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Abstract

An Ytterbium doped optical fiber was used as an amplifier in a master oscillator
power amplifier setup, where the master oscillator was a high repetition rate mode-
locked 170 fs laser. The effect of the amplifier was quantified by measuring the
power, spectrum and pulse duration of the output for an average input power of
0.36 W with varied pump power. This amplifier setup had a slope efficiency of 76%
and yielded 3 ps pulses with an average power of 9.7 W at the maximum applied
pump power, 16 W.

A numerical study of the amplifier was also conducted by developing a model
combining the generalized nonlinear Schrödinger equation and the steady state rate
equations. This was done in order to account for a non constant gain as well as
nonlinear effects, as opposed to the general case, when studying pulse propagation
in fibers, of approximating the gain to be constant and only using the generalized
nonlinear Schrödinger equation. Furthermore, a series expansion accounting for
gain dispersion was also included in the generalized nonlinear Schrödinger equation.
In all, the combined model accounts for the effects of group velocity dispersion,
self phase modulation, self-steepening, the Raman effect, gain dispersion and non
constant gain. The model predicts an amplifier with a slope efficiency of 77 %
yielding 2.8 ps pulses with an average power of 9.6 W for an applied pump power
of 16 W.
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1 Introduction
A short background to this master thesis, its aim and outline are given below.

1.1 Background
Today pulsed lasers are used in numerous applications ranging from telecoms and the
study of chemical processes to cutting, welding and drilling. The laser beams used in
high power applications, such as laser cutting, are often achieved by master oscillator
power amplifier, MOPA, setups. The master oscillator provides a laser beam with desired
characteristics and seeds the amplifier stage which scales the seed to the necessary power
levels.

The power amplifier can be realized by letting the master oscillator output pass
through a pumped active medium multiple times, either in a multipass or regenerative
scheme. The multipass scheme uses mirrors to let the master oscillator output pass
through the active medium multiple times from different directions, usually making the
alignment very cumbersome. In a regenerative amplifier the active medium is placed in
a cavity, which in general makes it easier to align, and a shutter is used to control the
number of passes. However, the gain is strongly affected by intra-cavity losses. It has
also been shown that for high repetition rates of the master oscillator pulses, the output
power of a regenerative amplifier can fluctuate [2].

A more easily aligned rapidly growing contender to the above mentioned amplifier
schemes is the fiber amplifier. A fiber amplifier consists of rare-earth ions doped into a
glass matrix. The amorphous structure of glass makes the doped ions experience different
local electric fields which in turn give different Stark splitting. This effect and the inter-
action between dopants and glass phonons broaden the energy levels resulting in a broad
gain bandwidth, thus making fiber amplifiers suitable for ultra-short pulse amplification.
The rare-earth ions store energy which is then given to the master oscillator output. Yt-
terbium, Yb, ions have pumping schemes with low quantum defect and are currently the
rare-earth ions with the best power scaling [3]. Hence, Yb-ions are commonly used in
high power applications. Yb-doped fibers also provide a broad gain bandwidth extending
from 970 to 1200 nm as well as a broad absorption band from 800 to 1064 nm [1]. The
pump window thus cover the wavelengths at which high power laser diodes perform best
[3].

The cylindrical form of a fiber gives a large surface to volume ratio which results in
better heat dissipation than in bulk solid-state active medium [4], which is extremely
important in high power applications. However, fiber amplifiers also have disadvantages
compared to multipass and regenerative amplifiers:

• Due to long propagation distance, dispersive and nonlinear effects, such as group
velocity dispersion and self phase modulation, become more pronounced in fiber
amplifiers, than in the active medium used in regenerative and multipass amplifiers.
This can make it more difficult to achieve high peak powers.

• The high gain in fiber amplifiers makes them sensitive to back reflections, from the
fiber’s end faces or other elements in the amplifier setup, which can lead to parasitic
lasing.

• As the fiber is a closed system it is only possible to measure the in- and output
while it is possible to probe the beam in multipass and regenerative amplifiers. This
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makes modeling fiber amplifiers more difficult as the intermediate stages cannot be
used to check the model’s validity.

1.2 Purpose of this master thesis
Much of the modeling of fiber amplifiers have been done only using a rate equations ap-
proach, which accounts for a non constant gain, see for example [5, 6, 7, 8]. The problem
with the rate equations approach is that it does not account for important nonlinear ef-
fects, which should be taken into account when modeling pulse amplification. Another
common approach is to consider the fiber gain to be constant and only using the propaga-
tion equation for optical pulses in fibers, the generalized nonlinear Schrödinger equation.
The purpose of this master thesis is to combine the rate equations with the generalized
nonlinear Schrödinger equation. The combined generalized model is to be solved numer-
ically in MATLAB. Validation of the model will consist of setting up and modeling a
MOPA setup and compare the simulated results to experimentally collected data.

