz and 4.3 GHz, respectively. It should be noted however, that the pulse-
length of the s2-i2 pair of the second cascade is of the order of 40 ps, which would give the 
transform-limited bandwidth of about 10 GHz, in accordance with the measured value. The 
spectrum around i1 at the same time consists of two clearly resolved peaks. The higher amplitude 
peak is indeed idler i1 from the primary MOPO process, while the other one with the FWHM of 
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28 GHz can be attributed to the third, cascaded MOPO pumped by the s2, i.e. the signal from the 
secondary, cascaded MOPO. The third cascade is indeed expected in a PPRKTP with a 755 nm 
period, with a wavelength of 5.9 µm for the forward-propagating idler, i3, and a wavelength of 
2.762 µm for the backward-propagating signal, s3. We could not observe the forward-
propagating wave owing to large absorption of the material at this wavelength. The wavelength 
of the s3 is on the other hand within the bandwidth of i1 so it can be expected that the third 
MOPO cascade is helped by cross-seeding from the idler of the first MOPO cascade. Another 
strong indication of the presence of the third cascade is the discrepancy of the measured pump 
depletion and the efficiency of the two first MOPO cascades at the pump energies above 140 µJ 
(see Fig. 7.17). It was verified that this discrepancy is not caused by the polariton scattering [28], 
once again attesting to the high quality of the QPM structure. Moreover, the idler spectrum 
below this pump energy does not contain the peak attributable to the third MOPO process.  
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Fig. 7.18: Measured spectrum of the primary and secondary idlers. The smaller peak close to the 

primary idler (i1) corresponds to the signal of a cascaded, third MOPO process [paper II]. 

7.4.2 Highly efficient MOPO pumped by narrowband nanosecond pulses 
The measured performance of the PPRKTP crystal in the ps-regime proves the very high quality 
and homogeneity of the fabricated QPM devices in this work. These sub-µm PPRKTP crystals 
can therefore be used in combination with well-established single-frequency nanosecond pump 
laser be used to generate millijoule-level narrowband pulses in the 1.5 µm - 3.4 µm spectral 
region. Such light source is of large interest for applications where spectral purity, energy and 
stability are of importance, e.g. remote sensing, spectroscopy, airborne and space-based LIDAR 
and quantum communications. 

Therefore, the performance of a representative sub-µm PPRKTP crystal was evaluated as 
MOPO device in the nanosecond regime. The uncoated crystal was pumped by an injection-
seeded, diode-pumped, single-longitudinal mode Q-switched Nd:YAG laser that provides 80 mJ, 
10 ns-long linearly polarized pulses at 1064.4 nm at a repetition rate of 100 Hz. The pump 
energy was controlled by a half-waveplate and polarizer arrangement. The pump beam was 
polarized along the crystal z-axis and propagated parallel to the crystal x-axis. The crystal 
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It should be stressed that the MOPO operation with 10 ns pumping was possible only due to 
quality of the QPM structure throughout the full length of 7 mm. This gives sufficiently large 
margin for reaching the counter-propagating parametric oscillation threshold and safe operation 
below optical damage threshold. Increasing further the length of the QPM structure to 10 mm 
would decrease the MOPO threshold by two times. Moreover, the spectral width of the generated 
parametric waves is indeed orders of magnitude narrower than one would obtain from co-
propagating interaction. In order to generate transform-limited nanosecond pulses, however, the 
MOPO should be pumped with well collimated fundamental transversal mode beams. 
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8 Summary 
In this work, ferroelectric domain gratings with periods ranging from 755 nm to 9.22 µm were 
fabricated in RKTP crystals and, their performance has been assessed in a wide range of QPM 
applications. Samples fabricated with conventional electric-field poling have been used to 
investigate high-power blue SHG. Moreover, these PPRKTP crystals have also been used for 
demonstration of laser-written waveguides with excellent performance and with very little 
changes of the deff of the material.  

The performance of the PPRKTP crystals at high powers was investigated in the blue spectral 
region. We obtained a record-high output power of 795 mW of continuous-wave blue light at 
473 nm, and up to 2 W average power of pulsed light. However, the generated output powers 
were not stable over time. In agreement with what has been reported at in the green spectral 
region, the linear absorption of the visible light in RKTP results in thermal dephasing of the 
QPM device, significantly affecting the long-term operation. The thermal dephasing was the 
limiting factor for continuous wave operation as well as for the pulsed operation of the QPM 
device.  

For the first time, laser-written waveguides were demonstrated in PPRKTP, using a double-
track writing method. The waveguides had low losses of 1.6 dB for visible light and 2.2 dB for 
near-IR light. A normalized SHG conversion efficiency of η = 4.6 %W-1cm-2 was demonstrated, 
by generating a record-high output of 76 mW of blue light. Although slight thermal dephasing 
was observed at 1.6 W of pump power, no catastrophic damage or deterioration of the 
fundamental and second harmonic modes could be observed. Moreover, the double-track, laser-
written waveguides showed a superior mode overlap compared to conventional ion-exchanged 
waveguides. 

