
A Manual for the Cyber Security Modeling Language
Hannes Holm, Mathias Ekstedt, Teodor Sommestad, Matus Korman

Department of Industrial Information and Control Systems, Royal Institute of Technology, 100 44
Stockholm, Sweden

Abstract
The Cyber Security Modeling Language (CySeMoL) is an attack graph tool that can be used
to estimate the cyber security of enterprise architectures. CySeMoL includes theory on how
attacks and defenses relate quantitatively; thus, users must only model their assets and how
these are connected in order to enable calculations. This report functions as a manual to
facilitate practical usage and understanding of CySeMoL.

 Date: 2014-05-27

Changes from CySeMoL v2.0 to v2.1
(1) Softened coloring scheme of calculation results
Motivation. This change is introduced due to comfort.

Effect. The change impacts how calculation results are visualized in an object model.

(2) Added possibility to input injective evidence in object models, for faster
calculation using rejection sampling and Metropolis-Hastings sampling
Motivation. Previously, providing much evidence in models, lead to slow calculations when using
rejection and Metropolis-Hastings sampling. To address the performance problem, a new concept of
injective evidence was introduced to CySeMoL.

Function. Unlike the original (classical) concept of evidence, injective evidence unconditionally overrides
the derivation of an attribute’s value, for which the evidence is provided. Hence, and unlike for the
classical evidence, a whole sample across the model is not rejected if a derived attribute value lacks
consistency with the provided injective evidence.

Usage. Similarly to inputting the classical evidence, the user needs to select a defense mechanism (or an
attack step) of an asset in a model. Subsequently, the property browser, usually to the right from the
main modeling control, will include properties named Functioning_EvidenceToInject and
Functioning_InjectEvidence (for attack steps, they would be named Likelihood_EvidenceToInject and
Likelihood_InjectEvidence, respectively). The latter property, InjectEvidence, indicates whether injective
evidence should be used. The former property, EvidenceToInject, indicates what specific evidence should
be injected. Both properties contain sub-property called Evidence, which contains an OCL expression that
has to yield true, false or no value (=> false)). For example, in order to set positive injective evidence for
that a specific installation of an operating system is fully patched, the user needs to select that defense
mechanism (i.e., HasAllPatches on the operating system), and set its properties
Functioning_EvidenceToInject.Evidence to true, and Functioning_InjectEvidence.Evidence to true.
Similarly, in order to set negative injective evidence for that a security awareness program is conducted
for some people in the architecture, the user needs to select that security awareness program’s defense
mechanism called TrainingConducted, and set its properties Functioning_EvidenceToInject.Evidence to
false, and Functioning_InjectEvidence.Evidence to true.

Note. Although injective evidence is not valid to use in all cases, it is safe to use in cases of direct
derivation of value. For example, one can use injective evidence instead of the classical one for the
availability of defense mechanisms that one ultimately knows are present (or absent), or where one can
specify an ultimately trusted probability distribution of their availability. Injective evidence should not be
used on any attributes that are being calculated based on the value of another attribute in the object
model, because doing so could make the calculation result erroneous. It is generally invalid (unsafe) to
use injective evidence for attack steps.

 Date: 2014-05-27

(3) Correction of default availability of defense mechanisms (50%-50% now) –
for defense mechanisms that do not override this, and those for which no
injective evidence is provided
Motivation. In previous version of CySeMoL, the default generic availability of defense mechanisms was
set to true, which disallowed simulating full uncertainty of the availability of defense mechanisms that
do not further override the value by their own derivation, which affects a subset of defense mechanisms
in CySeMoL. Full uncertainty presupposes that there is an equal (50%-50%) chance of the availability
being true as false, which the default generic derivation.

Effect. Improvement in calculation.

Changes from CySemoL v2.1 to v2.2
(1) Correction (bugfix) of evaluation of attack step GuessCredentialsOnline in
asset PasswordAccount
Motivation. An incorrect result was observed when trying different configurations of defenses of a
PasswordAuthenticationMechanism (PAM) connected to an AccessControlPoint (ACP), which was further
connected to a PasswordAccount (PA). The configuration {BackoffTechnique=true;
DefaultPasswordsRemoved=true; Functioning=true; HashedRepository=true;
HashedRepositorySalted=false; ProactivePasswordChecker=false} at PAM led to the probability of
reaching PA’s GuessCredentialsOnline equal to 0.6, but setting PAM’s DefaultPasswordChecker to true
(from false, which is an obvious security improvement), PA’s GuessCredentialsOnline could be reached
with the probability of 1 (which is an absurd result). Instead, the probability should have been 0,
according to the manual and underlying theory.

Effect. Correction of calculation of the attack step GuessCredentialsOnline at the asset PasswordAccount.

A Manual for the Cyber Security Modeling Language

Hannes Holm, Mathias Ekstedt, Teodor Sommestad, Matus Korman
Department of Industrial Information and Control Systems, Royal Institute of Technology, 100 44

Stockholm, Sweden

Abstract

The Cyber Security Modeling Language (CySeMoL) is an attack graph tool
that can be used to estimate the cyber security of enterprise architectures. Cy-
SeMoL includes theory on how attacks and defenses relate quantitatively; thus,
users must only model their assets and how these are connected in order to enable
calculations. This report functions as a manual to facilitate practical usage and
understanding of CySeMoL.

Keywords: Cyber security, security metrics, attack graphs, SCADA systems

1. Introduction

Information Technology (IT) is today a cornerstone of next to all business
as IT applications handle everything from management of critical data to con-
trol of physical processes such as the power grid. Considerable effort is thus
spent by both researchers and practitioners to preserve IT systems in a reliable
and predictable state. This is however a difficult topic to manage as a modern IT
architecture typically is composed of a large number of systems, processes and
individuals connected to form a complex system-of-systems (hereafter refered to
simply as system). Threats towards the state of the system arise from errors made
both during the development and the maintenance of employed IT.

The presence of individuals determined to exploit these errors to conduct
unauthorized activity in the system adds another layer to the complexity of the
problem. To estimate the vulnerability of a system, an enormous amount of fac-
tors need be considered. It is not sufficient to address all vulnerabilities within it -
there is also a need to understand how these vulnerabilities relate.

Email address: mathiase@ics.kth.se (Mathias Ekstedt)

Date of revision May 28, 2014

Consequently, it is a difficult task for enterprise decision makers to effectively
manage the cyber security of their system. A common means of estimating the
cyber security of their system in practice is to consult experts, e.g., network pene-
tration testers. While consulting experts certainly is valuable, resulting estimates
come with three significant delimitations: they are only valid for 1) the time that
they were carried out, 2) the parts of the enterprise architecture that were studied
by the expert, and 3) the competence of the consulted expert. These delimitations
are especially problematic given the dynamic nature of enterprise IT systems and
the lack of resources available for analyses.

Enterprise decision makers are thus in need of tools that can help estimate
the cyber security of their system in an easy-to-understand fashion. While there
are various tools available for this purpose, most suffer from being either too
vague, and thus ultimately subjective [1] (e.g., Common Criteria [2], OCTAVE
[3], CORAS [4] and the model by Breu et al. [5]), or too limited in terms of scope
(e.g., MulVAL [6, 7], NetSPA [8] or TVA-tool [9]). With the shortcomings of
existing tools in mind, researchers at the department of Industrial information and
Control Systems (ICS) at the Royal Institute of Technology (KTH) in Stockholm,
Sweden, developed a new tool denoted the Cyber Security Modeling Language
(CySeMoL) [10].

CySeMoL is a modeling framework and calculation engine for estimating the
cyber security of enterprise-level system architectures [10]. CySeMoL includes
theory on how attacks and defenses relate quantitatively; thus, security expertise is
not required from its users. Users must only model their system architecture (e.g.,
services, operating systems, networks, and personnel) and specify their character-
istics (e.g., if an operating system has a host firewall enabled) in order to enable
calculations.

The purpose of this report is to describe the content of CySeMoL. In other
words, it functions as a manual to facilitate practical usage and understanding of
CySeMoL.

The remainder of this report is structured as follows: Section 2 describes the
Predictive, Probabilistic Architecture Modeling Framework (P2AMF), the frame-
work used to construct attack graphs and calculate vulnerability estimates. Section
3 describes the software tool that CySeMoL has been implemented in and how it is
used. Section 4 describes the overall logical of CySeMoL. Section 5 - Section 28
constitute the core of the report and describe the many concepts of CySeMoL in
detail. Finally, Section 29 provides information about screencasts of CySeMoL.

2

2. P2AMF: Predictive, Probabilistic Architecture Modeling Framework

To enable modeling and calculation of the vulnerability of a system-of-
systems, there is need of a framework that dictates how attacks and defenses
relate. For this purpose, CySeMoL employs the Predictive, Probabilistic Archi-
tecture Modeling Framework (P2AMF) [11] - this framework is briefly described
in the remainder of the present section. The CySeMoL implementation of P2AMF
is described in Section 4.1.

P2AMF is an extension of the Object Constraint Language (OCL) [12] for
probabilistic assessment and prediction of system properties. The main feature of
P2AMF is its ability to express uncertainties of objects, relations and attributes
in Unified Modeling Language (UML) models and perform probabilistic assess-
ments incorporating these uncertainties. A typical usage of P2AMF would be to
create a model for predicting some phenomenon, e.g., the availability of a certain
node.

In P2AMF, two kinds of uncertainty are introduced. First, attributes may be
stochastic. When attributes are instantiated, their values are expressed as prob-
ability distributions. Second, the existence of objects and relationships may be
uncertain. It may be the case that one no longer knows whether a specific node
is still in service, or not. This is a case of object existence uncertainty. Such
uncertainty is specified using an existence attribute E that is mandatory for all
classes (here class refers to the typical object-oriented meaning of the word). For
instance, the probability P that the node instance Database server exists might
be P = P(Database server.E) = 0.8 (see Figure 1).

In other words, there is an 80% likelihood that Database server still exists.
It might also be uncertain whether Database server is still assigned to a specific
infrastructure function, i.e., whether there is a connection between the server and
the infrastructure function. Similarly, relationship uncertainty is specified with
an existence attribute E on the relationships. The probabilistic aspects are con-
sidered in a Monte-Carlo fashion: First, the user specifies a desired number of
samples. Thereafter, a set of object models corresponding to the chosen sample
size is created. The stochastic variables of the class model are instantiated with in-
stance values according to their respective designated distribution. This includes
the existence of classes and relationships, which are instantiated on a frequency
depicted by the corresponding probability distributions. Then, each P2AMF state-
ment is transformed into a proper OCL statement and can be evaluated by the
OCL parser. Once the evaluation of all samples has been performed, results are
aggregated and visualized according to the design of the class model.

3

Figure 1: Example P2AMF class model and object model.

3. The Enterprise Architecture Analysis Tool

CySeMoL has been implemented in a software tool, the Enterprise Architec-
ture Analysis Tool (EAAT) that enables a user-friendly interace for both mod-
eling and analysis. General information on how to use EAAT can be found at
www.ics.kth.se/eaat/manuals; this section describes the specifics of EAAT that
concern CySeMoL.

3.1. Creation of an object model
After opening up the CySeMoL class model in the EAAT Object Modeler

(OM), the user is greeted by the concepts and templates given in Figure 2. In
CySeMoL, a concept refers to an attack step, defense or asset. While these can
be modeled manually by a user, it is not recommended to do so. Rather, a user of
CySeMoL should depict templates that relate attack steps and defenses to assets
in a meaningful and automatic fashion (cf. Section 4.1). An example template is
OperatingSystem, which consists of one asset, seven defenses and nine attack
steps (cf. Section 6); the connections between these are already pre-defined in
the OperatingSystem template. To model a template, there is simply a need to
drag-and-drop it from the list of templates to the view canvas in the center of the
screen.

Different templates can be connected in varied means to depict different types
of relations. For instance, an application server can either be a terminal that allows
users to interface core functionality of an operating system (e.g., a Secure Shell

4

Figure 2: EAAT templates for CySeMoL.

(SSH)) or not (e.g., a Hypertext Transfer Protocol (HTTP) server). When a user
connects two templates (by holding ALT and left-clicking), a dialogue such as
shown in Figure 3 will appear. This dialogue denotes what connections that are
possible for the two templates. The user should then choose the connection type
that conforms to his or her context. If no connections are possible, no dialogue
will be shown. Similarly, if only a single connection is possible, this will be

5

depicted automatically without any dialogue.

Figure 3: EAAT connection dialogue.

In EAAT, the same object can be visualized in different views. Here, a view
correspond to a certain collection of objects and relations that should be visible to
the user. A view can be customized to show only that which is relevant to a user
through the view properties tab (cf. Figure 4)

As shown in Figure 5-6, the states of defenses and attack steps can be man-
ually inputed by a user. This is however not recommended for attack steps as
the states of these should be calculated by CySeMoL. Furthermore, it is recom-
mended, but not required, for defenses as they either have default-values defined
in CySeMoL or are dependent on the availability of other defenses in an object
model (cf. Section 4).

3.2. Executing calculations
To conduct calculations on vulnerability severity, there is first a need to de-

fine the calculation parameters of an object model. To reach the calculation con-
figuration dialogue, the user should first left-click “Configurations” within the
“P2AMF” tab (cf. Figure 7).

From within this dialogue, the user should select the sampling method denoted
“FORWARD EVIDENCE INJECTION SAMPLING” (cf. Figure 8). Then, the

6

Figure 4: EAAT view properties.

user should select the number of samples that conforms to the time and accuracy
required for the analysis. Loosely speaking, more samples means more precise
results, but also more time required for the calculation to complete (cf. Section
4.1 for a detailed description). For instance, in Figure 9 a total of 100 samples
is chosen (a rather low number). The remainder of the attributes should keep the
same values as given in Figure 9.

When a user is satisfied with an object model and has set the configuration
parameters for it, all that is left to do to generate analysis results is to press the
button “Calculate” (cf. Figure 10).

When calculations are complete results are presented to the user by color-
coding all templates and attack steps on a scale from 0%: green - 50%: yellow
- 100%: red. Here, probability refers to the likelihood that one or more profes-
sional penetration testers are successful with the attack step in the object model
within the time designated for the attack. Probabilities for templates are derived
based on the estimates for the attack steps associated with it and the currently
chosen color profile. An example color profile is “Mean”, which denotes that the
color is derived based on the mean likelihood value for all relevant attack steps;
another profile is “Access”, which only considers attack steps that result in access

7

Figure 5: EAAT properties of attack steps and defenses.

of assets (e.g., an operating system). The “Mean” color profile is exemplified in
Figure 11 (before calculation) and Figure 12 (after calculation). As can be seen
in Figure 11, the attack step FindUnknownEntryPoint, that an attacker is able to
find a network zone entrypoint unknown to the system administrator, is approxi-
mately 69% likely under the very basic conditions of the object model (what these
conditions are, and how they relate is the main locus of this report). The overall
coloring scheme is visualized in Figure 13.

4. The Cyber Security Modeling Language

4.1. P2AMF logic of CySeMoL
This section describes the specifics of CySeMoL in terms of P2AMF logic.

The entire code-base, which consists of 5210 lines of code, is available for down-
load1.

1www.ics.kth.se/eaat/downloads

8

Figure 6: EAAT changing the state of an attack step or defense.

There are four types of concepts in CySeMoL: Attacker, AttackStep,
Defense and Asset (see Figure 15). Each AttackStep and Defense is con-
nected to an Asset that it compromises or protects. For instance, the AttackStep
FindUnknownService and the Defense AntiMalware are connected to the
Asset OperatingSystem. The template corresponding to the asset NetworkZone
can be seen in Figure 14 (both from a meta model view and from an object
model view). In an object model, the user is not required to specify these rela-
tions - the user simply depicts and connects templates related to Assets, and any
AttackStep or Defense associated to these are depicted automatically.

Connections between AttackSteps are then derived automatically depending
on how the user has connected Assets in an object model. For example, if a
user has connected an ApplicationServer to a NetworkZone, then there will
be a derived connection from the AttackStep NetworkZone.ObtainAddress

to the AttackStep ApplicationServer.ConnectTo. Any AttackStep that an
Attacker is connected to is considered entry-point for the attack.

OCL operations are used to examine what AttackSteps that are reachable
(through any means) by one or more Attackers from one or more source
AttackSteps, for each P2AMF sample. CySeMoL thus describes how often

9

Figure 7: EAAT calculation configuration.

Attackers are able to reach different AttackSteps in an object model. The
primary OCL operation for this purpose is nextAttackWave, a recursive function
that attempts to visit each AttackStep in an object model (the array visited

keeps track of the ones that have been visited). To visit some AttackSteps,
there is a need to be able to visit multiple of their parents; this is managed by
unlockedSteps, which keeps track of AttackSteps that have been unlocked
during the execution of nextAttackWave. unlockedSteps is required as an
AttackStep might require an attacker to successfully visit multiple parent at-
tack steps, which in turn might not be possible based on a single model traversal.
getAttackSteps and getPaths serve to check whether it is possible to visit the
AttackSteps connected to one the currently examined; this is examined by call-
ing isAccessible. In other words, the Bayesian logic of AttackSteps in Cy-
SeMoL is stored in isAccessible through Bernoulli distributions and IF/ELSE
statements. This is exemplified by the fictive attack graph in Figure 16. In this
simple example, the likelihood of successful arbitrary code execution is 21% given
a scenario where the attacker is able to connect to a vulnerable software that is

10

Figure 8: EAAT sampling methods.

protected by a network intrusion detection system and an anti-malware solution.
A small code example of isAccessible can be seen for

SocialEngineerCredentials in Algorithm 1. SocialEngineerCredentials
is considered visited if two conditions are fulfilled: 1) an AttackStep

Interface must be connected to it and part of visited, and 2) the attacker
must be able to decieve the individual. If the individual has undergone awareness
training (i.e., AwarenessProgram.Functioning = TRUE), then the variable
awarenessprogramTrue must be TRUE; else, awarenessprogramFalse

must be TRUE. Similarly, the Bayesian logic of each Defense is stored
in isFunctioning. For both AttackStep and Defense, the operation
defenseAvailable checks whether any Defense relevant for the Bayesian logic
in isAccessible and isFunctioning is available.

AttackStep.Likelihood denotes the probability of an attacker being able to
successfully utilize a particular AttackStep; it is the fraction of samples where
that particular AttackStep could be visited. Defense.Functioning denotes the
likelihood that a defense mechanism such as AwarenessProgram is available.
Attacker.Time denotes how much time that the attacker has available for the
attack.

11

Figure 9: EAAT samples

let awarenessprogramTrue : Real = bernoulli(exp(0.0715,Attacker.Time))
let awarenessprogramFalse : Real = bernoulli(exp(0.241,Attacker.Time))
if visited−>intersection(self.interface)−>notEmpty() then

if self.person.awarenessprogram.functioning then
awarenessprogramTrue

else
awarenessprogramFalse

end
else

False
end

Algorithm 1: SocialEngineerCredentials.isAccessible

4.2. CySeMoL metamodel
An overview of the CySeMoL metamodel can be seen in Figure 17. Here,

each “box” refers to a template that couples assets to defenses and attack steps
(cf. Section 3.1 and Section 4.1). In total, CySeMoL consists of 23 assets,
59 attack steps, 58 defenses and 51 relationships between assets. Section 5 -

12

Figure 10: EAAT run calculation.

Figure 11: Example model before calculation.

Section 28 describe the templates of CySeMoL in depth. As templates from

13

Figure 12: Example model after calculation.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 13: CySeMoL coloring calculation coloring scheme (percentages refer to likelihood of
attack success).

a user perspective are the same as assets, but with coupled attack steps and
defenses, they are later in this report also referred to simply as assets. One
template, Attacker, is not present in Figure 17 for pedagogical reasons; this

14

Template

Figure 14: The template corresponding to NetworkZone (above meta model viewpoint, below
object model viewpoint).

template can be connected to any attack step in CySeMoL. For the same rea-
son, AttackStep.Likelihood and Defense.Functioning are not shown in
Figure 17. When a user changes the state of an attack step or defense, it is
AttackStep.Likelihood or Defense.Functioning that are concerned.

With the exception of Attacker, all templates are described in the same
means: First, some overall information about the template is outlined. Second,
all possible connections for the template are described using both text and a fig-
ure. Third, the attack steps and defenses of each template are described through
a table. Fourth, the attack steps and defenses corresponding to the template are
described in depth. Each attack step and defense is also described in a predictable
manner - first, overall information about it is presented, then, the quantitative logic
corresponding to it is described.

Furthermore, frequently within these sections, mathematical denota-
tions for distributions are mentioned. For instance, in Algorithm 1
“bernoulli(exp(0.0715,Attacker.Time))” is denoted. Here, Attacker.Time

refers to the number of workdays that an attacker is able to spend (cf. Section
5). exp(0.0715,Attacker.Time) denotes that the probability corresponding to a
cumulative density function for an exponential distribution with λ = 0.0715 and a
specific Attacker.Time is concerned. bernoulli() is used to convert this number
into a probability that EAAT and P2AMF are able to parse (a bernoulli distribu-

15

Figure 15: Attacker, AttackStep, Defense and Asset. OCL operations are given in the lower
box of each class; attributes are given in the upper box of each concept.

tion concerns two states; in the case of CySeMoL, TRUE and FALSE). In total,
CySeMoL employ’s four different distribution functions:

• Exponential (exp)

• Gamma (gam)

• Log-normal (ln)

• Pareto (par)

16

Attack and defense graphs

Establish

connection

Exploit

Execute arbitrary code

Access as root

Network intrusion

detection system

Anti-malware

T

T

T

T

?

Vulnerability exist

T

Exploit T T T T F F F F

Anti-malware T T F F T T F F

Network intrusion detection T F T F T F T F

Execute code (TRUE) 0.21 0.32 0.41 0.7 0 0 0 0

Bayesian

networks

Figure 16: An example attack graph.

In addition to these distribution functions, CySeMoL also employ’s linear in-
terpolation. This is denoted as “linear”.

5. Attacker

In CySeMoL, an Attacker constitutes an individual who is determined to
compromise assets of a depicted object model. Naturally, the characteristics of
this attacker will influence what attacks that are possible, and how likely different
activities are to succeed [13]. In CySeMoL, it is assumed that the attacker is a pro-
fessional penetration tester with access to publicly available tools and techniques.
Consequently, the attack steps and estimates within CySeMoL need to be viewed
in the light of this attacker profile.

An Attacker can be connected to any class that has an attack step; connecting
the attacker to an attack step within a class denotes the source attack vector. This
particular attack step always evaluates to TRUE, regardless of the properties of
the object model.