1.3 Thesis outline
The basic principles on which optical fibers are based are given in section 2. The general-
ized nonlinear Schrödinger equation and the rate equations are introduced and described
in section 3. Section 4 outlines how the models are combined and solved numerically. In
section 5 the setting of the simulation parameters is detailed. The experimental setup
is explained in section 6. In section 7, the results are presented. Section 8 discusses the
results and the model. A summary of the thesis, conclusions and future work are given
in section 9.
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2 Fiber basics
The main task of an optical fiber is to guide incident light from one end to the other. This
is achieved by a phenomenon called total internal reflection, TIR. TIR can be understood
by the use of Snell’s law

n1sinθ1 = n2sinθ2 (1)

where n1 and n2 are the refractive indexes of two different regions and θ1 and θ2 are the
incident and refracted angels of light with respect to the surface normal, see Figure 1.
It follows from Snell’s law that if n1 > n2 then θ1 < θ2. In this case, there is a critical
incidence angle θ1 = θc at which θ2 = 90◦.

n1sinθc = n2sin(90◦)⇒ θc = arcsinn2

n1
(2)

This means that for θ1 ≥ θc no light will be transmitted from region one to region two, it
is totally internally reflected. For values of θ1 greater than the critical angle, the solution
for θ2 will be complex and gives an alternative way of determining if the light undergoes
TIR. This is the basic principle that the guiding mechanism of optical fibers are based
on.

2.1 Numerical aperture
As the light entering the fiber is coming from another medium, it will refract according to
(1). The angle of refraction will affect the angle of incidence at the higher-lower index of
refraction interface, see Figure 2. Therefore, the angle of incidence at the fiber’s end face
is what determines if the light will undergo TIR. Using Figure 2 and (1), the following
equation can be set up

nsinθmax = n1sin(90◦ − θc) = n1cosθc (3)

Squaring both sides and using the trigonometric identity cos2θc = 1 − sin2θc along with
(2) yields

n2sin2θmax = n2
1(1− n2

2
n2

1
)⇒ NA = nsinθmax =

√
n2

1 − n2
2 (4)

where the numerical aperture, NA, was defined. Therefore, the fiber’s composition will
determine how light can be focused into it. Thus, the lenses used to focus light into the
fiber must assure that the rays of the beam does not enter in too steep angles, and also
that the focused beam is not bigger than the part of the fiber it is supposed to be incident
on.

n2

n1

θ1

θ2

Figure 1: Refraction of light according to Snell’s law.
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θc
90-θc

θmax

n2

n2

n1 n

Figure 2: Refraction of light in an optical fiber.

2.2 Single- and multimode fibers
In the classical regime, light propagation is governed by the wave equation derived from
Maxwell’s equations. Depending on the laser design, the solutions to this wave equation
may support several so called transverse modes. The transverse modes are the possible
electric field distributions perpendicular to the propagating direction. Hence, the resulting
laser beam profile will in general consist of several basic electric field distributions. When
incident on an optical fiber, the various electric field distributions will have different
guiding properties. Solving Maxwell’s wave equation in an optical fiber shows that the
number of transverse modes supported by the fiber depends on the numerical aperture,
the radius of the medium in which the light is guided and the wavelength of the light
[9]. If the fiber only supports one transverse mode it is referred to as a single-mode fiber,
otherwise it is called a multimode fiber.

2.3 Fabrication
One way of making optical fibers is by vapor deposition of SiO2 into a cylindrical preform.
A typical preform is 1 m long and has a 2 cm diameter [9]. Different elements are doped
into the preform to increase the refractive index of the inner part and decrease it in the
outer part, making it possible to obtain TIR. If the fiber is going to be used as an active
medium, rare-earth ions are also doped into the preform.

After the preform is done, it is drawn into a thin fiber. The drawing is done such that
the ratio between the layers with increased and decreased index of refraction is the same.
In this way, the fiber layers can be engineered. Once the fiber is drawn, the innermost
part is called the core and the outer part/-s the cladding/-s. To make the fiber more
robust it is covered with a plastic coating during the drawing.

2.4 Polarization-maintaining fibers
In practice, there will always be some imperfections in the fabrication and the fiber will
not have a perfectly symmetric stress profile. As stress modifies the atom placement, the
density will vary which in turn affects the speed at which light can propagate. Since the
imperfections are randomly placed throughout the fiber, the polarization of incident light
can change.