The stability of the domain structures was investigated at elevated temperatures. This 
investigation was important from a fundamental point of view, but it also important from a 
device point of view since it could lead to an alternative way for fabricating QPM gratings by the 
direct-growth method. The observed movement of charged domain walls at high temperatures 
was anisotropic along the x- and y-directions. Along the y-axis domain wall motion is in the 
order of tens of micrometers. In the x-direction, it results in either three orders of magnitude 
smaller domain wall displacement or in domain merging, depending on the initial domain 
configuration. Moreover, gratings are increasingly unstable with a decreasing period, due to the 
increased domain-wall area to domain volume ratio. 

Fabrication of dense ferroelectric domain gratings is challenging because of the required 
accurate control of the lateral domain-growth. Therefore, a novel patterning technique was 
developed in this work, based on coercive-field engineering inside the crystal bulk through an 
ion-exchange process. This novel patterning method allows for electric-field poling using planar 
electrodes, thereby alleviating the domain broadening associated with the ionic conductivity of 
RKTP and the metal electrodes normally used for periodic poling. The ion exchange process was 
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optimized to engineer coercive-field gratings to enhance the control of the lateral domain growth 
during the poling process. 

The impact of the ion exchange on the optical properties of the PPRKTP was investigated by 
employing SHG in crystals with a period of Λ = 3.16 µm and with deep exchanged regions. 
While it is well known that the refractive index is increased in the ion exchanged regions, it was 
found that the ion exchange process itself induces a stress in the bulk of the crystal, resulting in a 
refractive index gradient along the polar axis in the bulk of the crystal, over the full crystal 
thickness. This gradient effectively alters the QPM condition along the z-axis of the PPRKTP, 
resulting in a possibility for tuning of the QPM wavelength.  

This novel poling technique was further developed for fabrication of sub-µm domain gratings 
in RKTP. The domain gratings were of high quality and homogenous over the complete 
electrode area, and extended over the full crystal thickness. PFM studies of the non-polar  
y-surface confirmed that the domain broadening was limited to the depth of the coercive field 
grating and that the domains then propagated over the full 1 mm crystal thickness without further 
broadening. This proves the importance of the ion exchange process for fabrication of dense 
domain gratings in RKTP. In fact, this is the first time high-quality, sub-µm domain gratings 
have been demonstrated in RKTP. 

The sub-µm PPRKTP crystals were used for the first MOPO demonstrations in RKTP. The 
MOPO was pumped using both picosecond and nanosecond long pump pulses. In the picosecond 
regime, the high-quality of the PPRKTP crystals enabled the demonstration of a record-low 
threshold and the first realization of a cascaded MOPO process, where the generated forward-
propagating signal acted as a pump source for the cascaded MOPO. The cascaded process had a 
total conversion efficiency of 51 %.   

Also, the first MOPO pumped using nanosecond-long pulses provided by a Q-switched laser 
operating in a single longitudinal mode was demonstrated. The MOPO generated 1.95 mJ of 
signal energy in the mid-IR spectral region, with a combined signal-and-idler conversion 
efficiency of 47 % homogenously over the crystal aperture. Both the forward propagating signal 
and the backward propagating idler were narrowband, with bandwidths of tens of GHz. The high 
conversion efficiency and favorable spectral properties make this device an attractive, single-
pass source for generating near- and mid-infrared transform limited mJ-level pulses in a simple, 
compact and robust arrangement. 

8.1 Outlook 
The possibility of fabricating sub-µm QPM devices of high quality makes it possible to explore 
the full potential of nonlinear optics involving counter-propagating waves, which previously 
remained a largely unexplored field due to the lack of high-quality QPM devices. The novel 
poling technology developed in this work provides a method to fabricate QPM devices with 
increasingly shorter periods, with high reproducibility. As the period of the QPM device is 
further reduced, novel nonlinear processes could be experimentally demonstrated, such as a 
MOPO with counterpropagating signal (Λ ~ 500 nm), or counterpropagating optical amplifiers in 
which both the signal and the idler are counterpropagating with respect to the pump wave 
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 (Λ ~ 250 nm). Furthermore, there are a wide range of other applications where the MOPO 
processes can be exploited, for instance as ultrabright biphoton sources, frequency translators of 
photon quantum states and to provide narrowband seeding for subsequent parametric processes. 

Moreover, the developed patterning technology based on ion exchange could potentially be 
used for fabrication of Volume Bragg Gratings (VBG) in KTP isomorphs. Fabrication of deep 
refractive index gratings, with sub-µm periods, could enable fabrication of VBGs reflective in 
the near- and mid-IR spectral regions. Such VBGs could for example be used for demonstration 
of monolithic OPOs were the cavity and the QPM grating are fabricated in the same crystal.  
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