The Attacker has one attribute - Time. This specifies how many workdays an
attacker has to spend on each attack step for an object model. Computationally,

17

ZoneManagementProcess

NetworkZone

DNSsec

PortSecurity

Protocol

FreshnessIndicator

CryptographicAuthentication

CryptographicObufuscation

Dataflow

Disrupt

Replay

Eavesdrop

ManInTheMiddle

ProduceRequest

ProduceResponse

DataStore

ReadData

WriteData

DeleteData

NetworkInterface

ARPSpoof

DenialOfService

StaticARPTables

IDSsensor

ApplicationServer

OperatingSystem

Access

DenialOfService

FindCriticalVulnerability

ConnectToService

ExecutionOfArbitaryCode

HasAllSecurityPatches

StaticARPTables

HostFirewall

AddressSpaceLayoutRandomization

NonExecutableMemory

AntiMalwareSolution

USBAutoRunDisabled

Person

SecurityAwarenessProgram

PasswordAccount

GuessAuthenticationCodesOffline

SocialEngineerAuthenticationCode

GuessAuthenticationCodeOnline

PasswordAuthentication

Mechanism

AllowedDF

Protocol

Read

Write

Owner

AwarenessProgram

HIDS

Owner

Server

Client

ApplicationClient

ACLsubject

CryptographicObufuscation

IncidentHandlingProcedures

HostHardeningProcedures

FormalPatchAndUpdatingProcess

RegularLogReviews

RegularSecurityAudits

FormalChangeManagentProcess

ManagedByAntiMalwareSolution

USBAutorunDisabledInDomain

IPS

DPI

ExtractPasswordRepository

BackoffTechnique

AutomatedPolicyEnforcer

HashedRepository

HashedRepositorySalted

DefaultPasswordsRemoved

Access

DenialOfService

FindCriticalVulnerability

ExecutionOfArbitaryCode

Access

DenialOfService

FindCriticalVulnerability

ExecutionOfArbitaryCodeInUnknownServices

AccessThroughPortableMedia

AccessTroughUI

FindUnknownService

ARPspoof

ExecuteMaliciousPayload

Firewall

Firewall

AccessControlPoint

Bypass

Functioning

Tuned

Updated

DNSspoof

DenialOfService

FindUnknownEntryPoint

ObtainOwnAddress

TerminalService

Functioning

KnownRuleSet

Functioning

Functioning

HasAllSecurityPatches

HasAllSecurityPatches
Product

Zone

WebApplicationFirewall

Functioning
MonitoredByOperator
TunedUsingBlackBoxTool
TunedByExperiencedProfessional
TunedWithSignificantManualEffort

MonitoredBy

WebServer

AccessControl

AccessControl

OperatingSystem

Owner

Client Server

AuthenticationMechanism

NetworkVulnerabilityScanner

Functioning

PhysicalZone

Access

PhysicalZone

UntrustedZone

Owner

Product

SoftwareProduct

GetProductInformation

ObtainSourceCode

ObtainBinaryCode

DevelopZeroDayExploit

FindPublicPatchableCriticalVulnerability

FindPublicUnpatchableCriticalVulnerability

FindPublicExploitForPublicPatchableCriticalVulnerability

FindPublicExploitForPublicUnpatchableCriticalVulnerability

DevelopExploitForPublicPatchableCriticalVulnerability

DevelopExploitForPublicUnpatchableCriticalVulnerability

CheckedWithStaticCodeAnalysis

HasBeenScrutinized

OnlyUsesSafeLanguages

SourceCodeClosed

BinaryCodeSecret

HasPublicExploitForPublicPatchableCriticalVulnerability

HasPublicExploitForPublicUnpatchableCriticalVulnerability

DaysSinceReleaseOfSoftware

WebApplication

TypeSafeAPI
DeveloperSecurityTraining
BlackBoxTesting
StaticCodeAnalysis
HasPublicCommandInjection
HasPublicCrossSiteScripting
HasPublicRemoteFileInclusion
HasPublicSQLInjection

FindPublicCommandInjection
FindPublicCrossSiteScripting
FindPublicRemoteFileInclusion
FindPublicSQLInjection
DiscoverVulnerability
ExploitCommandInjection
ExploitCrossSiteScripting
ExploitRemoteFileInclusion
ExploitSQLInjection

UnauthenticatedScanOfZone

AuthenticatedScanOfZone

OSNotpartOfScanPolicy

SocialZone

PhysicalZone

PartOfSocialZone

Product

OperatingSystem

Zone

Zone

Proxy

UnauthenticatedScanOfOS

AuthenticatedScanOfOS

TrustedZone

AccessControl

ManagementProcess

ProxyGateway

AccessControl

PerimeterIDS

AccessControl

AccessControl

AccessControl

AccessControl

RemoteAccessOf

Proxy

Figure 17: An overview of the CySeMoL metamodel.

the probability of each attack step in an object model being TRUE is evaluated
with respect to the number of work days specified for any modeled attackers. For
instance, the likelihood of successful social engineering of a security-trained in-
dividual is estimated according to: bernoulli(exp(0.0715,Attacker.Time)) (cf.
Section 25 for details). For this particular attack step, if an attacker has two work-
days to spend, the likelihood of success is 13%; given ten days, the likelihood is

18

51%.

6. Operating System

An OperatingSystem (OS) is a collection of software that manages computer
hardware resources and provides common services for computer programs. Cy-
SeMoL makes a clear distinction between software programs and OSs. Software
programs are often tightly coupled to an operating system; for instance, Windows
environments are tightly coupled to a service message block (SMB) service that,
for example, enables file sharing and remote printing. However, in CySeMoL
any optional software program that come with operating systems should be rep-
resented through the classes ApplicationClient and ApplicationServer,
and only “mandatory” core functionality (e.g. the TCP/IP stack implementa-
tion) should be seen as a part of the OperatingSystem class. Example OSs
include Windows 8, Mac OS X and VMWare VSphere 5. Any OS running
inside a hypervizor such as VMWare VSphere 5 would also be considered an
OperatingSystem.

An OperatingSystem can be connected to ten different assets in thirteen dif-
ferent means (see Figure 18). An ApplicationClient or ApplicationServer
should be connected to an OS that enables its execution. Here, an
ApplicationServer can act as either a terminal to its core services (e.g., tel-
net, SSH, VNC or RDP) or expose only application-specific functionality (e.g.,
an HTTP or FTP server). An OS must be connected to a SoftwareProduct;
this denotes what type of OS that is concerned. For instance, an enterprise might
have 400 computers that run the same type of configuration, e.g., Windows XP
SP2; however, the actual patch level of these computers likely differ somewhat.
This enterprise would model a single SoftwareProduct (Windows XP SP2) and
connect this to 400 OperatingSystems.

Connection to a NetworkZone denotes that the OS has an IP address on this
network. Connection to PhysicalZone means that an attacker has physical ac-
cess to the machine running the OS. An AccessControlPoint depicts the means
of logical access of the content of an OS. DataStore is some kind of database
located on the OS. An OS can be protected by one or more Intrusion Detection
Systems (IDSSensors) or Intrusion Prevention Systems (IPSs). Finally, an OS
can be connected to a NetworkVulnerabilityScanner (e.g., Nessus or Qualys
Guard), denoting either that the OS is analyzed through an authenticated scan, an
unauthenticated scan, or not at all (the latter is used when a NetworkZone is part
of a scanning policy, but a specific system on the zone should not be).

19

Figure 18: An overview of the connections for OperatingSystem.

There are seven defenses and nine attack steps corresponding to OSs; these are
shown in Table 1 and desribed in depth in the following sections. The references
in Table 1 describe the rationale behind these attributes, e.g., regarding choice of
quantitative data.

6.1. Defenses
6.1.1. Has All Security Patches

HasAllSecurityPatches denotes whether the OS has had all software se-
curity patches implemented [37]. For instance, the Microsoft security up-
date KB-2861561 address vulnerabilities in Windows Kernel-Mode drivers that
could allow remote code execution in various Windows OSs. If a security
patch such as KB-2861561 exist, but is not installed on a vulnerable OS, then
HasAllSecurityPatches should be FALSE.

The default state of the defense is specified as follows: If an OS is connected
to a NetworkZone, that in turn is connected to a ZoneManagementProcess,

20

Table 1: Attack steps and defenses of the OperatingSystem class.

Attribute Rationale

Defense
HasAllSecurityPatches [14, 15]
StaticARPTables [16]
HostFirewall [17]
AddressSpaceLayoutRandomization [18]
NonExecutableMemory [19]
AntiMalwareSolution [20]
USBAutoRunDisabled [21]
Attack step
Access [22]
DenialOfService [23, 24]
FindUnknownService [25, 26, 27]
FindCriticalVulnerability [28]
ExecutionOfArbitraryCodeinUnknownService [29, 30]
AccessThroughPortableMedia [31]
AccessThroughUI [22]
ARPSpoof [16]
ExecuteMaliciousPayload [32, 33, 34, 35, 36]

21

then the default state of HasAllSecurityPatches is dependent on the state of
ZoneManagementProcess.FormalPatchAndUpdatingProcess (PM)(the data
for this is gathered from [14]). If an OS, or a NetworkZone connected to the
OS, is connected to a NetworkVulnerabilityScanner (and the OS is depicted
to be part of the scan), then the default state of the defense is dependent on the
type of scan that is designated (authenticated ANS or unauthenticated UNS; ac-
cording to the data presented in [15]). If none of these scenarios apply, the default
state of HasAllSecurityPatches is FALSE. This logic is summarized in Table
2.

Table 2: Defenses affecting likelihood of HasAllSecurityPatches.

PM ANS UNS Data

TRUE TRUE TRUE bernoulli(0.79)
TRUE TRUE FALSE bernoulli(0.79)
TRUE FALSE TRUE bernoulli(0.79)
TRUE FALSE FALSE bernoulli(0.79)
FALSE TRUE TRUE bernoulli(0.637)
FALSE TRUE FALSE bernoulli(0.637)
FALSE FALSE TRUE bernoulli(0.3028)
FALSE FALSE FALSE 0

6.1.2. Static ARP Tables
StaticARPTables involves if the OS has functioning static Address Resolu-

tion Protocol (ARP) tables. The ARP tables map logical IP addresses to physical
MAC addresses in the broadcast domain of the operating system [16].

The default state of this defense is FALSE; it is not dependent on the existence
of any other defense.

6.1.3. Host Firewall
A HostFirewall [17], for instance, the Windows firewall, is as-

sumed to allow all DataFlows from/to the OS and any software em-
ployed on it. It serves to block services that are unknown to the modeler
(OperatingSystem.FindUnknownService).

The default state of this defense is TRUE; it is not dependent on the existence
of any other defense.

22

6.1.4. Address Space Layout Randomization
The purpose of AddressSpaceLayoutRandomization (ASLR) is to intro-

duce randomness into memory addresses used by a given software module [18].
This will make a class of exploit techniques fail with a quantifiable probability and
also allow their detection since failed attempts will most likely crash the attacked
task. ASLR has for instance been available for Windows OSs since Windows
Vista.

The default state of this defense is TRUE as most modern OSs have it imple-
mented; it is not dependent on the existence of any other defense.

6.1.5. Non Executable Memory
NonExecutableMemory is a feature which if implemented and functional is

intended to prevent an application or service from executing code from a non-
executable memory region [19]. If the OS has non-executable memory imple-
mented and working there should thus be a smaller likelihood of success for a
certain type of exploits (buffer overflow attacks). An example of this defense
mechanism is Data Execution Prevention (DEP), which is available for Microsoft
OS from Windows XP SP2 and onward.

The default state of this defense is TRUE as most modern OSs and hardware
support it; it is not dependent on the existence of any other defense.

6.1.6. Anti Malware Solution
AntiMalwareSolution, or anti-virus, is software used to prevent, detect, re-

move and report malicious software (i.e., malware) [20]. Many exploits involve
injection of some type of software code; an AntiMalwareSolution has a chance
to detect and prevent such code.

If an OS is connected to a NetworkZone, that in turn is connected to
a ZoneManagementProcess, and ZoneManagementProcess.ManagedByAnti-

MalwareSolution is TRUE, then the default state of AntiMalwareSolution is
TRUE; it is FALSE in other cases.

6.1.7. USB AutoRun Disabled
USBAutoRunDisabled involves whether the autorun functionality (that is en-

abled per default in most OSs) has been disabled. If it is disabled it will increase
the difficulty of propagation for USB-based malware [21, 38, 39].

If an OS is connected to a NetworkZone, that in turn is connected to a
ZoneManagementProcess, then the default state of USBAutoRunDisabled is

23

TRUE if ZoneManagementProcess.USBAutoRunDisabledInDomain is TRUE;
it is FALSE in other cases.

6.2. Attack Steps
6.2.1. Access

OperatingSystem.Access denotes whether an attacker is able
to manage the content of an OS as an administrator of it. In Cy-
SeMoL, there are two means of accomplishing this: either the ac-
tor succeeds with OperatingSystem.ExecuteMaliciousPayload or
OperatingSystem.AccessThroughUI. The prior involves installation of
malware that enables remote access of the OS; the latter involves bypassing the
PasswordAuthenticationMechanism for the AccessControlPoint of the OS
or an ApplicationServer that acts as a terminal to it.

If any of these attack steps are TRUE, this attack step is TRUE; else, it is
FALSE.

6.2.2. Denial of Service
This attack step groups all attacks that target the OS and attempts to cause

denial of service (DoS) [23, 24]. In CySeMoL, there are essentially two
means of causing DoS for an OS: either by OperatingSystem.Access or
OperatingSystem.ExecuteMaliciousPayload.

If any of these attack steps are TRUE, this attack step is TRUE; else, it is
FALSE.

6.2.3. Find Unknown Service
If the attacker can find services unknown to the network administrator running

on a host it is possible to attack these to gain privileges on it. As unknown services
are likely to have more security holes (e.g. as they are not prospect of patch
management) they are severe security issues.

Three variables influence OperatingSystem.FindUnknownService:
whether the OS has a HostFirewall enabled (HF), whether network ad-
ministrators have performed hardening, e.g., removing unnecessary services
(ZoneManagementProcess.HostHardeningProcedures, HHP), and whether
network administrators have defined a formal change management process
(ZoneManagementProcess.FormalChangeManagementProcess, FCMP). The
estimates corresponding to the likelihood of success for this attack step under
these circumstances are described in Table 3; these data come from [25, 26, 27].

24

Table 3: Defenses affecting likelihood of FindUnknownService.

HHP FCMP HF Data

TRUE TRUE TRUE bernoulli(0.595)
TRUE FALSE TRUE bernoulli(0.83)
FALSE TRUE TRUE bernoulli(0.69)
FALSE FALSE TRUE bernoulli(0.899)
TRUE TRUE FALSE bernoulli(0.69)
TRUE FALSE FALSE bernoulli(0.878)
FALSE TRUE FALSE bernoulli(0.69)
FALSE FALSE FALSE bernoulli(0.925)

6.2.4. Find Critical Vulnerability
This attack step involves whether an attacker is able to acquire a critical

exploit for a binary service running on the OS [28]. For this to be success-
ful, there is a need for the attacker to find an unknown service on the OS
(OperatingSystem.FindUnknownService), and an exploit for this service. Cy-
SeMoL accounts for five different means for attackers to obtain exploits (all lo-
cated in SoftwareProduct):

1. a public exploit could be released for a patchable vulnerability,
2. an exploit could be developed by the attacker for a patchable vulnerability,
3. a public exploit could be released for a non-patchable vulnerability,
4. an exploit could be developed by the attacker for a non-patchable vulnera-

bility,
5. an exploit could be developed by the attacker for a zero-day vulnerability

discovered by the attacker.

In CySeMoL, these correspond to:

1. FindPublicExploitForPatchableCriticalVulnerability,
2. DevelopExploitForPatchableCriticalVulnerability,
3. FindPublicExploitForUnpatchableCriticalVulnerability,
4. DevelopExploitForUnpatchableCriticalVulnerability,
5. DevelopZeroDayExploit.

What type of exploit that is viable depends on whether the OS
HasAllSecurityPatches or not (if this is TRUE, then only 3-5 would yield
TRUE).

25

6.2.5. Execution of Arbitrary Code in Unknown Service
If an attacker is able to FindCriticalVulnerability, then it can attempt to

utilize it in order to redirect the control-flow of the application to some code of
the attackers choosing [40].

Three defenses affect the likelihood of ExecutionOfArbitraryCode-

inUnknownService: AddressSpaceLayoutRandomization (ASLR),
NonExecutableMemory (NX) and IntrusionPreventionSystems (IPS).
How these affect the likelihood of this attack step being true can be seen in
Table 4. These data come from [29, 30].

Table 4: Defenses affecting likelihood of ExecutionOfArbitraryCodeinUnknownService.

ASLR NX IPS Data

TRUE TRUE TRUE bernoulli(exp(0.025,Attacker.Time))
TRUE FALSE TRUE bernoulli(exp(0.288,Attacker.Time))
FALSE TRUE TRUE bernoulli(exp(0.046,Attacker.Time))
FALSE FALSE TRUE bernoulli(exp(0.266,Attacker.Time))
TRUE TRUE FALSE bernoulli(exp(0.103,Attacker.Time))
TRUE FALSE FALSE bernoulli(exp(0.155,Attacker.Time))
FALSE TRUE FALSE bernoulli(exp(0.108,Attacker.Time))
FALSE FALSE FALSE bernoulli(exp(0.379,Attacker.Time))

6.2.6. Access Through Portable Media
This variable specifies the possibility of gaining access to an operating sys-

tem through the use of portable media, for example through auto run exploits
or specifically crafted files. In CySeMoL, AccessThroughPortableMedia is
FALSE if USBAutoRunDisabled is TRUE. It is also dependent on whether
the user of the OS is part of a SocialZone with other users that have
had their computers compromised and might SharePortableMedia. If not,
then this attack step is FALSE. If USBAutoRunDisabled is FALSE, and
SocialZone.SharePortableMedia is TRUE, then it has the following distri-
bution: bernoulli(exp(0.164,Attacker.Time)). This data comes from [31].

6.2.7. Access Through UI
This attack step involves whether an attacker is able to gain access to

an OS through some login interface of it. In CySeMoL, this attack step

26

is TRUE if the attacker is able to physically reach the machine and by-
pass its local authentication mechanism (PhysicalZone.Access = TRUE and
ApplicationControlPoint.Bypass = TRUE), or of the attacker is able to by-
pass some remote access mechanism to the OS (e.g., SSH or RDP) (Application-
Server.Access = TRUE (connected to the OS as a Termninal)); it is FALSE in
other cases.

6.2.8. ARP spoof
This attribute states if it is possible to poison ARP tables in the operating

system. If the operating system’s ARP tables are poisoned this can be used to
intercept traffic going from the external zone to one of the internal zones [16].

The network interface will use its ARP tables to identify what MAC address an
incoming IP package should be forwarded to. If the attacker can compromise the
ARP table the threat agent can make these IP packages end up at any other MAC
address (e.g. the attacker’s own). The threat agent could then change the data
before forwarding it to the address designated by the sender. A static ARP table
(StaticARPTables) is a preventive countermeasure against this attack step; if this
defense is TRUE, ARPSpoof is FALSE. If static ARP tables are not functioning
the attacker can accomplish this attack from any network zone through which the
corresponding network interface routes traffic [16] (i.e., it is TRUE).

6.2.9. Execute Malicious Payload
This attack step concerns whether a threat agent is able to execute some piece

of malicious software on a system [41]. In CySeMoL, this can be accomplished
through eight methods:

1. If the OS has a client application that has been compromised by successful
arbitrary code execution.

2. If the OS has a server application that is running a web application which
has been exploited by a Command Injection attack.

3. If the OS has a server application that is running a web application which
has been exploited by a Remote File Inclusion attack.

4. If the OS has a server application that is running a web application which
has been exploited by an SQL Injection attack.

5. If it is possible to execute arbitrary code in an unknown service on the OS.
6. If the OS has a terminal server application that has been compromised by

successful arbitrary code execution.

27

7. If the OS has a non-terminal server application that has been compromised
by successful arbitrary code execution.

8. If it is possible to inject malicious code through a portable media.

These scenarios correspond to the following CySeMoL attack steps:

1. ApplicationClient.ExecutionOfArbitraryCode

2. WebApplication.ExploitCommandInjection

3. WebApplication.ExploitRemoteFileInclusion

4. WebApplication.ExploitSQLInjection

5. OperatingSystem.ExecutionOfArbitraryCodeInUnknownServices

6. ApplicationServer.ExecutionOfArbitraryCode (Terminal)
7. ApplicationServer.ExecutionOfArbitraryCode (Operates)
8. OperatingSystem.AccessThroughPortableMedia

If one or more of these attack steps are TRUE, then there is a likelihood of
ExecuteMaliciousPayload being TRUE; else, this is FALSE. This likelihood
furthermore depends on the presence or absence of five defenses:

1. If the OS has a host based intrusion detection system (HIDS) monitoring it.
2. If the network zone connected to the OS has a network based intrusion

detection system (NIDS) monitoring it.
3. If the HIDS and/or NIDS are fully updated.
4. If the HIDS and/or NIDS are well tuned.
5. If the OS has an anti-malware installed

In CySeMoL, these correspond to:

1. IDS.Functioning (with the relation HIDS)

2. IDS.Functioning (with the relation NIDS)

3. IDS.Updated

4. IDS.Tuned

5. OperatingSystem.AntiMalwareSolution

Table 5 describes the likelihood of ExecuteMaliciousPayload being TRUE
given that there is a HIDS or NIDS (that are not compromised by the at-
tacker). These data come from [32, 33, 34]. If there is no HIDS or NIDS,
or these are compromised, but there is an anti-malware, then the likelihood of
ExecuteMaliciousPayload is 89.7% (this estimate is independent of the time
available to the attacker). The data for this parameter come from [35, 36].

28

Table 5: Defenses affecting likelihood of ExecuteMaliciousPayload.

NIDS HIDS Updated Tuned Data

TRUE TRUE TRUE TRUE bernoulli(exp(0.127,Attacker.Time))
TRUE TRUE TRUE FALSE bernoulli(exp(0.157,Attacker.Time))
TRUE TRUE FALSE TRUE bernoulli(exp(0.139,Attacker.Time))
TRUE TRUE FALSE FALSE bernoulli(exp(0.187,Attacker.Time))
TRUE FALSE TRUE TRUE bernoulli(exp(0.163,Attacker.Time))
TRUE FALSE TRUE FALSE bernoulli(exp(0.187,Attacker.Time))
TRUE FALSE FALSE TRUE bernoulli(exp(0.168,Attacker.Time))
TRUE FALSE FALSE FALSE bernoulli(exp(0.178,Attacker.Time))
FALSE TRUE TRUE TRUE bernoulli(exp(0.139,Attacker.Time))
FALSE TRUE TRUE FALSE bernoulli(exp(0.151,Attacker.Time))
FALSE TRUE FALSE TRUE bernoulli(exp(0.001,Attacker.Time))
FALSE TRUE FALSE FALSE bernoulli(exp(0.167,Attacker.Time))
FALSE FALSE TRUE TRUE bernoulli(0.8966153846)
FALSE FALSE TRUE FALSE bernoulli(0.8966153846)
FALSE FALSE FALSE TRUE bernoulli(0.8966153846)
FALSE FALSE FALSE FALSE bernoulli(0.8966153846)

29

7. Application Client

An ApplicationClient is a software, or part of software, that is directly
employed by end-users to perform some type of functionality. For instance, a
document reader software such as Adobe Reader, or a web browser software such
as Firefox.

An ApplicationClient can be connected to seven different assets, each
using a single means of connection (cf. Figure 19). An ApplicationClient

should be connected to an OperatingSystem that enables its execution. It
should also be connected to a SoftwareProduct; this denotes what type of
client that is concerned. For instance, an enterprise might have 400 comput-
ers that have the application client Adobe Reader installed; however, the actual
patch level of these software installations likely differ somewhat. This enterprise
would model a single SoftwareProduct (Adobe Reader) and connect this to 400
ApplicationClients (the actual patch levels of Adobe Reader). A client can be
connected to a Datastore that depicts information storage.

Connection to a NetworkZone denotes that the client is a combined
client/server solution that is possible to remotely interface without having ac-
cess to core OS functionality (e.g., a VPN-tunnel service). In other words,
“traditional” software that only are accessible given local access of a system,
such as a web browser, should not be connected directly to network zones. An
AccessControlPoint depicts the means of logical access of the content of a
client. A client can be protected by one or more Intrusion Prevention Systems
(IPSs). Finally, a connection to a Dataflow denotes an information flow between
the client and one or more servers.

There are one defense and four attack steps corresponding to application
servers; these are shown in Table 6 and desribed in depth in the following sec-
tions. The references in Table 6 describe the rationale behind these attributes,
e.g., regarding choice of quantitative data.

7.1. Defenses
7.1.1. Has All Security Patches

HasAllSecurityPatches denotes whether the client has all applicable soft-
ware security patches implemented [37]. For instance, the Firefox 25 update
address MFSA 2013-101, a memory corruption vulnerability in the “workers”
module. If a security patch as Firefox 25 exist, but is not installed, then
HasAllSecurityPatches should be FALSE.

30

Figure 19: An overview of the connections for ApplicationClient.

Table 6: Attack steps and defenses of the ApplicationClient class.

Attribute Rationale

Defense
HasAllSecurityPatches [14, 15]
Attack step
Access [22]
DenialOfService [23, 24]
FindCriticalVulnerability [28]
ExecutionOfArbitraryCode [29, 30]

The default state of the defense is specified as follows: If a
client is connected to a NetworkZone (directly or through an OS),
that in turn is connected to a ZoneManagementProcess, then the de-
fault state of HasAllSecurityPatches is dependent on the state of
ZoneManagementProcess.FormalPatchAndUpdatingProcess (PM)(the data
for this is gathered from [14]). If the OS running the client, or a NetworkZone

connected to this OS, is connected to a NetworkVulnerabilityScanner (and
the OS is depicted to be part of the scan), then the default state of the defense is
dependent on the type of scan that is designated (authenticated ANS or unauthen-
ticated UNS; according to the data presented in [15]). If none of these scenarios
apply, the default state of HasAllSecurityPatches is FALSE. This logic is sum-

31

marized in Table 7.

Table 7: Defenses affecting likelihood of HasAllSecurityPatches.

PM ANS UNS Data

TRUE TRUE TRUE bernoulli(0.79)
TRUE TRUE FALSE bernoulli(0.79)
TRUE FALSE TRUE bernoulli(0.79)
TRUE FALSE FALSE bernoulli(0.79)
FALSE TRUE TRUE bernoulli(0.637)
FALSE TRUE FALSE bernoulli(0.637)
FALSE FALSE TRUE bernoulli(0.3028)
FALSE FALSE FALSE 0

7.2. Attack Steps
7.2.1. Access

Access denotes whether an attacker is able to manage the content of a client
as an administrator of it. In CySeMoL, success of this attack requires the attacker
to circumvent the login function of the client (AccessControlPoint.Bypass).
There is also a need for the attacker being able to connect to the client itself. In Cy-
SeMoL, this can be accomplished through access to the OS that executes the client
(OperatingSystem.Access), or if the client is connected to a NetworkZone

reachable by the attacker (i.e., NetworkZone.ObtainOwnAddress = TRUE). If
so, this attack step is TRUE; else, it is FALSE.

7.2.2. Denial Of Service
This attack step groups all attacks that target the server and attempts to cause

denial of service (DoS) [23, 24]. In CySeMoL, this can be accomplished by an
attacker that has access to the OS hosting the client. If so, it is TRUE; else, it is
FALSE.

7.2.3. Find Critical Vulnerability
This attack step involves whether an attacker is able to acquire a critical exploit

for a client [28]. For this to be successful, there is a need for the attacker to be
able to interface with the client (OperatingSystem.Access or if the client is
connected to a NetworkZone reachable by the attacker), and find an exploit for

32

the client. CySeMoL accounts for five different means for attackers to obtain
exploits (all located in SoftwareProduct):

1. a public exploit could be released for a patchable vulnerability,
2. an exploit could be developed by the attacker for a patchable vulnerability,
3. a public exploit could be released for a non-patchable vulnerability,
4. an exploit could be developed by the attacker for a non-patchable vulnera-

bility,
5. an exploit could be developed by the attacker for a zero-day vulnerability

discovered by the attacker.

In CySeMoL, these correspond to:

1. FindPublicExploitForPatchableCriticalVulnerability,
2. DevelopExploitForPatchableCriticalVulnerability,
3. FindPublicExploitForUnpatchableCriticalVulnerability,
4. DevelopExploitForUnpatchableCriticalVulnerability,
5. DevelopZeroDayExploit.

What type of exploit that is viable depends on whether the server
HasAllSecurityPatches or not (if this is TRUE, then only 3-5 would yield
TRUE).

7.2.4. Execution Of Arbitrary Code
If an attacker is able to FindCriticalVulnerability, then it can attempt to

utilize it in order to redirect the control-flow of the application to some code of
the attackers choosing [40].

Three defenses affect the likelihood of ExecutionOfArbitraryCode:
AddressSpaceLayoutRandomization (ASLR), NonExecutableMemory (NX)
and IntrusionPreventionSystems (IPS). How these affect the likelihood of
this attack step being true can be seen in Table 11. These data come from [29, 30].

8. Application Server

An ApplicationServer is a software, or part of software, that responds to
remote (e.g., over TCP/IP or a serial connection) requests by software clients.
For instance, a File Transfer Protocol (FTP) server that provides clients with data
stored on directiories shared by the server.

33

Table 8: Defenses affecting likelihood of ExecutionOfArbitraryCode.

ASLR NX IPS Data

TRUE TRUE TRUE bernoulli(exp(0.025,Attacker.Time))
TRUE FALSE TRUE bernoulli(exp(0.288,Attacker.Time))
FALSE TRUE TRUE bernoulli(exp(0.046,Attacker.Time))
FALSE FALSE TRUE bernoulli(exp(0.266,Attacker.Time))
TRUE TRUE FALSE bernoulli(exp(0.103,Attacker.Time))
TRUE FALSE FALSE bernoulli(exp(0.155,Attacker.Time))
FALSE TRUE FALSE bernoulli(exp(0.108,Attacker.Time))
FALSE FALSE FALSE bernoulli(exp(0.379,Attacker.Time))

An ApplicationServer can be connected to eight different assets in ten dif-
ferent ways (cf. Figure 20). It should be connected to an OperatingSystem

that enables its execution. Depending on the type of this connection, the server
either acts as a Terminal to access to the core functionality of the OS (e.g., an
RDP connection), or as a server that merely Operates using the OS to enable
its execution. It should also be connected to a SoftwareProduct; this denotes
what type of server that is concerned. For instance, an enterprise might have 400
computers that run the same type of server, e.g., the server-part of Skype; how-
ever, the actual patch level of these software installations likely differ somewhat.
This enterprise would model a single SoftwareProduct (Skype) and connect this
to 400 ApplicationServers (the actual patch levels of Skype). A connection to
WebApplication denotes that the ApplicationServer is a web server. A server
can be connected to a Datastore that depicts information storage.

Connection to a NetworkZone denotes that the server is possible to interface
by systems on that network. An AccessControlPoint depicts the means of log-
ical access of the content of a server. A server can be protected by one or more
Intrusion Prevention Systems (IPSs). Finally, a connection to a Dataflow denotes
an information flow between the server and one or more clients.

There are one defense and five attack steps corresponding to application
servers; these are shown in Table 9 and desribed in depth in the following sec-
tions. The references in Table 9 describe the rationale behind these attributes,
e.g., regarding choice of quantitative data.

34

Figure 20: An overview of the connections for ApplicationServer.

8.1. Defenses
8.1.1. Has All Security Patches

HasAllSecurityPatches denotes whether the server has all applicable soft-
ware security patches implemented [37]. For instance, the Apache httpd server
update 2.2.22 address CVE-2012-4557, a denial of service vulnerability in the
function mod proxy ajp. If a security patch as this exist, but is not installed, then
HasAllSecurityPatches should be FALSE.

The default state of the defense is specified as follows: If a
server is connected to a NetworkZone (directly or through an OS),
that in turn is connected to a ZoneManagementProcess, then the de-
fault state of HasAllSecurityPatches is dependent on the state of
ZoneManagementProcess.FormalPatchAndUpdatingProcess (PM)(the data
for this is gathered from [14]). If the OS running the server, or a NetworkZone

connected to this OS, is connected to a NetworkVulnerabilityScanner (and
the OS is depicted to be part of the scan), then the default state of the defense is
dependent on the type of scan that is designated (authenticated ANS or unauthen-
ticated UNS; according to the data presented in [15]). If none of these scenarios
apply, the default state of HasAllSecurityPatches is FALSE. This logic is sum-
marized in Table 10.

35

Table 9: Attack steps and defenses of the ApplicationServer class.

Attribute Rationale

Defense
HasAllSecurityPatches [14, 15]
Attack step
ConnectToServer [22]
Access [22]
DenialOfService [23, 24]
FindCriticalVulnerability [28]
ExecutionOfArbitraryCode [29, 30]

Table 10: Defenses affecting likelihood of HasAllSecurityPatches.

PM ANS UNS Data

TRUE TRUE TRUE bernoulli(0.79)
TRUE TRUE FALSE bernoulli(0.79)
TRUE FALSE TRUE bernoulli(0.79)
TRUE FALSE FALSE bernoulli(0.79)
FALSE TRUE TRUE bernoulli(0.637)
FALSE TRUE FALSE bernoulli(0.637)
FALSE FALSE TRUE bernoulli(0.3028)
FALSE FALSE FALSE 0

36

8.2. Attack Steps
8.2.1. Connect To Server

This attack step concerns whether an attacker is able to connect to the server
software itself. In CySeMoL, this is possible if the attacker can reach a dataflow,
network zone or OS that the server is connected to. If this can be accomplished,
it is TRUE; else, it is FALSE.

8.2.2. Access
Access denotes whether an attacker is able to manage the content of a

server as an administrator of it. In CySeMoL, this can be accomplished by cir-
cumventing the login function of the server (AccessControlPoint.Bypass).
There is also a need for the attacker being able to connect to the server itself
(ConnectToServer). If both of these attack steps are TRUE, this attack step is
TRUE; else, it is FALSE.

8.2.3. Denial Of Service
This attack step groups all attacks that target the server and attempts to cause

denial of service (DoS) [23]. In CySeMoL, it is enough that an attacker can suc-
ceed with the attack step ConnectToServer for this attack step to be TRUE (else,
it is FALSE). This was discovered through a survey involving evaluating the sig-
nificance of variables commonly thought to incluence DoS of server software [24].

8.2.4. Find Critical Vulnerability
This attack step involves whether an attacker is able to acquire a critical exploit

for a server [28]. For this to be successful, there is a need for the attacker to be able
to connect to the server (ConnectToServer), and find an exploit for the server.
CySeMoL accounts for five different means for attackers to obtain exploits (all
located in SoftwareProduct):

1. a public exploit could be released for a patchable vulnerability,
2. an exploit could be developed by the attacker for a patchable vulnerability,
3. a public exploit could be released for a non-patchable vulnerability,
4. an exploit could be developed by the attacker for a non-patchable vulnera-

bility,
5. an exploit could be developed by the attacker for a zero-day vulnerability

discovered by the attacker.

In CySeMoL, these correspond to:

37

1. FindPublicExploitForPatchableCriticalVulnerability,
2. DevelopExploitForPatchableCriticalVulnerability,
3. FindPublicExploitForUnpatchableCriticalVulnerability,
4. DevelopExploitForUnpatchableCriticalVulnerability,
5. DevelopZeroDayExploit.

What type of exploit that is viable depends on whether the server
HasAllSecurityPatches or not (if this is TRUE, then only 3-5 would yield
TRUE).

8.2.5. Execution Of Arbitrary Code
If an attacker is able to FindCriticalVulnerability, then it can attempt to

utilize it in order to redirect the control-flow of the application to some code of
the attackers choosing [40].

Three defenses affect the likelihood of ExecutionOfArbitraryCode:
AddressSpaceLayoutRandomization (ASLR), NonExecutableMemory (NX)
and IntrusionPreventionSystems (IPS). How these affect the likelihood of
this attack step being true can be seen in Table 11. These data come from [29, 30].

Table 11: Defenses affecting likelihood of ExecutionOfArbitraryCode.

ASLR NX IPS Data

TRUE TRUE TRUE bernoulli(exp(0.025,Attacker.Time))
TRUE FALSE TRUE bernoulli(exp(0.288,Attacker.Time))
FALSE TRUE TRUE bernoulli(exp(0.046,Attacker.Time))
FALSE FALSE TRUE bernoulli(exp(0.266,Attacker.Time))
TRUE TRUE FALSE bernoulli(exp(0.103,Attacker.Time))
TRUE FALSE FALSE bernoulli(exp(0.155,Attacker.Time))
FALSE TRUE FALSE bernoulli(exp(0.108,Attacker.Time))
FALSE FALSE FALSE bernoulli(exp(0.379,Attacker.Time))

9. Software Product

A SoftwareProduct represents a software that has not yet been altered or up-
dated with patches. For example, in an enterprise there could be hundreds of com-
puters using the software product Linux Red Hat 4 and a hundred computers using

38

Windows XP Service Pack 1. In this case Linux Red Hat 4 and Windows XP Ser-
vice pack are two SoftwareProducts and their hundred installations are of the
class OperatingSystem. A SoftwareProduct can be connected to three assets,
each by a single type of connection: OperatingSystem, ApplicationClient,
and ApplicationServer (see Figure 21).

The distinction between software product and software instance is made since
the flaws of a software installation to great extent are associated to the product it is
an installation of. For instance, Windows XP SP1 will have some flaws associated
to it and Linux Red Hat 4 will have other. These are inherent and constitute
a potential vulnerability in all installations of this product. The installations can
however apply patches and updates to eliminate them. It should be noted that some
vulnerabilities are introduced by updates and patches. This relationship is not
considered in CySeMoL. CySeMoL instead assigns general probabilities to attack
steps that identify exploits against the software product. Exploits are classified in
three dimensions: their severity, if there is a patch available for the vulnerability
that the attacker may exploit, and if the exploit code or clear instructions is readily
available in the public domain (e.g. posted on a website). Table 19 describes the
three dimensions.

Figure 21: An overview of the connections for SoftwareProduct.

There are seven defenses and eight attack steps corresponding to software
products; these are shown in Table 12 and desribed in depth in the following
sections. The references in Table 12 describe the rationale behind these attributes,
e.g., regarding choice of quantitative data.

39

Table 12: Attack steps and defenses of the SoftwareProduct class.

Attribute Rationale

Defense
SourceCodeSecret [42]
BinarySecret [42]
ImprovedWithStaticCodeAnalysis [43]
WrittenOnlyInSafeLanguages [19]
HasBeenScrutinized [44]
HasNoUnpatchableVulnerability [45]
HasNoPatchableVulnerability [45]
Attack step
GetProductInformation [46]
FindPublicPatchableCriticalVulnerability [45]
FindPublicUnpatchableCriticalVulnerability [45]
FindPublicExploitForPatchableCriticalVulnerability [45]
DevelopExploitForPatchableCriticalVulnerability [45]
FindPublicExploitForUnpatchableCriticalVulnerability [45]
DevelopExploitForUnpatchableCriticalVulnerability [45]
DevelopZeroDayExploit [47]

40

9.1. Defenses
9.1.1. Source Code Secret

If the attacker gains access to the software product source code it is possible
to search it and “white box” test it for vulnerabilities [42].

Some software is open source, in which case it is easy to obtain the source
code. Other software is proprietary and closed; obtaining the source code is then
more difficult. CySeMoL does not decompose the steps that could be taken to
obtain the source code of a product; this could however be introduced. As it is
now, the probability is used to express how difficult this attack step is to succeed
given such variables marginalized. It is instead recommended that users set the
state of this attack step based on the assumptions used in the analysis.

The default state of this variable is TRUE as most commercial software are
closed-source.

9.1.2. Binary Secret
If an attacker have access to the binary code (machine code) it is possible to

conduct “black box” tests and thereby detect vulnerabilities [42]. If the attacker
cannot obtain this code (not even by compiling the soruce code) it will be almost
impossible to find a new vulnerability in th software.

If the software is open, e.g. as freeware then it is easy to gain access to the
binary. If the software is closed or a custom made product then it might be ex-
tremely difficult to obtain a binary. CySeMoL does not decompose the steps that
could be taken to obtain the binary code to a product; this could however be in-
troduced. As it is now, the probability is used to express how difficult this attack
step is to succeed given such variables marginalized.

The default state of this variable is FALSE as very few software are difficult
to obtain.

9.1.3. Improved With Static Code Analysis
A static code analyser is a tool that inspects the source code of software to

find bugs or vulnerabilities in it [43]. The idea goes back decades and has con-
temporary tools are recognized as effective. To apply such tools is recommended
best practice. It is for example included in Microsoft’s secure development life-
cycle. Twenty of the thirty enterprises involved in BSIMM (Building Security In
Maturity Model) use automated tools for code analysis.

The default state of this variable is TRUE as most commercial software regu-
larly undergo static code analysis.

41

9.1.4. Written Only In Safe Languages
If a “safe” programming language like Java or Python, which performs bound-

ary checking, have been used then the possibilities of performing buffer overflows
is reduced and thereby also the opportunity of finding a vulnerability. If an “un-
safe” language like C or C++ has been used the likelihood of finding a vulnerabil-
ity is greater [19].

The use of a safe dialect of these languages is however possible, e.g. Cyclone.
In that case it is seen as a safe language. The use of safe libraries to embed the
unsafe code is also included in this definition. Libsafe and libverify are examples
of safe libraries for C/C++.

The default state of this variable is FALSE as most commercial software are
written in “unsafe” languages.

9.1.5. Has Been Scrutinized
Some software products have been scrutinized. That is, they have been thor-

oughly tested for vulnerabilities. Research has shown that the frequency of vul-
nerability discovery in software products decrease over time [44].

The default state of this variable is TRUE as most commercial software regu-
larly are tested for security vulnerabilities by both researchers and practitioners.

9.1.6. Has No Public Patchable Vulnerability
This concerns a scenario where it is known that the software has no patchable

vulnerability available on any public forums such as the NVD, PacketStorm or
Exploit DB.

The default state of this variable is FALSE.

9.1.7. Has No Public Unpatchable Vulnerability
This concerns a scenario where it is known that the software has no unpatch-

able vulnerability available on any public forums such as the National Vulnerabil-
ity Database (NVD), PacketStorm or Exploit DB.

The default state of this variable is FALSE.

9.2. Attack Steps
9.2.1. Get Product Information

This attack step concerns whether an attacker is able to successfully probe a
software to determine its properties. For instance, that a discovered FTP server
actually is IIS FTP 7.5.

To reach this attack step, there is a need for the attacker to either be able to:

42

1. produce a response from a client software connected to the product,
2. connect to a server software connected to the product,
3. find an unknown software on an OS connected to the product.

These three scenarios correspond to the following CySeMoL concepts:

1. ApplicationClient.ProduceResponse,
2. ApplicationServer.ConnectTo,
3. OperatingSystem.FindUnknownService.

If any of these three attack steps are TRUE, then the success rate of this attack
step is 99% (else, it is FALSE). This data comes from a study of how frequently
network vulnerability scanners correctly identifies software products [46].

9.2.2. Find Public Patchable Critical Vulnerability
This attack step concerns whether an attacker is able to find a patchable critical

vulnerability on some public domain. To reach this attack step, there is a need for
the corresponding GetProductInformation to be TRUE. If so, the likelihood
of success depends on whether the software is an OS (OperatingSystem) or not
(ApplicationClient or ApplicationServer) (cf. Table 13). These data come
from [45].

Table 13: Data on FindPublicPatchableVulnerability.

Software type Data

OS bernoulli(gamma(0.014, 3630.1, Attacker.Time))
Application bernoulli(par(29.06, 0, Attacker.Time))

Finally, if the defense HasNoPublicPatchableVulnerability is set to
TRUE, then this attack step is FALSE.

9.2.3. Find Public Unpatchable Critical Vulnerability
This attack step concerns whether an attacker is able to find a patchable critical

vulnerability on some public domain. To reach this attack step, there is a need for
the corresponding GetProductInformation to be TRUE. If so, the likelihood
of success depends on whether the software is an OS (OperatingSystem) or not
(ApplicationClient or ApplicationServer) (cf. Table 14). These data come
from [45].

Finally, if the defense HasNoPublicUnpatchableVulnerability is set to
TRUE, then this attack step is FALSE.

43

Table 14: Data on FindPublicUnpatchableVulnerability.

Software type Data

OS bernoulli(lognormal(4.85, 0.98, Attacker.Time))
Application bernoulli(gamma(0.036, 7755.7, Attacker.Time))

9.2.4. Find Public Exploit For Patchable Critical Vulnerability
This attack step concerns whether an attacker is able to find an exploit

for a patchable critical vulnerability on some public domain. To reach this
attack step, there is a need for FindPublicUnpatchableVulnerability or
FindPublicPatchableVulnerability to be TRUE. That is, a vulnerability that
was unpatchable upon its disclosure might be patchable before an exploit is pub-
licly released. If both of these are FALSE, then this attack step is FALSE.

If one, or both, are TRUE then the likelihood of success depends on whether
the targeted software is an OS (OperatingSystem) or not (ApplicationClient
or ApplicationServer) (cf. Table 15). These data come from [45].

Table 15: Data on FindPublicExploitForPatchableCriticalVulnerability.

Software type Patch Data

OS Yes bernoulli(gamma(0.039, 567.91, Attacker.Time))
OS No bernoulli(exp(0.0085, Attacker.Time))
Application Yes bernoulli(gamma(0.033, 1313.37, Attacker.Time))
Application No bernoulli(exp(0.0734, Attacker.Time))

Apart from the time between vulnerabilities, there is also a need to consider
the likelihood that the vulnerability of the next exploit released for an OS or ap-
plication is patchable. Based on the findings of [45], the prior has a likelihood of
9.1%, and the latter 14.5%.

The resulting probabilities for this attack step are thus:

• bernoulli(0.091) * bernoulli(gamma(0.039, 567.91, Attacker.Time))

• bernoulli(0.091) * bernoulli(exp(0.0085, Attacker.Time))

• bernoulli(0.145) * bernoulli(gamma(0.033, 1313.37, Attacker.Time))

• bernoulli(0.145) * bernoulli(exp(0.0734, Attacker.Time))

44

9.2.5. Develop Exploit For Patchable Critical Vulnerability
If a vulnerability is disclosed, but no exploit is made available, then a proficient

attacker can utilize the information made public about the vulnerability and devise
an exploit for it himself/herself.

To reach this attack step, there is firstly a need for
FindPublicPatchableVulnerability to be TRUE; else it is FALSE. If
TRUE, then the the likelihood of success depends on whether the application’s or
the patch’s source code is available to the attacker (SourceCodeClosed). Avail-
ability of source code can aid an attacker at discovering “deep” vulnerabilities
that are difficult to find using a debugger; it can however also aid defenders at
quickly mitigating flaws [48].

The likelihood estimates of this attack step come from [45] and can be seen
in Table 16. The estimates are dependent on three assumptions: 1) there is no ex-
ploit code (or parts of it) available for the targeted vulnerability, 2) the vulnerable
software is not written in a script language, and 3) there is as much information
available about the vulnerability as is typical.

Table 16: Data on DevelopExploitForPatchableCriticalVulnerability.

SourceCodeClosed Data

Yes bernoulli(linear([0,1,2,5,5.263158], [0,0.05,0.5,0.95,1], Attacker.Time))
No bernoulli(linear([0,2,5,8,8.421053], [0,0.05,0.5,0.95,1], Attacker.Time))

9.2.6. Find Public Exploit For Unpatchable Critical Vulnerability
This attack step concerns whether an attacker is able to find an exploit for an

unpatchable critical vulnerability on some public domain. To reach this attack
step, there is a need for FindPublicUnpatchableVulnerability to be TRUE
(if it is FALSE, then this attack step is FALSE).

If FindPublicUnpatchableVulnerability is TRUE then the likelihood of
success depends on whether the targeted software is an OS (OperatingSystem)
or not (ApplicationClient or ApplicationServer) (cf. Table 17). These data
come from [45].

Apart from the time between vulnerabilities, there is also a need to consider
the likelihood that the vulnerability of the next exploit released for an OS or ap-
plication is unpatchable. Based on the findings of [45], the prior has a likelihood
of 90.9%, and the latter 85.5%. The resulting probabilities for this attack step are
thus:

45

Table 17: Data on FindPublicExploitForUnpatchableCriticalVulnerability.

Software type Data

OS bernoulli(lognormal(-49.39, 26.93, Attacker.Time))
Application bernoulli(lognormal(-52.71, 22.85, Attacker.Time))

• bernoulli(0.909) * bernoulli(lognormal(-49.39, 26.93, Attacker.Time))

• bernoulli(0.855) * bernoulli(lognormal(-52.71, 22.85, Attacker.Time))

9.2.7. Develop Exploit For Unpatchable Critical Vulnerability
If an unpatchable vulnerability is disclosed, but no exploit is made available,

then a proficient attacker can utilize the information made public about the vul-
nerability and devise an exploit for it himself/herself. The difference from the at-
tack step DevelopExploitForPatchableCriticalVulnerability is that the
present concerns a vulnerability for which there is no released software patch mit-
igating it available.

To reach this attack step, there is firstly a need for
FindPublicUnpatchableVulnerability to be TRUE; else it is FALSE.
If TRUE, then the the likelihood of success depends on whether the application’s
or the patch’s source code is available to the attacker (SourceCodeClosed).
Availability of source code can aid an attacker at discovering “deep” vulnerabili-
ties that are difficult to find using a debugger; it can however also aid defenders
at quickly mitigating flaws [48].

The likelihood estimates of this attack step come from [45] and can be seen
in Table 18. The estimates are dependent on three assumptions: 1) there is no ex-
ploit code (or parts of it) available for the targeted vulnerability, 2) the vulnerable
software is not written in a script language, and 3) there is as much information
available about the vulnerability as is typical.

Table 18: Data on DevelopExploitForUnpatchableCriticalVulnerability.

SourceCodeClosed Data

Yes bernoulli(linear([0,1,3,6,6.315789], [0,0.05,0.5,0.95,1], Attacker.Time))
No bernoulli(linear([0,4,7,11,11.57895], [0,0.05,0.5,0.95,1], Attacker.Time))

46

9.2.8. Develop Zero Day Exploit
If there is no disclosed vulnerability available, or if the attacker wants to ex-

ploit something that is unknown to be vulnerable in the public domain, then (s)he
can attempt to discover a new vulnerability (often called a zero-day).

To reach this attack step, there is a need for the corresponding
GetProductInformation to be TRUE (else, it is FALSE). If so, then the proba-
bility of the attack step being TRUE depends on the presence or absence of four
variables:

• if the targeted software has been scrutinized before,

• whether the attacker has access to the application source code,

• whether the software is written using a (memory) “safe” language, dialect
or library,

• if the software has been analyzed by static code analyzers and improved
based on the result.

In CySeMoL, these scenarios correspond to:

• SoftwareProduct.HasBeenScrutinized,

• SoftwareProduct.SourceCodeSecret,

• SoftwareProduct.WrittenOnlyInSafeLanguages,

• SoftwareProduct.ImprovedWithStaticCodeAnalysis.

For each scenario, it is assumed that the attacker is able to study the application
binary (e.g., using a debugger). I.e., BinarySecret = TRUE. If BinarySecret
is FALSE, then this attack step is also FALSE.

The likelihood estimates for the 16 scenarios corresponding to these four de-
fenses come from [47] and can be seen in Table 19.

10. Web Application

A WebApplication (WA) is a software that is run on a HTTP(S) server. Typ-
ical WAs have both client-side and server-side functionality. Client-side function-
ality typically concern features that are intepreted by web browsers (e.g., Firefox

47

Table 19: Data on DevelopZeroDayExploit.
Pr

oj
ec

t

Sc
ru

tin
iz

ed

So
ur

ce
C

od
e

Sa
fe

L
an

gu
ag

e

C
od

eA
na

ly
ze

rs

Data

1 Yes Yes Yes Yes bernoulli(linear([0,3,13,74,77.89474], [0,0.05,0.5,0.95,1], Attacker.Time))
2 Yes Yes Yes No bernoulli(linear([0,1,6,27,28.42105], [0,0.05,0.5,0.95,1], Attacker.Time))
3 Yes Yes No Yes bernoulli(linear([0,1,3,26,27.36842], [0,0.05,0.5,0.95,1], Attacker.Time))
4 Yes Yes No No bernoulli(linear([0,0.001,4,9,9.473684], [0,0.05,0.5,0.95,1], Attacker.Time))
5 Yes No Yes Yes bernoulli(linear([0,0.001,13,26,27.36842], [0,0.05,0.5,0.95,1], Attacker.Time))
6 Yes No Yes No bernoulli(linear([0,0.001,3,17,17.89474], [0,0.05,0.5,0.95,1], Attacker.Time))
7 Yes No No Yes bernoulli(linear([0,0.001,1,7,7.368421], [0,0.05,0.5,0.95,1], Attacker.Time))
8 Yes No No No bernoulli(linear([0,1,3,8,8.421053], [0,0.05,0.5,0.95,1], Attacker.Time))
9 No Yes Yes Yes bernoulli(linear([0,1,12,855,900], [0,0.05,0.5,0.95,1], Attacker.Time))
10 No Yes Yes No bernoulli(linear([0,1,14,344,362.1053], [0,0.05,0.5,0.95,1], Attacker.Time))
11 No Yes No Yes bernoulli(linear([0,0.001,10,27,28.42105], [0,0.05,0.5,0.95,1], Attacker.Time))
12 No Yes No No bernoulli(linear([0,1,4,27,28.42105], [0,0.05,0.5,0.95,1], Attacker.Time))
13 No No Yes Yes bernoulli(linear([0,2,9,855,900], [0,0.05,0.5,0.95,1], Attacker.Time))
14 No No Yes No bernoulli(linear([0,1,6,18,18.94737], [0,0.05,0.5,0.95,1], Attacker.Time))
15 No No No Yes bernoulli(linear([0,1,4,257,270.5263], [0,0.05,0.5,0.95,1], Attacker.Time))
16 No No No No bernoulli(linear([0,0.001,3,9,9.473684], [0,0.05,0.5,0.95,1], Attacker.Time))

or Internet Explorer) and their resources (e.g., an adobe flash plugin). Server-side
functionality concerns functions that are executed in the context environment of
the server software. This includes, for instance, PHP and ASP.NET applications.
In CySeMoL, a WA is considered to contain a combination of both server-side
and client-side application functions as this typically is the case in practice.

The reason to why there is a specific asset concerning WAs, rather than simply
modeling them as ApplicationServers, is because the vulnerability discovery
process is radically different for compiled and script-based software.

A WA can be connected to three different assets (see Figure 22).
An ApplicationServer need be connected to it to designate that this
ApplicationServer is a web server exposing the WA to an external environ-
ment. A WebApplicationFirewall (WAF) is a security tool that can be used to
prevent attacks against WAs in operation. If this connection is available, the WA
is considered to be under the protection of this WAF. A WA can also be connected
to a Datastore to depict a WA database, e.g., an SQL database.

To model connections to a WA, the user should depict connections to the
ApplicationServer running the WA. A successful connection to the server de-
notes a successful connection to the WA.

There are eight defenses and nine attack steps corresponding to web applica-

48

Figure 22: An overview of the connections for WebApplication.

tions; these are shown in Table 20 and desribed in depth in the following sections.
The references in Table 20 describe the rationale behind these attributes, e.g., re-
garding choice of quantitative data. The reason for including these four particular
classes of vulnerabilities is because they provide radically different outcomes in
terms of related attack steps (yet the possibility of exploitation is based on the
same dataset [49]).

10.1. Defenses
10.1.1. Type Safe API

Type-safe API’s [50] involves using a development environment that is built to
function in a secure and reliable fashion. In essence, this countermeasure defines
a rule set for allowed code and how different parts of an application exchange
information. For instance, how a PHP application is allowed to communicate with
an SQL database. If a developer writes code that does not comply with the rule
set defined within the type-safe API an error is produced, notifying the developer
of the proper syntax as defined by the API.

The default state of this variable is FALSE; this was elicited during a qualita-
tive study on the topic [51].

10.1.2. Developer Security Training
Developer security training [52] involves increasing the WA security aware-

ness of the software developers. The aim is to make developers recognize what
improper input and output sanitizing can result in and how such issues can be
mitigated.

The default state of this variable is FALSE; this was elicited during a qualita-
tive study on the topic [51].

49

Table 20: Attack steps and defenses of the WebApplication class.

Attribute Rationale

Defense
TypeSafeAPI [50, 51]
DeveloperSecurityTraining [52, 51]
BlackBoxTesting [53, 51]
StaticCodeAnalysis [53, 51]
HasPublicCommandInjectionVulnerability [54, 51]
HasPublicCrossSiteScriptingVulnerability [54, 51]
HasPublicRemoteFileInclusionVulnerability [54, 51]
HasPublicSQLInjectionVulnerability [54, 51]
Attack step
FindPublicCommandInjectionVulnerability [54, 51]
FindPublicCrossSiteScriptingVulnerability [54, 51]
FindPublicRemoteFileInclusionVulnerability [54, 51]
FindPublicSQLInjectionVulnerability [54, 51]
DiscoverVulnerability [55]
ExploitCommandInjectionVulnerability [49]
ExploitCrossSiteScriptingVulnerability [49]
ExploitRemoteFileInclusionVulnerability [49]
ExploitSQLInjectionVulnerability [49]

50

10.1.3. Black Box Testing
Black box testing [53] involves running automated scanners or fuzzers on de-

ployed WAs without viewing server-side source code. The aim of a black box
tests is to find vulnerabilities so that these can be removed before deployment.

The default state of this variable is TRUE; this was elicited during a qualitative
study on the topic [51].

10.1.4. Static Code Analysis
Static code analysis [53] involves white box testing for detecting vulnerabili-

ties. They analyze the WA’s source code and try to find vulnerabilities that would
be exploitable in runtime by applying various checks.

The default state of this variable is TRUE; this was elicited during a qualitative
study on the topic [51].

10.1.5. Has Public Command Injection Vulnerability
A command injection vulnerability allows an attacker to execute system level

commands [54]. This defense concerns whether there are any command injection
exploits available for the WA on public forums such as Exploit DB or Packet-
Storm. If so, then the state of this defense should be TRUE.

The default state of this variable is FALSE; this was elicited during a qualita-
tive study on the topic [51].

10.1.6. Has Public Cross Site Scripting Vulnerability
A cross site scripting (XSS) vulnerability allows attackers to inject client-side

scripts into web pages viewed by other users [54]. This defense concerns whether
there are any XSS exploits available for the WA on public forums such as Exploit
DB or PacketStorm. If so, then the state of this defense should be TRUE.

The default state of this variable is FALSE; this was elicited during a qualita-
tive study on the topic [51].

10.1.7. Has Public Remote File Inclusion Vulnerability
A remote file inclusion (RFI) vulnerability allows attackers to include remote

files in communication with a WA; thus, possible resulting in remote code execu-
tion in the context of the web server [54]. This defense concerns whether there
are any RFI exploits available for the WA on public forums such as Exploit DB or
PacketStorm. If so, then the state of this defense should be TRUE.

The default state of this variable is FALSE; this was elicited during a qualita-
tive study on the topic [51].

51

10.1.8. Has Public SQL Injection Vulnerability
An SQL injection (SQLi) vulnerability allows attackers to send malicious

database queries to an SQL server connected to the WA [54]. This can not only
result in an attacker reading or altering content in the SQL database, but also re-
mote code execution. This defense concerns whether there are any SQLi exploits
available for the WA on public forums such as Exploit DB or PacketStorm. If so,
then the state of this defense should be TRUE.

The default state of this variable is FALSE; this was elicited during a qualita-
tive study on the topic [51].

10.2. Attack Steps
10.2.1. Exploit Command Injection Vulnerability

This attack step concerns whether an attacker is able to successfully exploit a
command injection vulnerability in a WA. To reach this attack step, there is a need
for DiscoverVulnerability or FindPublicCommandInjection to be TRUE;
else if it FALSE. If one of these attack steps are TRUE, then the likelihood of suc-
cess depends on the presence and configuration of a WebApplicationFirewall

protecting the WA. If no WAF is present, then this attack step is TRUE. Else, the
likelihood of success depends on the configuration of the WAF. In CySeMoL, the
effectiveness of a WAF depends on the four variables:

1. WebApplicationFirewall.MonitoredByOperator (OPERATOR)
2. WebApplicationFirewall.TunedUsingBlackBoxTool (BBT)
3. WebApplicationFirewall.TunedByExperiencedProfessional (EX-

PERIENCE)
4. WebApplicationFirewall.TunedWithSignificantManualEffort

(EFFORT)

How these influence the likelihood of attack success is shown in Table 21.
These data come from [49].

10.2.2. Exploit Cross Site Scripting Vulnerability
This attack step concerns whether an attacker is able to successfully exploit

an XSS vulnerability in a WA. To reach this attack step, there is a need for
DiscoverVulnerability or FindPublicCrossSiteScripting to be TRUE;
else if it FALSE. If one of these attack steps are TRUE, then the likelihood of suc-
cess depends on the presence and configuration of a WebApplicationFirewall

protecting the WA. If no WAF is present, then this attack step is TRUE. Else, the

52

Table 21: Data on ExploitCommandInjectionVulnerability.

Sc
en

ar
io

O
PE

R
AT

O
R

B
B

T

E
X

PE
R

IE
N

C
E

E
FF

O
R

T

Data

1 Yes Yes Yes Yes bernoulli(exp(0.058,Attacker.Time))
2 Yes Yes Yes No bernoulli(exp(0.126,Attacker.Time))
3 Yes Yes No Yes bernoulli(exp(0.126,Attacker.Time))
4 Yes Yes No No bernoulli(exp(0.167,Attacker.Time))
5 Yes No Yes Yes bernoulli(exp(0.120,Attacker.Time))
6 Yes No Yes No bernoulli(exp(0.192,Attacker.Time))
7 Yes No No Yes bernoulli(exp(0.175,Attacker.Time))
8 Yes No No No bernoulli(exp(0.229,Attacker.Time))
9 No Yes Yes Yes bernoulli(exp(0.066,Attacker.Time))
10 No Yes Yes No bernoulli(exp(0.112,Attacker.Time))
11 No Yes No Yes bernoulli(exp(0.146,Attacker.Time))
12 No Yes No No bernoulli(exp(0.192,Attacker.Time))
13 No No Yes Yes bernoulli(exp(0.133,Attacker.Time))
14 No No Yes No bernoulli(exp(0.192,Attacker.Time))
15 No No No Yes bernoulli(exp(0.167,Attacker.Time))
16 No No No No bernoulli(exp(0.263,Attacker.Time))

53

likelihood of success depends on the configuration of the WAF. In CySeMoL, the
effectiveness of a WAF depends on the four variables:

1. WebApplicationFirewall.MonitoredByOperator (OPERATOR)
2. WebApplicationFirewall.TunedUsingBlackBoxTool (BBT)
3. WebApplicationFirewall.TunedByExperiencedProfessional (EX-

PERIENCE)
4. WebApplicationFirewall.TunedWithSignificantManualEffort

(EFFORT)

How these influence the likelihood of attack success is shown in Table 22.
These data come from [49].

Table 22: Data on ExploitCrossSiteScriptingVulnerability.

Sc
en

ar
io

O
PE

R
AT

O
R

B
B

T

E
X

PE
R

IE
N

C
E

E
FF

O
R

T

Data

1 Yes Yes Yes Yes bernoulli(exp(0.058,Attacker.Time))
2 Yes Yes Yes No bernoulli(exp(0.126,Attacker.Time))
3 Yes Yes No Yes bernoulli(exp(0.126,Attacker.Time))
4 Yes Yes No No bernoulli(exp(0.167,Attacker.Time))
5 Yes No Yes Yes bernoulli(exp(0.120,Attacker.Time))
6 Yes No Yes No bernoulli(exp(0.192,Attacker.Time))
7 Yes No No Yes bernoulli(exp(0.175,Attacker.Time))
8 Yes No No No bernoulli(exp(0.229,Attacker.Time))
9 No Yes Yes Yes bernoulli(exp(0.066,Attacker.Time))
10 No Yes Yes No bernoulli(exp(0.112,Attacker.Time))
11 No Yes No Yes bernoulli(exp(0.146,Attacker.Time))
12 No Yes No No bernoulli(exp(0.192,Attacker.Time))
13 No No Yes Yes bernoulli(exp(0.133,Attacker.Time))
14 No No Yes No bernoulli(exp(0.192,Attacker.Time))
15 No No No Yes bernoulli(exp(0.167,Attacker.Time))
16 No No No No bernoulli(exp(0.263,Attacker.Time))

54

10.2.3. Exploit Remote File Inclusion Vulnerability
This attack step concerns whether an attacker is able to successfully

exploit a RFI in a WA. To reach this attack step, there is a need for
DiscoverVulnerability or FindPublicRemoteFileInclusion to be TRUE;
else if it FALSE. If one of these attack steps are TRUE, then the likelihood of suc-
cess depends on the presence and configuration of a WebApplicationFirewall

protecting the WA. If no WAF is present, then this attack step is TRUE. Else, the
likelihood of success depends on the configuration of the WAF. In CySeMoL, the
effectiveness of a WAF depends on the four variables:

1. WebApplicationFirewall.MonitoredByOperator (OPERATOR)
2. WebApplicationFirewall.TunedUsingBlackBoxTool (BBT)
3. WebApplicationFirewall.TunedByExperiencedProfessional (EX-

PERIENCE)
4. WebApplicationFirewall.TunedWithSignificantManualEffort

(EFFORT)

How these influence the likelihood of attack success is shown in Table 23.
These data come from [49].

10.2.4. Exploit SQL Injection Vulnerability
This attack step concerns whether an attacker is able to successfully exploit

an SQLi vulnerability in a WA. To reach this attack step, there is a need for
DiscoverVulnerability or FindPublicSQLInjection to be TRUE; else if it
FALSE. There is also a for a Datastore being connected to the WA. If this is
the case, then the likelihood of success depends on the presence and configuration
of a WebApplicationFirewall protecting the WA. If no WAF is present, then
this attack step is TRUE. Else, the likelihood of success depends on the configu-
ration of the WAF. In CySeMoL, the effectiveness of a WAF depends on the four
variables:

1. WebApplicationFirewall.MonitoredByOperator (OPERATOR)
2. WebApplicationFirewall.TunedUsingBlackBoxTool (BBT)
3. WebApplicationFirewall.TunedByExperiencedProfessional (EX-

PERIENCE)
4. WebApplicationFirewall.TunedWithSignificantManualEffort

(EFFORT)

How these influence the likelihood of attack success is shown in Table 24.
These data come from [49].

55

Table 23: Data on ExploitRemoteFileInclusionVulnerability.

Sc
en

ar
io

O
PE

R
AT

O
R

B
B

T

E
X

PE
R

IE
N

C
E

E
FF

O
R

T

Data

1 Yes Yes Yes Yes bernoulli(exp(0.058,Attacker.Time))
2 Yes Yes Yes No bernoulli(exp(0.126,Attacker.Time))
3 Yes Yes No Yes bernoulli(exp(0.126,Attacker.Time))
4 Yes Yes No No bernoulli(exp(0.167,Attacker.Time))
5 Yes No Yes Yes bernoulli(exp(0.120,Attacker.Time))
6 Yes No Yes No bernoulli(exp(0.192,Attacker.Time))
7 Yes No No Yes bernoulli(exp(0.175,Attacker.Time))
8 Yes No No No bernoulli(exp(0.229,Attacker.Time))
9 No Yes Yes Yes bernoulli(exp(0.066,Attacker.Time))
10 No Yes Yes No bernoulli(exp(0.112,Attacker.Time))
11 No Yes No Yes bernoulli(exp(0.146,Attacker.Time))
12 No Yes No No bernoulli(exp(0.192,Attacker.Time))
13 No No Yes Yes bernoulli(exp(0.133,Attacker.Time))
14 No No Yes No bernoulli(exp(0.192,Attacker.Time))
15 No No No Yes bernoulli(exp(0.167,Attacker.Time))
16 No No No No bernoulli(exp(0.263,Attacker.Time))

56

Table 24: Data on ExploitSQLInjectionVulnerability.

Sc
en

ar
io

O
PE

R
AT

O
R

B
B

T

E
X

PE
R

IE
N

C
E

E
FF

O
R

T

Data

1 Yes Yes Yes Yes bernoulli(exp(0.058,Attacker.Time))
2 Yes Yes Yes No bernoulli(exp(0.126,Attacker.Time))
3 Yes Yes No Yes bernoulli(exp(0.126,Attacker.Time))
4 Yes Yes No No bernoulli(exp(0.167,Attacker.Time))
5 Yes No Yes Yes bernoulli(exp(0.120,Attacker.Time))
6 Yes No Yes No bernoulli(exp(0.192,Attacker.Time))
7 Yes No No Yes bernoulli(exp(0.175,Attacker.Time))
8 Yes No No No bernoulli(exp(0.229,Attacker.Time))
9 No Yes Yes Yes bernoulli(exp(0.066,Attacker.Time))
10 No Yes Yes No bernoulli(exp(0.112,Attacker.Time))
11 No Yes No Yes bernoulli(exp(0.146,Attacker.Time))
12 No Yes No No bernoulli(exp(0.192,Attacker.Time))
13 No No Yes Yes bernoulli(exp(0.133,Attacker.Time))
14 No No Yes No bernoulli(exp(0.192,Attacker.Time))
15 No No No Yes bernoulli(exp(0.167,Attacker.Time))
16 No No No No bernoulli(exp(0.263,Attacker.Time))

57

10.2.5. Find Public Command Injection Vulnerability
This a attack step concerns whether an attacker is able to discover a command

injection vulnerability in a public domain. To reach this attack step, there is a need
for the attacker to be able to connect to the web server that exposes the WA (i.e.,
ApplicationServer.ConnectTo = TRUE).

If connection is possible, this attack step is FALSE if
HasPublicCommandInjection is FALSE; else, it is TRUE.

10.2.6. Find Public Cross Site Scripting Vulnerability
This a attack step concerns whether an attacker is able to discover an XSS

vulnerability in a public domain. To reach this attack step, there is a need for
the attacker to be able to connect to the web server that exposes the WA (i.e.,
ApplicationServer.ConnectTo = TRUE).

If connection is possible, this attack step is FALSE if
HasPublicCrossSiteScripting is FALSE; else, it is TRUE.

10.2.7. Find Public Remote File Inclusion Vulnerability
This a attack step concerns whether an attacker is able to discover an RFI

vulnerability in a public domain. To reach this attack step, there is a need for
the attacker to be able to connect to the web server that exposes the WA (i.e.,
ApplicationServer.ConnectTo = TRUE).

If connection is possible, this attack step is FALSE if
HasPublicRemoteFileInclusion is FALSE; else, it is TRUE.

10.2.8. Find Public SQL Injection Vulnerability
This a attack step concerns whether an attacker is able to discover an SQLi

vulnerability in a public domain. To reach this attack step, there is a need for
the attacker to be able to connect to the web server that exposes the WA (i.e.,
ApplicationServer.ConnectTo = TRUE).

If connection is possible, this attack step is FALSE if
HasPublicSQLInjection is FALSE; else, it is TRUE.

10.2.9. Discover Vulnerability
This attack step concerns whether an attacker is able to manually discover a

novel command injection, XSS, RFI or SQLi vulnerability in a WA. To reach this
attack step, there is a need for the attacker to be able to connect to the web server
that exposes the WA (i.e., ApplicationServer.ConnectTo = TRUE); else, it is
FALSE.

58

If connection is possible, then the likelihood of success depends on
four defenses: TypeSafeAPI (API), DeveloperSecurityTraining (DST),
BlackBoxTesting (BBT), and StaticCodeAnalysis (SCA). How these de-
fenses affect the likelihood of success is shown in Table 25. These data come
from [55].

Table 25: Data on DiscoverVulnerability.

Pr
oj

ec
t

A
PI

D
ST

B
B

T

SC
A

Data

1 Yes Yes Yes Yes bernoulli(linear([0,1.25,4.125,6.625,6.973684], [0,0.05,0.5,0.95,1], Attacker.Time))
2 Yes Yes Yes No bernoulli(linear([0,2.125,3.625,5.75,6.052632], [0,0.05,0.5,0.95,1], Attacker.Time))
3 Yes Yes No Yes bernoulli(linear([0,1.875,3.125,5.25,5.526316], [0,0.05,0.5,0.95,1], Attacker.Time))
4 Yes Yes No No bernoulli(linear([0,0.5,1,1.875,1.973684], [0,0.05,0.5,0.95,1], Attacker.Time))
5 Yes No Yes Yes bernoulli(linear([0,0.625,1.375,2.25,2.368421], [0,0.05,0.5,0.95,1], Attacker.Time))
6 Yes No Yes No bernoulli(linear([0,0.625,1.375,2.125,2.236842], [0,0.05,0.5,0.95,1], Attacker.Time))
7 Yes No No Yes bernoulli(linear([0,0.75,1.5,2.125,2.236842], [0,0.05,0.5,0.95,1], Attacker.Time))
8 Yes No No No bernoulli(linear([0,0.625,1.125,1.5,1.578947], [0,0.05,0.5,0.95,1], Attacker.Time))
9 No Yes Yes Yes bernoulli(linear([0,2.125,3.875,6.375,6.710526], [0,0.05,0.5,0.95,1], Attacker.Time))
10 No Yes Yes No bernoulli(linear([0,1.5,2.5,4,4.210526], [0,0.05,0.5,0.95,1], Attacker.Time))
11 No Yes No Yes bernoulli(linear([0,1.25,2.25,4.125,4.342105], [0,0.05,0.5,0.95,1], Attacker.Time))
12 No Yes No No bernoulli(linear([0,0.125,0.375,1,1.052632], [0,0.05,0.5,0.95,1], Attacker.Time))
13 No No Yes Yes bernoulli(linear([0,0.375,1,2.25,2.368421], [0,0.05,0.5,0.95,1], Attacker.Time))
14 No No Yes No bernoulli(linear([0,0.125,0.875,1.5,1.578947], [0,0.05,0.5,0.95,1], Attacker.Time))
15 No No No Yes bernoulli(linear([0,0.25,1,1.5,1.578947], [0,0.05,0.5,0.95,1], Attacker.Time))
16 No No No No bernoulli(linear([0,0.25,0.625,0.875,0.921053], [0,0.05,0.5,0.95,1], Attacker.Time))

11. Web Application Firewall

While considerable effort has been spent to understand and solve Web Ap-
plication (WA) security problems many application developers are still unable to
implement effective countermeasures for WA vulnerabilities (Scholte et al., 2012).

Consequently, it is imperative for enterprises to effectively manage vulnera-
bilities in deployed WAs. For this purpose, enterprises often turn to defenses that
mitigate vulnerabilities without requiring changes of the application source code.
A popular such tool is the WebApplicationFirewall (WAF), which has the pur-
pose to prevent attacks on WAs. In CySeMoL, a WAF is a combination of hard-
ware and software (e.g., an OS) that enables WAF functionality. In other words, all
concepts related to a WAF are modeled by the asset WebApplicationFirewall.

A WAF can be connected to three different assets (see Figure 22). A
WAF should be connected to one or more WebApplications (denoting that
these are protected by the WAF). A WAF can be connected to one or more

59

AccessControlPoints to denote login functionality of a WAF. Connection
to a NetworkZone denotes that the WAF is possible to interface from this
NetworkZone (when the two latter are enabled, the WAF can be subjected to
being disabled by an attacker).

Figure 23: An overview of the connections for WebApplicationFirewall.

There are four defenses corresponding to a WAF; these are shown in Table
26 and desribed in depth in the following sections. The references in Table 26
describe the rationale behind these attributes, e.g., regarding choice of quantitative
data.

Table 26: Attack steps and defenses of the WebApplicationFirewall class.

Attribute Rationale

Defense
MonitoredByOperator [56, 51]
TunedUsingBlackBoxTool [56, 51]
TunedByExperiencedProfessional [56, 51]
TunedWithSignificantManualEffort [56, 51]

11.1. Defenses
11.1.1. Monitored By Operator

The presence of an experienced operator monitoring the WAF [56] should
make successful WA injection attacks more difficult to perform as many such
threats utilize brute-force principles to find vulnerable parameters (e.g., to find if
any encoded variants of a single-quote can be passed as an argument to an SQL
database). This type of user behavior might not be seen as a threat by a WAF, but
will most certainly be viewed with care by an operator.

60

The default state of this defense is FALSE; this was determined through a case
study [51].

11.1.2. Tuned Using Black Box Tool
Employment of an automated black box testing tool for tuning the WAF should

serve to decrease both its false positives and false negatives [56]. Such a tool
should, for instance, decrease the manual effort required to find all application
parameters that can be manipulated by a user of the application.

The default state of this defense is FALSE; this was determined through a case
study [51].

11.1.3. Tuned By Experienced Professional
The experience of the individual tuning the WAF should have significant im-

pact on its effectiveness as a more competent individual has a greater understand-
ing of tools, threats and vulnerabilities (and consequently how to mitigate them)
[56].

The default state of this defense is TRUE; this was determined through a case
study [51].

11.1.4. Tuned With Significant Manual Effort
The effort spent tuning the WAF [56] should be of importance as tuning re-

quires time - not only during the deployment of the WAF, but also for maintenance
during the life-cycle of the protected WA. A WAF that receives significant man-
ual effort for tuning should thus be more effective than a WAF that receives little
manual effort for tuning.

The default state of this defense is FALSE; this was determined through a case
study [51].

12. Data store

A Datastore is a place where data can be stored. It could for instance be a re-
lational database, a file server, a processing queue or a database table. A database
that has different encryption policies for different variables (e.g., encrypts pass-
words but not usernames) should be represented as several data stores.

A Datastore can be connected to five different assets (cf. Fig-
ure 24). A connection to a software (OperatingSystem, ApplicationClient,
ApplicationServer or WebApplication) denotes that this software is a man-
ager of the data store. A connection to a Dataflow denotes that this particular
dataflow can interact with the data store (e.g., read or write to it).

61

Figure 24: An overview of the connections for Datastore.

There are one defense and three attack steps corresponding to data stores;
these are shown in Table 27 and desribed in depth in the following sections. The
references in Table 27 describe the rationale behind these attributes.

Table 27: Attack steps and defenses of the Datastore class.

Attribute Rationale

Defense
CryptographicObfuscation [57]
Attack step
ReadData [58, 59]
WriteData [58, 59]
DeleteData [58, 59]

12.1. Defenses
12.1.1. Cryptographic Obfuscation

CySeMoL simplify cryptographic obfuscation of data stores into one variable
with two states; either it functions and ensures obfuscation, or it does not function,
and ergo does not ensure obfuscation [57]. Attack steps that could make it not
function are not detailed, nor are defenses that make such attack steps difficult
(e.g. long keys stored securely).

The default state of this defense is TRUE.

62

12.2. Attack Steps
12.2.1. Read Data

This attack step represents an activity where an attacker can read data in the
data store and understand its meaning, i.e. reading encrypted code does not suffice
[58, 59].

If a Dataflow reads data from a data store and this data flow is eaves-
dropped (Dataflow.Eavesdrop or Dataflow.ManInTheMiddle) it also means
that the content of the data store is revealed. The content of a data store can
also be read by accessing the software that owns it (OperatingSystem.Access,
ApplicationClient.Access or ApplicationServer.Access). This could
for example be a database management system if the data store is a relational
database. Access to this type of software typically means that content in the data
store can be read as well. Reading data io a data store can also be accomplished if
it is connected to a WebApplication that an attacker has compromised with SQL
injection (WebApplication.ExploitSQLInjection).

If one of these attack steps is TRUE, this attack step is TRUE; else, it is
FALSE.

12.2.2. Write Data
If a Dataflow updates or changes the data store this data flow can be used to

write to it [58, 59].
In CySeMoL, one way for an attacker to accomplish this is to compromise

a dataflow that is used to write to the data store. If so, there are two options
of attack: either to intercept data in transit and change it before forwarding it to
the data store (Dataflow.ManInTheMiddle), or simply replaying altered data at
some later occassion (Dataflow.Replay).

The content of a data store can also be written to by accessing the software
that manages it (OperatingSystem.Access, ApplicationClient.Access or
ApplicationServer.Access). This could for example be a database man-
agement system if the data store is a relational database. Access to this type
of software typically means that content in the data store can be written to as
well. Writing data to a data store can also be accomplished if it is connected
to a WebApplication that an attacker has compromised with SQL injection
(WebApplication.ExploitSQLInjection).

If one of these attack steps is TRUE, this attack step is TRUE; else, it is
FALSE.

63

12.2.3. Delete Data
If a Dataflow updates or changes the data store this data flow can be used to

delete data in the data store [58, 59].
In CySeMoL, one way for an attacker to accomplish this is to compromise

a dataflow that can be used to delete data in the data store. If so, there are two
options of attack: either to intercept data in transit and change it before forwarding
it to the data store (Dataflow.ManInTheMiddle), or simply replaying altered
data at some later occassion (Dataflow.Replay). The latter could for example
involve an attacker that sniffs deletion of data at a time T1, somebody inserting
a new entry at the same place in the database at a time T2, and the attacker then
replaying the traffic to delete this new piece of data at a time T3.

The content of a data store can also be deleted by accessing the software
that manages it (OperatingSystem.Access, ApplicationClient.Access or
ApplicationServer.Access). This could for example be a database man-
agement system if the data store is a relational database. Access to this type
of software typically means that content in the data store can be deleted as
well. Deleting data in a data store can also be accomplished if it is connected
to a WebApplication that an attacker has compromised with SQL injection
(WebApplication.ExploitSQLInjection).

If one of these attack steps is TRUE, this attack step is TRUE; else, it is
FALSE.

13. Data flow

Data, access to data, and how data flows in systems, is the locus in many
approaches to security. It is for instance central in the renowned Bell-LaPadula
model [60]. A Dataflow concerns information that flows beteen two or more
applications. In CySeMoL, it does not concern the flow of information within a
software application.

There are six assets that can be connected to Dataflow in eight different
means (cf. Figure 25). A data flow should be connected to a Protocol that
defines the unique characteristics of the data flow (e.g., in terms of encryp-
tion and authentication). This differentiation is made as there often are vari-
ous data flows of the same type (e.g., HTTP or HTTPS) within organizations.
Connection to an ApplicationClient denotes that the client is an initiator of
data exchange; similarly, connection to an ApplicationServer denotes that the
server responds to request by clients connected to the data flow. Connection to
a NetworkInterface denotes that the data flow is allowed to pass through any

64

Firewall connected to that network interface. There are three possible connec-
tions to a NetworkZone: client, server or medium. A server connection implies
that a client of the data flow can connect to any remotely accessible application
servers within the network zone. In other words, if an ApplicationServer,
or an OperatingSystem running this ApplicationServer, is connected to a
NetworkZone that has a server connection to a Dataflow, then an attacker with
access to an ApplicationClient or NetworkZone connected to this Dataflow
(the NetworkZone would require a client connection) can communicate to the net-
work zone or server. Similarly, a client connection implies that an attacker with
access to the client NetworkZone (NetworkZone.ObtainAddress = TRUE) can
reach any NetworkZones (given a server connection), and ApplicationServers

connected to it. Finally, a medium connection implies that a network zone is the
medium used by a data flow.

Figure 25: An overview of the connections for Dataflow.

There are six attack steps (and no defenses) corresponding to data stores; these
are shown in Table 28 and desribed in depth in the following sections. The refer-
ences in Table 28 describe the rationale behind these attributes.

13.1. Attack Steps
13.1.1. Disrupt

This attack step represent the possibility that an attacker can disrupt the data
flow [24]. This means degrading it so that it influences the functionality it is
intended to provide. In CySeMoL, this can be accomplished by either: 1) caus-
ing denial of service (DoS) of an application server that is connected to the data

65

Table 28: Attack steps and defenses of the Dataflow class.

Attribute Rationale

Attack Step
Disrupt [24]
Replay [61]
Eavesdrop [62]
ManInTheMiddle [63]
ProduceRequest [63]
ProduceResponse [63]

flow (ApplicationServer.DenialOfService), 2) causing denial of service for
a network interface that allows it (NetworkInterface.DenialOfService), 3)
ARP-spoofing the server that runs the server with an active data flow.

For instance, SCADA Human Machine Interfaces (HMI) typically pull process
data in a dynamic faschion from some historical database. If the purpose is to
protect the availability of the dataflow between the historian and the HMI, this
attack step is important to consider.

If any of these are TRUE, this attack step is TRUE; else, it is FALSE.

13.1.2. Replay
In the replay attack messages sent previously are sent again [61]. It could for

instance be used to send outdated process measurements to a control center that
fool operators that the power system state is at is was yesterday (when it is not).

In CySeMoL, this attack step requires access to either a client or server
connected to the data flow in question (ApplicationClient.Access or
ApplicationServer.Access), or an IP on a network zone that acts as a
medium to it (NetworkZone.ObtainOwnAddress). In addition, it requires the
Protocol connected to the data flow to not have freshness indicators functioning
(Protocol.FreshnessIndicator = FALSE) [61].

Given these circumstances, this attack step is TRUE; else, it is FALSE.

13.1.3. Eavesdrop
Message eavesdropping means that the threat agent can read the content sent

in this data flow [62].
In CySeMoL, eavesdropping is successful if the attacker has access to either

the client or server that exchanges information (ApplicationClient.Access

66

or ApplicationServer.Access). If not, there is a need for the at-
tacker to have an IP on a network zone that acts as a medium to the
data flow (NetworkZone.ObtainOwnAddress), and that the Protocol con-
nected to the data flow does not have cryptographic obfuscation enabled
(Protocol.CryptographicObfuscation = FALSE)

Given these circumstances, this attack step is TRUE; else, it is FALSE.

13.1.4. Man In the Middle
In a man in the middle (MITM) attack messages are altered during a com-

munication session. The attacker intercepts messages, alters them and resubmits
them [63]. The purpose of the attack is to alter the content of the communication
while making the receiver think the message is an original.

One possibility of succeeding with this attack step is if the attacker
has compromised one of the actors participating in the communication
(ApplicationClient.Access or ApplicationServer.Access) (AC/AS); if so,
this attack step is TRUE.

If not, MITM can still be accomplished by ARP-spoof of an OS running
an actor connected to the targeted data flow (OperatingSystem.ARPSpoof),
or DNS-spoofing a network zone that acts as a medium to the data flow
(NetworkZone.DNSSpoof) (ARP/DNS). However, for these attacks to be success-
ful, there is a need for the Protocol connected to the data flow to not have
cryptographic obfuscation (Protocol.CryptographicObfuscation) or cryp-
tographic authentication (Protocol.CryptographicAuthentication) enabled
(CO/CA)). If ARP-spoof or DNS-spoof are TRUE, and no cryptographic obfusca-
tion or authentication is used, then the likelihood of success is 99%. This estimate
was gained from an interview with a domain expert in combination with vulnera-
bility data from the US National Vulnerability Database (NVD).

An overview of this logic can be found in Table 29.

13.1.5. Produce Request
This attack step involves if an attacker can produce messages that correspond

to a requests from a client to a data flow. This could be done by establishing a
session and send whole messages, or by injecting messages in an on-going session
[63].

In CySeMoL, this can be accomplished by a successful MITM attack
(ManInTheMiddle), or by simply compromising the client part of a data flow.
This can be either obtaining an address on a network zone that is client to a data

67

Table 29: Defenses and attack steps affecting likelihood of ManIntheMiddle.

AC/AS CO/CA ARP/DNS Data

TRUE TRUE TRUE bernoulli(1)
TRUE TRUE FALSE bernoulli(1)
TRUE FALSE TRUE bernoulli(1)
TRUE FALSE FALSE bernoulli(1)
FALSE TRUE TRUE bernoulli(0)
FALSE TRUE FALSE bernoulli(0)
FALSE FALSE TRUE bernoulli(0.99)
FALSE FALSE FALSE bernoulli(0)

flow (NetworkZone.ObtainAddress), or by compromising a software client that
is connected to the targeted data flow (ApplicationClient.Access).

Given these circumstances, this attack step is TRUE; else, it is FALSE.

13.1.6. Produce Response
This attack step involves if an attacker can produce messages that correspond

to a responses by a server to requests from a client to a data flow. This could be
done by establishing a session and send whole messages, or by injecting messages
in an on-going session [63].

In CySeMoL, this can be accomplished by a successful MITM attack
(ManInTheMiddle), or by simply compromising the server part of a data flow.
This can be either obtaining an address on a network zone that is server to a data
flow (NetworkZone.ObtainAddress), or by compromising a software server that
is connected to the targeted data flow (ApplicationServer.Access).

Given these circumstances, this attack step is TRUE; else, it is FALSE.

14. Protocol

A Protocol contains the security-relevant properties of data flows, and thus
what makes different types of data flows unique. Consequently, a data flow should
always be depicted along the protocol that defines it. The differentiation between
data flow and protocol is made as there often are various data flows of the same
type (e.g., HTTP or HTTPS) within organizations. The Dataflow is the only asset
that can be connected to a protocol (cf. Figure 24).

68

Figure 26: An overview of the connections for Protocol.

There are three defenses corresponding to data flows; these are shown in Table
30 and desribed in depth in the following sections. The references in Table 30
describe the rationale behind these attributes.

Table 30: Attack steps and defenses of the Protocol class.

Attribute Rationale

Defense
FreshnessIndicator [64, 65]
CryptographicAuthentication [64, 65]
CryptographicObfuscation [64, 65]

14.1. Defenses
14.1.1. Freshness Indicator

The purpose of a freshness indicator is to denote the relative order or time that
a message was sent, this as messages both can be lost in transit or recieved in an
unintended order. Or in the case of a cyber attack - tampered with. Three types of
commonly employed freshness indicators include sequence numbers, nonces and
timestamps [64, 65].

The default state of this defense is TRUE as most protocols (e.g., TCP/IP)
support some notion of it.

14.1.2. Cryptographic Authentication
CySeMoL simplifies cryptographic authentication embedded in protocols into

one variable with two states. Either it functions and ensures authentication, or it
does not function. Attack steps that could make it not function are not detailed,
nor are defenses that makes such attack steps difficult (e.g., long keys). Bro-
ken cryptographic protocols, such as Wired Equivalent Privacy (WEP), should be
modeled as CryptographicAuthentication = FALSE as they do not ensure
authentication.

The default state of this defense is FALSE as many protocols do not require
authentication per default.

69

14.1.3. Cryptographic Obfuscation
CySeMoL simplifies cryptographic obfuscation embedded in protocols into

one variable with two states. Either it functions and ensures obufuscation, or
it does not function. Attack steps that could make it not function are not de-
tailed, nor are countermeasures that makes such attack steps difficult (e.g. long
keys). Broken cryptographic protocols, such as WEP, should be modeled as
CryptographicObfuscation = FALSE as they do not ensure obfuscation.

The default state of this defense is FALSE as many protocols do not require
authentication per default.

15. Network Zone

A NetworkZone enables a logical means for a set of hosts to reach each other.
This could for example be a local area network (LAN) or a wide area network
(WAN).

A NetworkZone can be connected to twelve different assets in 17 differ-
ent means (cf. Figure 27). A connection to a software (OperatingSystem,
ApplicationClient, or ApplicationServer or WebApplication) denotes
that this software is directly reachable over the network. Connections to
ApplicationServer is however not necessary as these automatically are reach-
able if their corresponding OperatingSystem is connected to the NetworkZone.
In other words, it is assumed that an attacker that can remotely interface with core
services of an OS also can interface with other services (e.g., HTTP or SMTP
servers) running on the OS.

A connection to a IDS, IPS, Firewall or WebApplicationFirewall denotes
that this device has a logical login function that is remotely reachable from the
network zone.

There are three possible connections to a Dataflow: client, server or
medium. A server connection implies that a client of the data flow can con-
nect to any remotely accessible application servers within the network zone. In
other words, if an ApplicationServer, or an OperatingSystem running this
ApplicationServer, is connected to a NetworkZone that has a server connec-
tion to a Dataflow, then an attacker with access to an ApplicationClient or
NetworkZone connected to this Dataflow (the NetworkZone would require a
client connection) can communicate to the network zone or server. Similarly, a
client connection implies that an attacker with access to the client NetworkZone
(NetworkZone.ObtainAddress = TRUE) can reach any NetworkZones (given a

70

server connection), and ApplicationServers connected to it. Finally, a medium
connection implies that a network zone is the medium used by a data flow.

There are two possible connections to NetworkInterface: untrusted zone
and trusted zone. An untrusted zone notifies that any information going from this
zone through the network interface is not trusted; similarly, a trusted zone means
that any information going from this zone through the network interface can be
considered trusted. This delimitations is made to remove a direct cycle involving
an attacker going from one zone to another. This semantic difference affects var-
ious attack steps in CySeMoL. For example, if an IDSSensor is connected to a
NetworkInterface, it will inspect traffic going from its corresponding untrusted
zones to its trusted zones, but not the other way around.

Network zones often coincide with the notion of network segments. The set of
hosts in such a segment/zone often have the same level of security associated them
- they are under the same security policy. For example with respect to patching,
hardening levels, physical security and user access levels. This is addressed by
the asset ZoneManagementProcess; if this is connected to a network zone it will
influence the states of various defenses within the zone.

Similarly to ZoneManagementProcess, a network zone can be connected to
a NetworkVulnerabilityScanner. This connection signifies that the zone reg-
ularly undergoes either authenticated or unauthenticated scans by a network scan-
ner in order to find and eventually mitigate vulnerabilities in devices present on
the network zone.

Finally, connection to a PhysicalZone denotes that an attacker has direct
physical access to the network zone.

There are two defenses and four attack steps corresponding to network zones;
these are shown in Table 31 and desribed in depth in the following sections. The
references in Table 31 describe the rationale behind these attributes.

15.1. Defenses
15.1.1. DNS Sec

The domain name system is a hierarchical system involving a large number of
domain name servers organized in a tree-architecture. These servers map URLs to
IP-addresses. Nodes are divided into DNS zones which are collectively served by
a domain name server. Domain name servers may also delegate parts of its DNS
zone to other domain name servers.

So, a network zone’s hosts will belong to one or more DNS zones and they
will query the domain name servers for IP addresses corresponding to different
URLs. To resolve such queries the domain name server might query other domain

71

Figure 27: An overview of the connections for NetworkZone.

name servers for the requested information. DNS servers thus communicate with
each other and with the clients requesting domain names to be resolved. The
Domain Name System Security Extensions (DNSSEC) adds authentication to this
communication through digital signatures [66]. The purpose is to protect against
DNS spoofing attacks where the DNS cache is manipulated in a server.

The default state of this defense is TRUE as DNSsec is common in practice.

15.1.2. Port Security
Port security (also known as Port Binding or MAC Binding) is related to the

network devices used in the network zone, such as switches. Port security means
that the ports (network outlets) on a network device are locked to a set of specified
MAC (Media Access Control) addresses [67].

While a computer’s MAC address can be changed to one of the permitted
addresses this offer some protection against attacks where the threat agent phys-
ically connect to the network. If port security is activated the threat agent must
identify a permitted MAC address and change the address of the compute one
wish to connect. To find the right address is not trivial without network access.
Also, the right MAC address owner must be disconnected and replaced to enable
use of their MAC address. If there is a one-to-one mapping between outlets and

72

Table 31: Attack steps and defenses of the NetworkZone class.

Attribute Rationale

Defense
DNSSec [66]
PortSecurity [67]
Attack step
DNSSpoof [66]
DenialOfService [23, 24]
FindUnknownEntryPoint [27, 25]
ObtainOwnAddress [66]

MAC addresses this is definitely necessary. But even if there is no such one-to-
one mapping a conflict will arise if two identical MAC addresses are within the
same network.

The mapping between MAC addresses and switches’ outlets can be a one-
to-one mapping, or it can specify more general requirements; for instance, what
MAC addresses that can be connected to a specific switch or a set of switches.

The default state of this defense is FALSE.

15.2. Attack Steps
15.2.1. DNS Spoof

DNS spoofing means that an attacker associates a URL with a desired IP ad-
dress. In [66] three types of DNS spoofing attacks are discussed:

• Cache poisoning - a server is served with manipulated IP to URL-mappings
that are stored in its cache.

• Server compromising - the DNS server is compromised by the attacker.

• Spoofing - the attacker masquerades its own DNS server as some other (le-
gitimate) DNS server

All these are included in this attack step. To succeed with the attack, there
is a need for the attacker to reach the network zone as such (ObtainAddress =
TRUE). A condition making cache poisoning more difficult is if DNSSec is used
in the zone. If DNSSec is used, the likelihood of this attack step is FALSE. If
the attacker can reach the network zone and DNS sec is false, this attack step is
TRUE.

73

15.2.2. Denial Of Service
This attack step concerns causing denial of service for the network zone com-

munication medium [23, 24].
In CySeMoL, this can be accomplished if an attacker can ARP spoof the net-

work interface connected to the network zone (NetworkInterface.ARPSpoof).
If not, it can still be accomplished if the attacker is able to reach the network zone
as such (ObtainAddress). If so, the likelihood of successful attack is 0.1%. This
was estimated based on an interview with a domain expert [24]. If the attacker
cannot reach the network zone, this attack step is FALSE.

15.2.3. Find Unknown Entry Point
It is difficult to secure a system which is largely or partly unknown. To build

and maintain an (cyber) asset inventory is therefore often recommended [68].
This attack step groups actions that identify entry points to a network zone

which are not known to the persons responsible creating the instance model. To
accomplish this attack step one could for instance find and use:

• Data flows allowed by the firewall, while the model creator think they are
not.

• Connections that are not known to exist, e.g. modems that are thought to be
disconnected.

• Find a host with dual network interfaces that were believed to belong in
only one network zone.

The probability that this attack step can be accomplished depends on the at-
tacker’s ability to find existing entry points. But it also depends on the gap be-
tween the instance model and the real world. The gap between the instance model
and the real system can be reduced by investing effort in keeping the model (and
the security group’s knowledge) up-to-date. The ideal situation is when the change
management process is functioning and the model is kept updated.

To accomplish this attack step, there is a need for an attacker to be able to
probe the zone for possible entry points. In CySeMoL, this means that the attacker
must have an address on an adjacent NetworkZone (a network zone connected to
the same NetworkInterface as the probed zone).

If this is the case, the likelihood of gaining an entry depends on whether there
is a Firewall or not, and whether this firewall has been compromised, is func-
tioning (Firewall.Functioning) or has a modeled rule set that is known to

74

perfectly reflect the real world (Firewall.KnownRuleSet). If the firewall is not
functioning, or if it compromised, ths attack step will be TRUE. If the firewall has
a known rule set, it will be FALSE. If the firewall is functioning, but it is unknown
whether its rule set reflects the real world, the likelihood of attack success depends
on how the network zone is maintained.

In CySeMoL, three defenses related to network maintenance influence the
likelihood of this attack step being true:

1. If security audits are performed on a regular basis.
2. If logs are reviewed on a regular basis.
3. If there is a formal process for managing changes in the IT architecture.

These correspond to the CySeMoL defenses:

1. ZoneManagementProcess.RegularSecurityAudits (Audits)
2. ZoneManagementProcess.RegularLogReviews (Logs)
3. ZoneManagementProcess.FormalChangeControlProcess (Changes)

How these defenses influence the likelihood of this attack step being TRUE
are described in Table 32. These data come from [27, 25].

Table 32: Defenses affecting likelihood of FindUnknownEntryPoint.

Audits Logs Changes Data

TRUE TRUE TRUE bernoulli(0.64)
TRUE FALSE TRUE bernoulli(0.65)
FALSE TRUE TRUE bernoulli(0.59)
FALSE FALSE TRUE bernoulli(0.61)
TRUE TRUE FALSE bernoulli(0.65)
TRUE FALSE FALSE bernoulli(0.63)
FALSE TRUE FALSE bernoulli(0.68)
FALSE FALSE FALSE bernoulli(0.71)

15.2.4. Obtain Own Address
Having an address on a network zone means that the attacker can commu-

nicate to any device connected to this network zone [66]. This attack step
can be accomplished by either 1) compromising an OS on the network zone

75

(OperatingSystem.Access), 2) compromising a data flow that devices on a net-
work zone is server to (Dataflow.ProduceRequest), 3) finding an unknown
entry point to the network zone (FindUnknownEntryPoint).

If any of these attack steps are TRUE, this attack step is TRUE; else, it is
FALSE.

16. Network Interface

A NetworkInterface can be seen as the network gateway. On its own, it
provides no firewall functionality what so ever - it merely serves to redirect any
network traffic to its designated addresses.

A NetworkInterface can be connected to five different assets in six different
means(cf. Figure 28). A connection to IDS, IPS or Firewall denotes that traffic
through this network interface is managed/analyzed by that device. Connection to
a Dataflow denotes that the data flow is allowed to pass through any Firewall

connected to the network interface.
There are two possible connections to NetworkZone: untrusted zone and

trusted zone. An untrusted zone notifies that any information going from this
zone through the network interface is not trusted; similarly, a trusted zone means
that any information going from this zone through the network interface can be
considered trusted. This delimitations is made partly to remove a direct cycle
involving an attacker going from one zone to another, and partly as some informa-
tion flows are inheretly more trustworthy than others. For instance, the informa-
tion going from a business network to a supervisory control and data acquisition
(SCADA) network is typically less trustworthy than information going from a
SCADA network to a business network. This semantic difference affects vari-
ous attack steps in CySeMoL. For example, if an IDSSensor is connected to a
NetworkInterface, it will inspect traffic going from its corresponding untrusted
zones to its trusted zones, but not the other way around.

There are one defense and two attack steps corresponding to network inter-
faces; these are shown in Table 27 and desribed in depth in the following sections.
The references in Table 33 describe the rationale behind these attributes.

16.1. Defenses
16.1.1. Static ARP Tables

CySeMoL assumes that the TCP/IP-stack is used and that hosts are identified
with MAC-addresses on the physical layer. Address resolution protocol (ARP)

76

Figure 28: An overview of the connections for NetworkInterface.

Table 33: Attack steps and defenses of the NetworkInterface class.

Attribute Rationale

Defense
StaticARPTables [16]
Attack step
ARPSpoof [16]
DenialOfService [23, 24]

map MAC-addresses to IP-addresses within the zone. If this mapping is not static
it can be compromised by other in the same broadcast domain [16].

The default state of this defense is FALSE as static ARP tables due to number
of reasons are impractical [16], and thus not often used.

16.2. Attack Steps
16.2.1. ARP Spoof

This attack step concerns whether it is possible to poison ARP tables in the
network interface. If the network interface’s ARP tables are poisoned this can be
used to intercept traffic going from the external zone to the internal zone [16].

The network interface will use its ARP tables to identify what MAC address an
incoming IP package should be forwarded to. If an attacker can compromise the

77

ARP table then this attacker can make these IP packages end up at arbitrary MAC
address (e.g. his/her own). The attacker could then alter data before forwarding it
to its intended address.

For this attack step to be successful, there is a need for the attacker to
have an address on a network zone trusted by the network interface ((trusted)
NetworkZone.ObtainAddress). There is also a need for StaticARPTables to
be FALSE. Given these circumstances, this attack step is TRUE; else, it is FALSE.

16.2.2. Denial Of Service
This attack step concerns causing denial of service for the network interface

(e.g., turn it off or overload its message cue and cause major packet loss) [23, 24].
In CySeMoL, this can be accomplished if an attacker can ARP spoof the net-

work interface (ARPSpoof). If not, it can still be accomplished if the attacker is
able to reach the network zone as such (NetworkZone.ObtainAddress). If so,
the likelihood of successful attack is 0.1%. This was estimated based on an in-
terview with a domain expert [24]. If the attacker cannot reach the network zone,
this attack step is FALSE.

17. Firewall

In general, the meaning and functionality of a firewall can vary significantly.
For instance, in [69] firewalls are divided into three classes: screening routers,
application proxies and stateful inspectors. These three basic functionalities are
also discussed in [70], in addition to a number of other firewall functionalities,
e.g., NAT routers, application based firewalls and host based firewalls. Some of
these are combinations of functionalities, and some classes relate to where the
firewall is deployed (i.e. network interface/gateway or host). In CySeMoL, host
firewalls are included in the OperatingSystem class; this class concerns network
based firewalls.

More specifically, a Firewall represents a type of packet filter that performs
statful inspection and packet analysis. A packet filter (a.k.a. a screening router) fo-
cus on inspecting the packet headers origin (IP and port), destination (IP and port)
and the transport protocol used [70]. A stateful inspection firewall is functionality
added on top on packet filtering. It also keeps track of the state of sessions and that
packages session flags conform to these. This check will improve on the ability to
detect injected (spoofed) packages [70]. As almost all firewalls used today have
both functionalities they are here combined.

78

A Firewall can be connected to three different assets (cf. Figure 29).
A connection to a NetworkZone denotes that the firewall has a logical login
function that is remotely reachable from the network zone. Connection to a
NetworkInterface denotes that traffic through this network interface is handled
by the firewall. Connection to an AccessControlPoint described the logical
login function of the firewall.

Figure 29: An overview of the connections for Firewall.

There are two defenses corresponding to firewalls; these are shown in Table
34 and desribed in depth in the following sections. The references in Table 34
describe the rationale behind these attributes.

Table 34: Attack steps and defenses of the Firewall class.

Attribute Rationale

Defense
Functioning [70]
KnownRuleSet [27, 25]

17.1. Defenses
17.1.1. Functioning

This defense conserns whether the firewall is functioning at all, i.e., whether
it performs stateful inspection and packet filtering or not [70].

The default state of this defense is TRUE.

79

17.1.2. Known Rule Set
This defense concerns whether the modeled rule set of the firewall correctly

reflects the real world or not. That is, a firewall might be misconfigured without
the knowledge of the individual who creates the CySeMoL instance model [27,
25].

The default state of this defense is FALSE as it is a difficult and time-
demanding task to ascertain that a model reflects reality. It should only be set
as TRUE in circumstances where there is a very high degree of certainty regard-
ing the firewall’s maintenance and function.

18. Intrusion Prevention System

An intrusion prevention system (IPS) is a device (a combination of software
and hardware) that inspects the application layer and performs stateful protocol
analysis [69]. The main difference between a Firewall and an IPS is that the IPS
performs stateful inspection based on not only header- , but also packet payload
information.

This firewall functionality of an IPS can, by inspecting the application layer,
remove suspicions content, ban certain types of commands, or ban certain combi-
nations of commands. They can for example remove executable files from email
attachments or prevent the put-function in FTP (File Transfer Protocol) from be-
ing used [69]. Application firewalls can also be used as application proxies to
services. They can also identify and ban traffic that is sent repeatedly over the
network interface [69].

An IPS can be connected to six different assets (cf. Figure 30). A connection
to a NetworkZone denotes that the IPS has a logical login function that is remotely
reachable from the network zone. Connection to a NetworkInterface denotes
that traffic through this network interface is analzyed by the IPS. Connection to
an AccessControlPoint described the logical login function of the IPS. Con-
nection to an ApplicationClient, ApplicationServer or OperatingSystem
denotes that the IPS is an application proxy to this software (or if OS, collection
of software).

There is one defense corresponding to IPSs; this is shown in Table 35 and
described in the following section. The reference in Table 35 describe the rationale
behind this defense.

80

Figure 30: An overview of the connections for IPS.

Table 35: Attack steps and defenses of the IPS class.

Attribute Rationale

Defense
Functioning [70]

18.1. Defenses
18.1.1. Functioning

This defense conserns whether the IPS is functioning at all, i.e., whether it
performs stateful inspection and packet filtering or not [70].

The default state of this defense is TRUE.

19. Intrusion Detection System

The plethora of intrusion detection methods and techniques that have been in-
troduced are commonly categorized as either anomaly based or signature (a.k.a.
misuse) based [71]. Anomaly based schemes estimates the normal behavior of a
system and generates alarms when the deviation from the normal exceeds some
threshold [71]. Signature based schemes look for patterns (signatures) in the an-
alyzed data and raise alarms if the patterns match known attacks [71]. CySeMoL
includes signature-based IDS as these typically are used in practice [72].

Two common intrusion detection systems (IDS) include network intrusion de-
tection systems (NIDS) and host-based intrusion detection systems (HIDS) [71].
HIDS supervise the systems they are deployed on; NIDS supervise the network

81

traffic on they employed on the perimeter dividing two or more zones. In Cy-
SeMoL, the connections of an IDSSensor depict whether a HIDS or a NIDS is
concerned.

An IDSSensor can be connected to four assets (cf. Figure 31). A connec-
tion to a NetworkZone denotes that the IDS has a logical login function that is
remotely reachable from the network zone. Connection to a NetworkInterface

denotes that traffic through this network interface is analyzed by the IDS (i.e.,
the IDS is a NIDS). Connection to an OperatingSystem denotes that the
IDS is a host-based solution on this OS (i.e., a HIDS). Connection to an
AccessControlPoint described the logical login function of the IDS.

Figure 31: An overview of the connections for IDSSensor.

There are two defenses corresponding to IDSs; these are shown in Table 36
and desribed in depth in the following sections. The references in Table 36 de-
scribe the rationale behind these attributes.

Table 36: Attack steps and defenses of the IDSSensor class.

Attribute Rationale

Defense
Functioning [56]
Tuned [56]
Updated [56]

82

19.1. Defenses
19.1.1. Functioning

This defense conserns whether the IDSSensor is properly installed and con-
figured, i.e. that it does what could be expected from an IDS [56].

The default state of this defense is TRUE.

19.1.2. Tuned
Intrusion detection systems are often tuned in to their environment [56]. This

could for example include giving the IDS information about the network it is
placed on and its normal characteristics.

The default state of this defense is TRUE.

19.1.3. Updated
Signature based IDSs use a ruleset to identify attacks. To be able to detect new

attacks the ruleset needs to be updated with signatures that cover those attacks
[56]. As with software patches it is often possible to select the updates to apply.
However, common practice is to update the ruleset completely when it is updated.
This attribute states if the ruleset is completely updated. That is, if the rules used
by the signature based IDS are the latest rules that can be applied.

The default state of this defense is TRUE. However, it greatly depends on the
context of the scenario. Given a scenario where rule set updates require local
access of the IDS (e.g., in many critical infrastructure environments) these are
likely also less frequent.

20. Network Vulnerability Scanner

A NetworkVulnerabilityScanner is a commonly used tool to identify vul-
nerabilities such as unpatched software and weak passwords [73, 15].

A NetworkVulnerabilityScanner can be connected to a two different as-
sets in five different ways (cf. Figure 32). A connection to a NetworkZone

or OperatingSystem can be enabled denoting either an authenticated or unau-
thenticated scan. During an unauthenticated scan, the scanner probes for vul-
nerabilities that are testable through TCP or UDP without any privileges on
the studied systems - i.e., any ApplicationServer (e.g., an FTP service) con-
nected to the probed OperatingSystem. If an ApplicationServer has a lo-
gin interface (e.g., SSH or FTP), the scanner can also attempt to evaluate any
poor passwords for this interface. During an authenticated scan, the scan-
ner is allowed to log in to the probed systems. Thus, an authenticated scan

83

is typically both more effective and can not only evaluate vulnerabilities for
the ApplicationServer, but also for any ApplicationClient (e.g., a web
browser) residing on the probed OperatingSystem. Both scanning types can
also help find ApplicationServers unknown to the network administrator
(OperatingSystem.FindUnknownService). An OperatingSystem can also be
designated to not be part of the scanning policy (this is common in practice as
scans can cause availability issues).

Figure 32: An overview of the connections for NetworkVulnerabilityScanner.

There is a single defense corresponding to vulnerability scanners; this is shown
in Table 37 and desribed in depth in the following section. The reference in Table
37 describe the rationale behind this attribute.

Table 37: Attack steps and defenses of the NetworkVulnerabilityScanner class.

Attribute Rationale

Defense
Functioning [73, 15]

20.1. Defenses
20.1.1. Functioning

This defense conserns whether the vulnerability scanner is functioning at all,
i.e., whether it is used or not [73, 15].

84

The default state of this defense is TRUE.

21. Zone Management Process

A ZoneManagementProcess represents a process for managing a network
zone. One such process might be used to manage multiple network zones. They
are here assumed to cover all hosts and installed software in the zone. However,
one could imagine cases were several different management processes are used
for managing different parts of a network zone. To manage this type of scenario
using CySeMoL, there is a need to divide such a network zone into several sub-
zones. Numerous of attributes can be associated with IT management activities.
COBIT [165], for example, describes 34 processes for controlling IT, over 100
pieces of information that should be passed between these processes and the roles
of 15 organizational functions in the processes. CySeMoL simplify this domain
into one process and a handful of variables of particular importance.

There is a single connection available for ZoneManagementProcess (cf. Fig-
ure 33). This connection denotes that this particular NetworkZone is managed by
the management processes specified in that particular ZoneManagementProcess.

Figure 33: An overview of the connections for ZoneManagementProcess.

There are seven defenses corresponding to management processes; these are
shown in Table 38 and desribed in depth in the following sections. The references
in Table 38 describe the rationale behind these attributes.

21.1. Defenses
21.1.1. Host Hardening Procedures

Procedures for hardening hosts are an often recommended [74, 75, 70, 27].
This activity involves disabling software ports, disabling unused or dangerous
services and disabling outlets for portable media. The existence of this defense
states that such practices are included in the network management process.

The default state of this defense is FALSE as it is a costly and presumably not
very common activity. However, it greatly depends on the actual environment.
Given an environment where the functionality of hosts is well known (e.g. con-
trol centres), this practice is easier to implement than in environments with more
variation and more hosts (e.g. office networks).

85

Table 38: Attack steps and defenses of the ZoneManagementProcess class.

Attribute Rationale

Defense
HostHardeningProcedures [74, 75, 70, 27]
AutomatedPatchManagementProcess [14]
RegularLogReviews [76, 27]
RegularSecurityAudits [77, 27]
FormalChangeManagementProcess [22, 75, 27]
ManagedByAntiMalwareSolution [20]
USBAutoRunDisabledInDomain [21, 38, 39]

21.1.2. Automated Patch Management Process
When a software vulnerability has been found the software’s vendor often

develop and distribute an update or patch to remove the vulnerability. This defense
involves whether the process of applying such a software update is automated or
not [14]. Given an automated patch management process, users are not required
to actively download and install critical security updates - this is automatically
accomplished by the software developer or an in-house service. The Windows
update is an example of this type of mechanism.

The default state of this defense is TRUE as most common commercial-of-the-
shelf software are prospect to automatic updates. However, it naturally depends
on the context of the enviroment: given a scenario where no internet connection
is available (e.g., in control centres), automatic updates is naturally problematic
to achieve.

21.1.3. Regular Log Reviews
Regular log reviews is an often recommended practice. One of the primary

purposes of audit logs is to validate that the system operates according to policies
[76, 27]. Audit logs can for example be used to identify misconfigured firewalls or
to resolve problems with security policy compliance. The frequency of conducted
reviews is naturally of importance. In CySeMoL, “regularity” refers to that logs
are reviewed at least once every 90 calendar days (this is the same recommenda-
tion as is given by NERC CIP [74]).

The default state of this defense is TRUE.

86

21.1.4. Regular Security Audits
RegularSecurityAudits involves if the network zone undergoes regular se-

curity audits by professionals, an often recommended practice to identify both
technical and managerial vulnerabilities [77, 27].

The default state of this defense is FALSE.

21.1.5. Formal Change Management Process
FormalChangeManagementProcess involves whether there is a formal pro-

cess for managing changes in the configuration of an architecture; the greater the
understanding of the systems that need be secured, the greater the possibility to
identify and mitigate vulnerabilities corresponding to them [22, 75, 27].

The default state of this defense is TRUE. However, as for the other processes
within ZoneManagementProcess, its state naturally depends on the context of the
environment.

21.1.6. Managed By Anti Malware Solution
Anti malware, or anti-virus, solutions is an often recommended practice to

mitigate malware [20]. This defense concerns whether there is a domain policy
regarding usage of anti-virus solutions within a network zone.

The default state of this defense is TRUE as most enterprises have domain
policies regarding anti-virus solutions. However, it should be set to FALSE given
an environment without such a policy (e.g., many control center environments).

21.1.7. USB AutoRun Disabled In Domain
Many malware spread through USB drives using the USB AutoRun function-

ality available in many operating systems [21, 38, 39]. Disabling such functional-
ity thus effectively mitigate this attack vector. This can typically be accomplished
on a domain level, e.g., for Windows environments by specifying a policy in the
Domain Controller2.

The default state of this defense is FALSE as USB AutoRun often is seen as a
useful functionality worth keeping.

22. Physical Zone

While physical security [78] (e.g., burglar alarms, fences, locks and doors)
naturally are of relevance to cyber security, CySeMoL focuses on cyber-attacks

2http://support.microsoft.com/kb/967715

87

and consequently do not involve how physical attacks can be performed in detail.
However, it includes modeling that they can be performed and what attack steps
they can enable. This is modeled using the asset PhysicalZone, which specifies
what assets that an attacker has physical access to during an attack.

PhysicalZone can be connected to two different assets (cf. Figure 34). Con-
nection to a NetworkZone means that all equipment within the zone is within the
same physical environment. Connection to an OperatingSystem means that the
physical access of this particular system is possible from that particular physical
zone. To enable attacks involving a physical zone, there is a need to connect the
Attacker to this particular zone.

Figure 34: An overview of the connections for PhysicalZone.

There is one attack step corresponding to physical zones; this is shown in Table
39 and desribed in in the following section. The reference in Table 39 describe
the rationale behind it.

Table 39: Attack steps and defenses of the PhysicalZone class.

Attribute Rationale

Attack step
Access [78]

88

22.1. Attack Steps
22.1.1. Access

This attack step concerns whether an attacker has access to the PhysicalZone
in question. In practice, many aspects naturally affect the likelihood that an at-
tacker can gain physical access [78]. However, as explained previously, this is out
of scope for CySeMoL.

The default state of this defense is FALSE (i.e., it is assumed that physical
access is not possible for attackers).

23. Access Control Point

An access control point is a place where access can be controlled [79]. This
includes evaluating the user’s credentials and privileges and granting or denying
access. It binds an authentication mechanism to user accounts and to an object (a
software). It will maintain access control unless it is bypassed.

An AccessControlPoint can be connected to ten different as-
sets (cf. Figure 35). A connection to a Firewall, IDSSensor, IPS,
WebApplicationFirewall, WebApplication, ApplicationServer,
ApplicationClient or OperatingSystem denotes a means of logical ac-
cess for this particular asset. Connection to PasswordAccount designates that
this particular account can be used to bypass the access control point. Connection
to a PasswordAuthenticationMechanism designates that accounts related to
this access control point are prospect to the security policies of this particular
password authentication mechanism.

Figure 35: An overview of the connections for AccessControlPoint.

There are two attack steps related to access control points; these are shown in
Table 40 and detailed in the following section. The references in Table 40 describe
the rationale behind them.

89

Table 40: Attack steps and defenses of the AccessControlPoint class.

Attribute Rationale

Attack Step
Bypass [79]
Interface [79]

23.1. Attack Steps
23.1.1. Bypass

Bypass concerns whether an attacker is able to bypass the
AccessControlPoint and gain access to the system it protects [79].

For this attack step to be successful, there is a need for the attacker to be able
to reach it (i.e., Interface = TRUE). If the attacker can reach an access control
point, there are four means of bypassing it:

1. If no specific credentials are required.
2. By harvesting the database containing passwords and user accounts corre-

sponding to it and, if required, breaking the existing encryption mechanism
(e.g., using John the Ripper3).

3. By guessing a correct username and password through some online method-
ology.

4. By social engineering relevant credentials from an individual.

In CySeMoL, these correspond to:

1. If no PasswordAuthenticationMechanism is connected to the access
control point or if PasswordAuthenticationMechanism.Functioning

= FALSE .
2. PasswordAccount.GuessAuthenticationCodesOffline.
3. PasswordAccount.GuessAuthenticationCodesOnline.
4. PasswordAccount.SocialEngineerAuthenticationCodes.

If any of these attack steps are TRUE, this attack step is TRUE; else, it is
FALSE.

3www.openwall.com/john/

90

23.1.2. Interface
Interface concerns whether an attacker is able to reach the

AccessControlPoint [79]. In CySeMoL, there are two primary means
for an attacker to accomplish this attack step: by having physical access to the
system it corresponds to, or by being able to connect to the system it corresponds
to. The prior includes physical access of a related operating system or network
zone; the latter includes being able to connect to the software or device itself,
through any means available in CySeMoL. For instance, access of an operating
system enables interfacing with access control points of software clients running
on the system, and if the attacker can gain an IP on a network zone from where
remote access of a firewall is possible, the attacker can reach the access control
point of this firewall. An overview of these are described in the list below.

• PhysicalZone.Access (of a NetworkZone or OperatingSystem)

• ApplicationServer.ConnectTo

• OperatingSystem.Access (to interface with an ApplicationClient)

• NetworkZone.ObtainOwnAddress (for an IDSSensor, IPS, Firewall,
WAF or ApplicationClient that are connected to the NetworkZone)

If an AccessControlPoint can be reached by the attacker through any of
these means, this attack step is TRUE; else, it is FALSE.

24. Password Authentication Mechanism

A PasswordAuthenticationMechanism represents the module that inspects
supplied credentials and grant or deny access [80].

A PasswordAuthenticationMechanism can be connected to a single type of
asset, the AccessControlPoint (cf. Figure 36). This connection associates the
properties of the authentication mechanism to all PasswordAccounts connected
to that access control point. The password database corresponding to an authenti-
cation mechanism is included within it; there is no need to model it separately.

There are six defenses and one attack step corresponding to password authen-
tication mechanisms; these are shown in Table 41 and desribed in depth in the
following sections. The references in Table 41 describe the rationale behind these
attributes.

91

Figure 36: An overview of the connections for PasswordAuthenticationMechanism.

Table 41: Attack steps and defenses of the PasswordAuthenticationMechanism class.

Attribute Rationale

Defense
Functioning [81]
BackoffTechnique [80]
DefaultPasswordsRemoved [81]
ProactivePasswordChecker [82, 81]
HashedRepository [81]
HashedRepositorySalted [83]
Attack step
ExtractPasswordRepository [84]

24.1. Defenses
24.1.1. Functioning

This defense concerns whether the authentication mechanism is enabled
at all, i.e., whether a password is required to bypass the corresponding
AccessControlPoint or not [81].

The default state of this defense is TRUE.

24.1.2. Backoff Technique
A BackoffTechnique increases the difficulty of online password guessing

by reacing to consecutive failed login requests. According to [80], there are four
types of backoff techniques:

1. Exponential backoff : If n is the number of login failures made and x is a
predefined number the system waits xn seconds before processing the login

92

request.
2. Disconnection: This technique breaks the connection after x number of

failed login attempts. This technique is effective if it takes effort and/or
time to reestablish the connection.

3. Disabling: With this technique the account is disabled after x number of
failed login attempts. The system administrator must then be involved to
reactivate the account.

4. Jailing: With this technique the system grant access also when login at-
tempts fail. However, access is only granted to some limited part of the
system. The threat agents activities attentions can then be examined, or the
threat agents time can be wasted.

if any of these techniques are present, BackoffTechnique should be defined
as TRUE. TRUE is also the default value of this defense.

24.1.3. Default Passwords Removed
Software products frequently come with default passwords that often are easy

to obtain (e.g., written in the standard software manual). Best practice is naturally
to remove these default passwords and replace them with new, instance specific,
passwords [81]. However, this practice is not always applied in practice [85]. This
defense concerns whether default passwords are removed or not.

The default state of this defense is TRUE; i.e., it is assumed that default pass-
words have been removed.

24.1.4. Proactive Password Checker
A proactive password checker studies whether passwords follow some prede-

fined policy [82, 81]. Such a policy could for example be that passwords should
be longer than eight characters, contain certain types of symbols, be changed with
some frequency or be different from previous passwords. In CySeMoL, it is as-
sumed that any password related to the proactive password checker has at least
8 characters with one special sign, one uppercase, one lowercase letters and one
number.

The default state of this defense is TRUE as it is the default in most environ-
ments.

24.1.5. Hashed Repository
In a hashed repository no passwords are stored in clear text [81]. Instead,

a c hash sum generated using a cryptographic hash function is used to store the

93

password. Examples of functions include: RIPEMD-128, HAVAL, and SHA-1.
CySeMoL does not detail the function used, only the fact that a cryptographic
hash function is used.

The default state of this defense is FALSE as many database solutions still
store passwords in clear text.

24.1.6. Hashed Repository Salted
To make password cracking more difficult the password is sometimes “salted”

before it is hashed [83]. Password cracking often employs dictionaries to identify
passwords from their hash sum. A salt has the purpose to make password cracking
more difficult by appending some extra characters to the password before passing
it to the hash function. By doing so, the hash sum becomes longer and more
difficult to guess. This is true for both traditional brute force attacks and for
attacks employing rainbow tables.

The default state of this defense is FALSE as salt is not available for Windows
operating system user passwords.

24.2. Attack Steps
24.2.1. Extract Password Repository

This attack step involves whether the attacker is able to gain (and process) a
local copy of the password repository; a requirement for offline guessing attacks.

To succeed with this attack step there is first a need for the attacker to be able
to connect to the application control point related to the authentication mechanism
(AccessControlPoint.Interface = TRUE). If so, the probability of successful
attack is 5%. This number was estimated by a security expert and refers to the
likelihood that there is a vulnerability in the authentication function that enables
password extraction [84]. For instance, CVE-2008-4037 is such a vulnerability
and concerns Microsoft’s SMB implementation. Else, this attack step is FALSE.

25. Password Account

A PasswordAccount is a user account protected by a password; the far most
common authentication mechanism in information technology.

Two assets can be connected to a PasswordAccount (cf. Figure 37). Connec-
tion to a Person specifies that this individual has access to that particular account.
Connection to a PasswordAuthenticationMechanism denotes that the account
is protected by that particular authentication mechanism.

94

Figure 37: An overview of the connections for PasswordAccount.

There are three attack steps corresponding to password accounts; these are
shown in Table 42 and desribed in depth in the following sections. The references
in Table 42 describe the rationale behind these attributes.

Table 42: Attack steps and defenses of the PasswordAccount class.

Attribute Rationale

Attack step
GuessAuthenticationCodesOffline [84]
GuessAuthenticationCodesOnline [84, 15]
SocialEngineerAuthenticationCodes [86, 31, 87, 88]

25.1. Attack Steps
25.1.1. Guess Authentication Codes Offline

GuessAuthenticationCodesOffline concerns password cracking; retriev-
ing credentials from a locally accessible password repository [83].

For many authentication mechanisms this procedure can be completely au-
tomated under certain conditions. For example, Ophcrack is a Windows XP
based “password recovery tool” which finds 99.9% of all alphanumeric passwords
shorter than 15 characters in a matter of seconds4. Ophcrack, and similar tools,

4http://ophcrack.sourceforge.net/

95

however require access to the password file. In CySeMoL, this corresponds to
PasswordAuthenticationMechanism.ExtractPasswordRepository, which
needs to have the state TRUE for this attack to be able to succeed.

If this is the case, the probability that an account password can be cracked
depends on its entropy. Tools like Ophcrack are typically limited with respect to
password length, characters in passwords, or some combination of these. Hence,
long passwords with many types of characters (number, alphabetical, special char-
acters) will make the account significantly more difficult to crack. In CySeMoL,
three defenses concern these aspects:

1. PasswordAuthenticationMechanism.ProactivePasswordChecker

(PC)
2. PasswordAuthenticationMechanism.HashedRepository (HR)
3. PasswordAuthenticationMechanism.HashedRepositorySalted

(HRS)

The effectiveness of these defenses were estimated using data on the
speed of cracking tools for different types of passwords and entropy, along
with assumptions regarding presumed characteristics of passwords and entropy
given these defenses [84]. In short, this findings of this study show that a
ProactivePasswordChecker in practice next to completely mitigates the attack
(i.e., if it is TRUE, this attack step is FALSE). Furthermore, a scenario with a
salted hashed repository (i.e., HashedRepository = TRUE and HashedReposito-
rySalted = TRUE) also mitigates the attack. Given use of hash without salt, the
likelihood of success is approximately 60%. In other cases, the success rate of
this attack step is TRUE. This is shown in Table 43.

25.1.2. Guess Authentication Codes Online
This attack step include attacks that concern correctly guessing credentials

using a live application, i.e., “online-attacks” [89].
The difficulty of guessing a password online depends on the search space an

attacker is confronted with [180]. For example, authentication mechanisms com-
prising of four digits are easier to guess than those that that comprise of an arbi-
trary number of alphanumerical characters. For specific types of authentication
mechanisms guessing can be supported by traces left by legitimate users, e.g. fre-
quently used buttons on a key panel. In CySeMoL, a password however concerns
a password in the “traditional” sense, i.e., a string of arbitrary length that can
constist of a mix of upper case letters, lower case letters, numbers and special
characters.

96

Table 43: Defenses affecting likelihood of GuessAuthenticationCodesOffline.

PC HR HRS Data

TRUE TRUE TRUE bernoulli(0)
TRUE TRUE FALSE bernoulli(0)
TRUE FALSE TRUE bernoulli(0)
TRUE FALSE FALSE bernoulli(0)
FALSE TRUE TRUE bernoulli(0)
FALSE TRUE FALSE bernoulli(0.6)
FALSE FALSE TRUE bernoulli(1)
FALSE FALSE FALSE bernoulli(1)

In CySeMoL, online password guessing first of all requires that the attacker
can reach the authentication mechanism (i.e., AccessControlPoint.Interface
= TRUE). If so, the likelihood of successful attack depends on the presence of four
defenses:

1. If default passwords have been removed.
2. If a proactive password checker is employed.
3. If a back-off technique is employed.
4. If an authenticated or unauthenticated scan has been perfomed by a network

vulnerability scanner

In CySeMoL, these concern the following defenses:

1. PasswordAuthenticationMechanism.DefaultPasswordsRemoved

(DPR)
2. PasswordAuthenticationMechanism.ProactivePasswordChecker

(PC)
3. PasswordAuthenticationMechanism.BackoffTechnique (BOT)
4. NetworkVulnerabilityScanner.Functioning (NVS)

The effectiveness of these defenses were estimated through a literature study
[84] and an experiment [15], using the same assumptions regarding the type of
passwords involved as for GuessAuthenticationCodesOffline. A vulnerabil-
ity scanner tests passwords that have been manually input by the user; thus, in
practice they serve to mitigate the possibility of default passwords. The likeli-
hood of success of this attack given the presence or absence of these defenses is
illustrated by Table 44. See [84] for detailed information on how these estimates
were derived.

97

Table 44: Defenses affecting likelihood of GuessAuthenticationCodesOnline.

PC DPR or NVS BOT Data

TRUE TRUE TRUE bernoulli(0)
TRUE TRUE FALSE bernoulli(0)
TRUE FALSE TRUE bernoulli(1)
TRUE FALSE FALSE bernoulli(1)
FALSE TRUE TRUE bernoulli(0.0001)
FALSE TRUE FALSE bernoulli(0.6)
FALSE FALSE TRUE bernoulli(1)
FALSE FALSE FALSE bernoulli(1)

25.1.3. Social Engineer Authentication Codes
A social engineering attack involves deceiving an individual into complying

with a malicious request [90]. A social engineering attack can be carried out
through any means, with an especially common variant being by email (often
called phishing). This attack step concerns an attacker that is able to social engi-
neer credentials of a targeted application through any means.

To be successful with this attack step, the attacker must be able to connect
to the targeted application (ApplicationControlPoint.Interface = TRUE).
Furthermore, the desired credentials needs to have some active user that can be
deceived (i.e., PasswordAccount needs to be connected to a Person). If this
is the case, the likelihood of success depends on whether the targeted user has
undergone security awareness training. The likelihood of success given different
states of security awareness training are given below:

• SecurityAwarenessProgram.Functioning = TRUE :
bernoulli(exp(0.0715,Attacker.Time))

• SecurityAwarenessProgram.Functioning = FALSE :
bernoulli(exp(0.241,Attacker.Time))

These estimates are derived from [86, 31, 87, 88].

26. Person

A Person is an individual, or type of individual, who use IT in some means.

98

A Person can be connected to three assets (cf. Figure 38). A connection to
a PasswordAccount denotes that this individual has access to the credentials of
that particular account. Connection to a SocialZone denotes that this individual
is part of that particular group of individuals who socialize in some means. Con-
nection to a SecurityAwarenessProgram denotes that the individual is recipient
to that particular security training program.

Figure 38: An overview of the connections for Person.

There are no defenses or attacks corresponding to individuals in
CySeMoL (these are instead modeled through PasswordAccount.-

SocialEngineerAuthenticationCodes or OperatingSystem.-

AccessThroughPortableMedia using SocialZone).

27. Social Zone

SocialZone denotes a group of individuals who are prone to sharing doc-
uments and devices, e.g., a work-group in an office space. SocialZone en-
ables modeling attacks against IT-wise isolated devices (which can is the case
in information-critical environments, e.g., critical infrastructure control systems).
In practice, this is managed by relating Access of an OperatingSystem to
AccessThroughPortableMedia of other OperatingSystems that have local
users (Persons) who share the same SocialZone.

99

SocialZone can be connected to a single type of asset - any Person that is
part of it (cf. Figure 39).

Figure 39: An overview of the connections for SocialZone.

There is one attack step corresponding to social zones in CySeMoL (cf. Table
45). This attack step is described in the following section.

Table 45: Attack steps and defenses of the SocialZone class.

Attribute Rationale

Attack Step
SharePortableMedia [91]

27.1. Attack Steps
27.1.1. Share Portable Media

This attack step concerns the possibility that individuals within the same social
zone share portable media (e.g., a USB drive), a very common type of attack
vector [91].

This attack step is TRUE if a Person connected to the SocialZone has a
PasswordAccount related to an OperatingSystem that has been compromised
by the attacker (i.e., if OperatingSystem.Access = TRUE). It is FALSE in
other cases. The likelihood of this overall attack vector being TRUE is expressed
through OperatingSystem.AccessThroughPortableMedia.

100

28. Security Awareness Program

Security awareness and training programs are crucial for enabling users with
the knowledge required to react to security threats [92]. NIST states that the activ-
ity is “the vehicle for disseminating information that users, including managers,
need in order to do their jobs” [93]. In CySeMoL, this process is encounted for
by the class SecurityAwarenessProgram.

A SecurityAwarenessProgram has a single type of connection - the
Persons that it concerns (cf. Figure 40).

Figure 40: An overview of the connections for SecurityAwarenessProgram.

There is one defenses corresponding to security awareness programs; this is
shown in Table 46 and described in the following section. The references in Table
46 describe the rationale behind it.

Table 46: Attack steps and defenses of the SecurityAwarenessProgram class.

Attribute Rationale

Defense
Functioning [93]

28.1. Defenses
28.1.1. Functioning

This attributes concerns whether the awareness program reaches out to the
persons that are included in it. In other words, if the intended users participate

101

in its designated activities. For instance, whether or not they participate in its
seminars or read its required material [93].

The default state of this defense is TRUE (i.e., it is assumed that security
training is conducted; else, it should not be modeled).

29. Example model

To view screen casts for how to use CySeMoL, please go www.ics.kth.se/

cysemol.

References

[1] A. J. A. Wang, Information security models and metrics, in: Proceedings of
the 43rd annual Southeast regional conference-Volume 2, ACM, 2005, pp.
178–184.

[2] CCRA, Common Criteria for Information Technology Security Evaluation,
Available on http://www.commoncriteriaportal.org/, accessed June
24, 2013 (2012).

[3] C. Alberts, A. Dorofee, J. Stevens, C. Woody, Introduction to the octave
approach, Pittsburgh, PA, Carnegie Mellon University.

[4] F. den Braber, I. Hogganvik, M. S. Lund, K. Stølen, F. Vraalsen,
Model-based security analysis in seven steps-a guided tour to the coras
method, BT Technology Journal 25 (1) (2007) 101–117.

[5] R. Breu, F. Innerhofer-Oberperfler, A. Yautsiukhin, Quantitative assessment
of enterprise security system, in: Availability, Reliability and Security, 2008.
ARES 08. Third International Conference on, IEEE, 2008, pp. 921–928.

[6] H. Huang, S. Zhang, X. Ou, A. Prakash, K. Sakallah, Distilling critical attack
graph surface iteratively through minimum-cost sat solving, in: Proceedings
of the 27th Annual Computer Security Applications Conference, ACSAC
’11, ACM, New York, NY, USA, 2011, pp. 31–40. doi:10.1145/2076732.
2076738.
URL http://doi.acm.org/10.1145/2076732.2076738

102

www.ics.kth.se/cysemol
www.ics.kth.se/cysemol
http://www.commoncriteriaportal.org/
http://doi.acm.org/10.1145/2076732.2076738
http://doi.acm.org/10.1145/2076732.2076738
http://dx.doi.org/10.1145/2076732.2076738
http://dx.doi.org/10.1145/2076732.2076738
http://doi.acm.org/10.1145/2076732.2076738

[7] X. Ou, W. F. Boyer, M. A. McQueen, A scalable approach to attack graph
generation, in: Proceedings of the 13th ACM conference on Computer and
communications security, CCS ’06, ACM, New York, NY, USA, 2006, pp.
336–345. doi:10.1145/1180405.1180446.
URL http://doi.acm.org/10.1145/1180405.1180446

[8] K. Ingols, M. Chu, R. Lippmann, S. Webster, S. Boyer, Modeling modern
network attacks and countermeasures using attack graphs, in: Computer Se-
curity Applications Conference, 2009. ACSAC ’09. Annual, 2009, pp. 117–
126. doi:10.1109/ACSAC.2009.21.

[9] S. Jajodia, S. Noel, B. O’Berry, Topological analysis of network attack vul-
nerability, in: Managing Cyber Threats, Springer, 2005, pp. 247–266.

[10] T. Sommestad, M. Ekstedt, H. Holm, The cyber security modeling lan-
guage: A tool for assessing the vulnerability of enterprise system archi-
tectures, Systems Journal, IEEE PP (99) (2012) 1. doi:10.1109/JSYST.

2012.2221853.

[11] P. Johnson, J. Ullberg, M. Buschle, U. Franke, K. Shahzad, P2amf: Predic-
tive, probabilistic architecture modeling framework, in: International IFIP
Working Conference on Enterprise Interoperability Information, Services
and Processes for the Interoperable Economy and Society, 2013.

[12] O. Uml, 2.0 OCL Specification, OMG Adopted Specification (ptc/03-10-
14).

[13] S. Liu, B. Cheng, Cyberattacks: Why, what, who, and how, IT professional
11 (3) (2009) 14–21.

[14] T. Gerace, H. Cavusoglu, The critical elements of the patch management
process, Communications of the ACM 52 (8) (2009) 117–121.

[15] H. Holm, Performance of automated network vulnerability scanning at re-
mediating security issues, Computers & Security 31 (2) (2012) 164–175.

[16] S. Whalen, An introduction to arp spoofing, Node99 [Online Document],
April.

[17] R. Oppliger, Internet security: firewalls and beyond, Communications of the
ACM 40 (5) (1997) 92–102.

103

http://doi.acm.org/10.1145/1180405.1180446
http://doi.acm.org/10.1145/1180405.1180446
http://dx.doi.org/10.1145/1180405.1180446
http://doi.acm.org/10.1145/1180405.1180446
http://dx.doi.org/10.1109/ACSAC.2009.21
http://dx.doi.org/10.1109/JSYST.2012.2221853
http://dx.doi.org/10.1109/JSYST.2012.2221853

[18] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, D. Boneh, On the
effectiveness of address-space randomization, in: Proceedings of the 11th
ACM conference on Computer and communications security, ACM, 2004,
pp. 298–307.

[19] C. Cowan, F. Wagle, C. Pu, S. Beattie, J. Walpole, Buffer overflows: Attacks
and defenses for the vulnerability of the decade, in: DARPA Information
Survivability Conference and Exposition, 2000. DISCEX’00. Proceedings,
Vol. 2, IEEE, 2000, pp. 119–129.

[20] J. Hruska, Computer viruses and anti-virus warfare, Ellis Horwood, 1992.

[21] M. Al-Zarouni, The reality of risks from consented use of usb devices.

[22] T. Grance, J. Hash, S. Peck, J. Smith, K. Korow-Diks, Security guide for
interconnecting information technology systems, NIST Special Publication
800 (47).

[23] V. D. Gligor, A note on denial-of-service in operating systems, Software
Engineering, IEEE Transactions on (3) (1984) 320–324.

[24] T. Sommestad, H. Holm, M. Ekstedt, Estimates of success rates of denial-of-
service attacks, in: Trust, Security and Privacy in Computing and Commu-
nications (TrustCom), 2011 IEEE 10th International Conference on, IEEE,
2011, pp. 21–28.

[25] T. Sommestad, M. Ekstedt, H. Holm, M. Afzal, Security mistakes in infor-
mation system deployment projects, Information Management & Computer
Security 19 (2) (2011) 80–94.

[26] A. Wool, A quantitative study of firewall configuration errors, Computer
37 (6) (2004) 62–67.

[27] T. Sommestad, Exploiting network configuration mistakes: practitioners
self-assessed success rate, Royal Instit. Technol., Tech. Rep. TRITA-EE 69.

[28] M. A. McQueen, W. F. Boyer, M. A. Flynn, G. A. Beitel, Time-to-
compromise model for cyber risk reduction estimation, in: First Workshop
on Quality of Protection, 2005.

104

[29] T. Sommestad, H. Holm, M. Ekstedt, Estimates of success rates of remote
arbitrary code execution attacks, Information Management & Computer Se-
curity 20 (2) (2012) 107–122.

[30] H. Holm, T. Sommestad, U. Franke, M. Ekstedt, Success rate of remote code
execution attacks–expert assessments and observations, Journal of Universal
Computer Science 18 (6) (2012) 732–749.

[31] J. R. Jacobs, Measuring the effectiveness of the usb flash drive as a vector for
social engineering attacks on commercial and residential computer systems,
Ph.D. thesis, Embry Riddle Aeronautical University (2011).

[32] H. H. E. M. Sommestad, Teodor, N. Honeth, Quantifying the effectiveness
of intrusion detection systems in operation through domain experts.

[33] H. Holm, Signature based intrusion detection for zero-day attacks: (not) a
closed chapter?, in: 47th Hawaii International Conference on System Sci-
ence (HICSS), Submitted.

[34] T. Sommestad, A. Hunstad, Intrusion detection and the role of the system
administrator, Information Management & Computer Security 21 (1) (2013)
30–40.

[35] J. A. Morales, R. Sandhu, S. Xu, Evaluating detection and treatment effec-
tiveness of commercial anti-malware programs, in: Malicious and Unwanted
Software (MALWARE), 2010 5th International Conference on, IEEE, 2010,
pp. 31–38.

[36] Baggett, Mark, Effectiveness of Antivirus in Detect-
ing Metasploit Payloads , Available on http://www.

sans.org/reading_room/whitepapers/casestudies/

effectiveness-antivirus-detecting-metasploit-payloads_2134,
accessed April 19, 2013 (2008).

[37] G. McGraw, Software security, Security & Privacy, IEEE 2 (2) (2004) 80–
83.

[38] V. Thomas, P. Ramagopal, R. Mohandas, The rise of autorun-based malware,
McAfee Avert Labs., McAfee Inc.

105

http://www.sans.org/reading_room/whitepapers/casestudies/effectiveness-antivirus-detecting-metasploit-payloads_2134
http://www.sans.org/reading_room/whitepapers/casestudies/effectiveness-antivirus-detecting-metasploit-payloads_2134
http://www.sans.org/reading_room/whitepapers/casestudies/effectiveness-antivirus-detecting-metasploit-payloads_2134

[39] D. V. Pham, M. N. Halgamuge, A. Syed, P. Mendis, Optimizing windows
security features to block malware and hack tools on usb storage devices, in:
Progress in electromagnetics research symposium, 2010.

[40] J. Wilander, M. Kamkar, A comparison of publicly available tools for dy-
namic buffer overflow prevention., in: NDSS, Vol. 3, 2003, pp. 149–162.

[41] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, C. Kruegel, A view on cur-
rent malware behaviors, in: USENIX workshop on large-scale exploits and
emergent threats (LEET), 2009.

[42] G. Schryen, Security of open source and closed source software: An empir-
ical comparison of published vulnerabilities.

[43] J. Novak, A. Krajnc, R. Zontar, Taxonomy of static code analysis tools,
in: MIPRO, 2010 Proceedings of the 33rd International Convention, IEEE,
2010, pp. 418–422.

[44] A. Ozment, Improving vulnerability discovery models, in: Proceedings of
the 2007 ACM workshop on Quality of protection, ACM, 2007, pp. 6–11.

[45] H. Holm, M. Korman, M. Ekstedt, A markovian model for likelihood esti-
mations of acquirement of critical software vulnerabilities and exploits.

[46] H. Holm, M. Buschle, R. Lagerström, M. Ekstedt, Automatic data collection
for enterprise architecture models, Software & Systems Modeling (2012)
1–17.

[47] T. Sommestad, H. Holm, M. Ekstedt, Effort estimates for vulnerability dis-
covery projects, in: System Science (HICSS), 2012 45th Hawaii Interna-
tional Conference on, IEEE, 2012, pp. 5564–5573.

[48] C. Cowan, Software security for open-source systems, Security Privacy,
IEEE 1 (1) (2003) 38 – 45. doi:10.1109/MSECP.2003.1176994.

[49] H. Holm, M. Ekstedt, Estimates on the effectiveness of web application fire-
walls for targeted attacks, Information Management and Computer Security
(2013) 5029 – 5038.

[50] D. Mitropoulos, V. Karakoidas, P. Louridas, D. Spinellis, Countering code
injection attacks: a unified approach, Information Management & Computer
Security 19 (3) (2011) 177–194.

106

http://dx.doi.org/10.1109/MSECP.2003.1176994

[51] H. Holm, M. Ekstedt, A metamodel for web application injection attacks
and countermeasures, in: Trends in Enterprise Architecture Research and
Practice-Driven Research on Enterprise Transformation, Springer, 2012, pp.
198–217.

[52] R. L. Jones, A. Rastogi, Secure coding: building security into the software
development life cycle, Information Systems Security 13 (5) (2004) 29–39.

[53] Y. Shin, L. A. Williams, Towards a taxonomy of techniques to detect cross-
site scripting and sql injection vulnerabilities.

[54] J. Fonseca, M. Vieira, H. Madeira, The web attacker perspective-a field
study, in: Software Reliability Engineering (ISSRE), 2010 IEEE 21st In-
ternational Symposium on, IEEE, 2010, pp. 299–308.

[55] H. Holm, M. Ekstedt, T. Sommestad, Effort estimates on web application
vulnerability discovery, in: 46th Hawaii International Conference on System
Science (HICSS), IEEE, 2013, pp. 5029 – 5038.

[56] K. Scarfone, P. Mell, Guide to intrusion detection and prevention systems
(idps), NIST Special Publication 800 (2007) (2007) 94.

[57] E. Shmueli, R. Vaisenberg, Y. Elovici, C. Glezer, Database encryption: an
overview of contemporary challenges and design considerations, ACM SIG-
MOD Record 38 (3) (2010) 29–34.

[58] R. Ramakrishnan, J. Gehrke, Database management systems,
Osborne/McGraw-Hill, 2000.

[59] D. Litchfield, C. Anley, J. Heasman, B. Grindlay, The database hacker’s
handbook, Wiley, 2005.

[60] D. E. Bell, L. J. La Padula, Secure computer system: Unified exposition and
multics interpretation, Tech. rep., DTIC Document (1976).

[61] P. Syverson, A taxonomy of replay attacks [cryptographic protocols], in:
Computer Security Foundations Workshop VII, 1994. CSFW 7. Proceed-
ings, IEEE, 1994, pp. 187–191.

[62] B. Harris, R. Hunt, Tcp/ip security threats and attack methods, Computer
Communications 22 (10) (1999) 885–897.

107

[63] Y. Desmedt, Man-in-the-middle attack, in: Encyclopedia of Cryptography
and Security, Springer, 2005, pp. 368–368.

[64] J. A. Clark, J. L. Jacob, Protocols are programs too: the meta-heuristic search
for security protocols, Information and Software Technology 43 (14) (2001)
891–904.

[65] B. C. Neuman, S. G. Stubblebine, A note on the use of timestamps as nonces,
ACM SIGOPS Operating Systems Review 27 (2) (1993) 10–14.

[66] A. Chakrabarti, G. Manimaran, Internet infrastructure security: A taxonomy,
Network, IEEE 16 (6) (2002) 13–21.

[67] V. Goyal, R. Tripathy, An efficient solution to the arp cache poisoning prob-
lem, in: Information Security and Privacy, Springer, 2005, pp. 40–51.

[68] R. Von Solms, Information security management: why standards are impor-
tant, Information Management & Computer Security 7 (1) (1999) 50–58.

[69] M. S. Desai, T. C. Richards, T. von der Embse, System insecurity–firewalls,
Information management & computer security 10 (3) (2002) 135–139.

[70] K. Scarfone, P. Hoffman, Guidelines on firewalls and firewall policy, NIST
Special Publication 800 (2009) 41.

[71] E. Biermann, E. Cloete, L. M. Venter, A comparison of intrusion detection
systems, Computers & Security 20 (8) (2001) 676–683.

[72] M. A. Faysel, S. S. Haque, Towards cyber defense: Research in intrusion
detection and intrusion prevention systems, IJCSNS International Journal of
Computer Science and Network Security 10 (7) (2010) 316–325.

[73] S. Welberg, Vulnerability management tools for cots software-a comparison.

[74] NERC, Nerc cip 002-009, Tech. rep., NERC (2007).

[75] K. Stouffer, J. Falco, K. Scarfone, Guide to industrial control systems (ics)
security, NIST Special Publication 800 (82) (2008) 16–16.

[76] J. Wack, M. Tracy, M. Souppaya, Guideline on network security testing, Nist
special publication 800 (2003) 42.

108

[77] D. Longley, et al., Information security management and modelling, Infor-
mation Management & Computer Security 7 (1) (1999) 30–40.

[78] L. Fennelly, Effective physical security, Butterworth-Heinemann, 2012.

[79] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman, Role-based access
control models, Computer 29 (2) (1996) 38–47.

[80] M. Bishop, Computer security: Art and science. 2003, Westford, MA: Ad-
dison Wesley Professional (2003) 4–12.

[81] K. Scarfone, M. Souppaya, Guide to enterprise password management,
NIST Special Publication 800 (2009) 118.

[82] J. J. Yan, A note on proactive password checking, in: Proceedings of the
2001 workshop on New security paradigms, ACM, 2001, pp. 127–135.

[83] S. Marechal, Advances in password cracking, Journal in computer virology
4 (1) (2008) 73–81.

[84] Sommestad, Teodor, Password authentication attacks: a survey of attacks
and when they will succeed, institution = Royal Institute of Technology,
year = 2011, type = Tecnhical report, number = TRITA-EE 2011:067, July,,
Tech. rep.

[85] W. C. Summers, E. Bosworth, Password policy: the good, the bad, and the
ugly, in: Proceedings of the winter international synposium on Information
and communication technologies, Trinity College Dublin, 2004, pp. 1–6.

[86] T. N. Jagatic, N. A. Johnson, M. Jakobsson, F. Menczer, Social phishing,
Communications of the ACM 50 (10) (2007) 94–100.

[87] S. Stasiukonis, Social engineering, the usb way, Dark Reading 7.

[88] R. Dodge, A. Ferguson, Using phishing for user email security awareness,
Security and Privacy in Dynamic Environments (2006) 454–459.

[89] W. E. Burr, D. F. Dodson, W. T. Polk, Electronic authentication guideline,
US Department of Commerce, Technology Administration, National Insti-
tute of Standards and Technology, 2004.

109

[90] M. Workman, Wisecrackers: A theory-grounded investigation of phishing
and pretext social engineering threats to information security, Journal of the
American Society for Information Science and Technology 59 (4) (2008)
662–674.

[91] U. When New, Understanding usb malware.

[92] E. Schultz, Security training and awarenessfitting a square peg in a round
hole, Computers & Security 23 (1) (2004) 1–2.

[93] M. Wilson, J. Hash, Building an information technology security awareness
and training program, NIST Special publication 800 (2003) 50.

110

	Introduction
	P2AMF: Predictive, Probabilistic Architecture Modeling Framework
	The Enterprise Architecture Analysis Tool
	Creation of an object model
	Executing calculations

	The Cyber Security Modeling Language
	P2AMF logic of CySeMoL
	CySeMoL metamodel

	Attacker
	Operating System
	Defenses
	Has All Security Patches
	Static ARP Tables
	Host Firewall
	Address Space Layout Randomization
	Non Executable Memory
	Anti Malware Solution
	USB AutoRun Disabled

	Attack Steps
	Access
	Denial of Service
	Find Unknown Service
	Find Critical Vulnerability
	Execution of Arbitrary Code in Unknown Service
	Access Through Portable Media
	Access Through UI
	ARP spoof
	Execute Malicious Payload

	Application Client
	Defenses
	Has All Security Patches

	Attack Steps
	Access
	Denial Of Service
	Find Critical Vulnerability
	Execution Of Arbitrary Code

	Application Server
	Defenses
	Has All Security Patches

	Attack Steps
	Connect To Server
	Access
	Denial Of Service
	Find Critical Vulnerability
	Execution Of Arbitrary Code

	Software Product
	Defenses
	Source Code Secret
	Binary Secret
	Improved With Static Code Analysis
	Written Only In Safe Languages
	Has Been Scrutinized
	Has No Public Patchable Vulnerability
	Has No Public Unpatchable Vulnerability

	Attack Steps
	Get Product Information
	Find Public Patchable Critical Vulnerability
	Find Public Unpatchable Critical Vulnerability
	Find Public Exploit For Patchable Critical Vulnerability
	Develop Exploit For Patchable Critical Vulnerability
	Find Public Exploit For Unpatchable Critical Vulnerability
	Develop Exploit For Unpatchable Critical Vulnerability
	Develop Zero Day Exploit

	Web Application
	Defenses
	Type Safe API
	Developer Security Training
	Black Box Testing
	Static Code Analysis
	Has Public Command Injection Vulnerability
	Has Public Cross Site Scripting Vulnerability
	Has Public Remote File Inclusion Vulnerability
	Has Public SQL Injection Vulnerability

	Attack Steps
	Exploit Command Injection Vulnerability
	Exploit Cross Site Scripting Vulnerability
	Exploit Remote File Inclusion Vulnerability
	Exploit SQL Injection Vulnerability
	Find Public Command Injection Vulnerability
	Find Public Cross Site Scripting Vulnerability
	Find Public Remote File Inclusion Vulnerability
	Find Public SQL Injection Vulnerability
	Discover Vulnerability

	Web Application Firewall
	Defenses
	Monitored By Operator
	Tuned Using Black Box Tool
	Tuned By Experienced Professional
	Tuned With Significant Manual Effort

	Data store
	Defenses
	Cryptographic Obfuscation

	Attack Steps
	Read Data
	Write Data
	Delete Data

	Data flow
	Attack Steps
	Disrupt
	Replay
	Eavesdrop
	Man In the Middle
	Produce Request
	Produce Response

	Protocol
	Defenses
	Freshness Indicator
	Cryptographic Authentication
	Cryptographic Obfuscation

	Network Zone
	Defenses
	DNS Sec
	Port Security

	Attack Steps
	DNS Spoof
	Denial Of Service
	Find Unknown Entry Point
	Obtain Own Address

	Network Interface
	Defenses
	Static ARP Tables

	Attack Steps
	ARP Spoof
	Denial Of Service

	Firewall
	Defenses
	Functioning
	Known Rule Set

	Intrusion Prevention System
	Defenses
	Functioning

	Intrusion Detection System
	Defenses
	Functioning
	Tuned
	Updated

	Network Vulnerability Scanner
	Defenses
	Functioning

	Zone Management Process
	Defenses
	Host Hardening Procedures
	Automated Patch Management Process
	Regular Log Reviews
	Regular Security Audits
	Formal Change Management Process
	Managed By Anti Malware Solution
	USB AutoRun Disabled In Domain

	Physical Zone
	Attack Steps
	Access

	Access Control Point
	Attack Steps
	Bypass
	Interface

	Password Authentication Mechanism
	Defenses
	Functioning
	Backoff Technique
	Default Passwords Removed
	Proactive Password Checker
	Hashed Repository
	Hashed Repository Salted

	Attack Steps
	Extract Password Repository

	Password Account
	Attack Steps
	Guess Authentication Codes Offline
	Guess Authentication Codes Online
	Social Engineer Authentication Codes

	Person
	Social Zone
	Attack Steps
	Share Portable Media

	Security Awareness Program
	Defenses
	Functioning

	Example model
	CySeMoL_v2.1_v2.2_changelog.pdf
	(1) Softened coloring scheme of calculation results
	(2) Added possibility to input injective evidence in object models, for faster calculation using rejection sampling and Metropolis-Hastings sampling
	(3) Correction of default availability of defense mechanisms (50%-50% now) – for defense mechanisms that do not override this, and those for which no injective evidence is provided
	(1) Correction (bugfix) of evaluation of attack step GuessCredentialsOnline in asset PasswordAccount