By introducing so called stress rods, see Figure 3, consisting of modified glass, on each
side of the core in the preform, the stress is increased a lot more along the line of the
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Stress rods

Core

Inner cladding
Outer claddingCoating

Figure 3: Cross section of a double clad fiber with stress rods.

stress rods than in the perpendicular direction. The induced increase in stress far exceeds
the randomly introduced stress. Therefore, the polarization parallel to the stress rods
will propagate at a different speed than the perpendicular polarization. Consequently
the relative phase between the polarizations will not be preserved, which greatly reduces
the ability of disturbances along the fiber to couple both polarizations. This enables
the preservation of the polarization of incident light along the line of the stress rods or
perpendicular to it.

2.5 Active fibers
Active fibers are optical fibers doped with laser active rare-earth ions. The rare-earth
ions introduce electronic energy levels that are populated by absorbing pump light. The
excited electrons populating these energy levels are induced to de-excite to the ground
level if light of a frequency corresponding to the energy difference between the ground and
excited level is incident. The energy difference is released as a photon. This phenomenon
is called stimulated emission and generates more photons of the same frequency as they
propagate through the fiber. Therefore, active fibers can be used as optical amplifiers and
lasers.

Apart from de-excitation of electrons due to stimulated emission, the excited electrons
will also spontaneously de-excite as the rare-earth ions seek to lower their energy. This
gives the excited level an effective lifetime. The spontaneous depopulation results in light
emission, which will also be amplified by inducing stimulated emission. This phenomenon
is referred to as amplified spontaneous emission, ASE. Thus, ASE limits the excited
electrons that can be used to amplify an incident signal.

There will also be losses due to absorption, impurities and Rayleigh scattering as a
result of density fluctuations from the fabrication [9]. These effects, the ASE, the lifetime
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and the pump’s ability to counteract the depopulation of the excited level, will limit the
population in the excited level which in turn limits the amplification.

2.6 Pumping
The most common way of pumping active optical fibers is by coupling a laser diode into
one of the fiber ends, called end pumping. If the fiber has a single cladding layer, the
pump is focused into the core. Since the core has a diameter of only a few µm, the focused
pump must be diffraction limited [8]. Due to the TIR this technique guarantees that the
pump is applied throughout the entire fiber, given that it has sufficient power to not be
entirely absorbed during its propagation through the fiber.

Usually, diffraction limited pump sources have rather low power. In order to be able
to use higher pump powers, cladding pumping was invented. Since the cladding is bigger
than the core, it does not require as high beam quality for the pump to be focused into
it. As the pump light is guided through the cladding, it will pass the core and thus excite
the electrons of the dopants. Cladding pumping requires an inner and an outer cladding,
see Figure 3. The inner cladding has a lower index of refraction than the core to confine
the signal to the core. The outer cladding has a lower index of refraction than the inner
cladding to confine the pump to the inner cladding. Double clad fibers are not commonly
used in telecoms as light escaping the core can be guided in the cladding, which can result
in interference with the signal propagating in the core.

As the pump is absorbed during its propagation through the fiber it will weaken. This
results in that the amount of electrons able to be excited by the pump will decrease from
the pump end to the other end, thus yielding a non constant gain along the fiber.

2.7 Angle cleaving
The law of reflection states that the angle of reflection is the same as the incidence angle,
relative to the surface normal. For an optical fiber with an end cut at 90◦, see Figure
4, this means that the light propagating in the core that is reflected at the end face will
change direction and still undergo TIR. The amount of light that is reflected at the fiber
end can be calculated using the Fresnel equations [10]. Since the reflected light will also
be amplified in active fibers, a reflection of only a few percent can be enough to turn
the fiber into a laser cavity. This is undesired for optical amplifiers, since they are only

θc
90-θc

nclad

nclad

ncore

90-θc
θc θc

θc

Figure 4: Reflection at the end face of a fiber cleaved at 90◦.
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to amplify incident light. By cleaving the fiber ends at an angle different from 90◦, the
light reflected at the end face will have a different angle of incidence to the core-cladding
interface. In this way it is possible to reduce the TIR of the end-reflected light.

2.7.1 The effect of angle cleaving on acceptance angles for TIR

Since angle cleaving will change the direction of the fiber end’s surface normal, the inci-
dence angles needed for TIR will also change. A cleaving angle of α will make the fiber
end’s surface normal shift 90◦ − α. Tracing the path for a ray undergoing TIR with its
last reflection, before reaching the fiber end, at the top of the fiber yields Figure 5a. The
angle θmax2 was defined in order for easier comparison to the numerical aperture before
the angle cleaving. Using Figure 5a and (1), the following equation can be set up

ncsin(180◦ − (θc + α)) = nsin(90◦ − α + θmax2) (5)

Solving for θmax2 gives

θmax2 = arcsin
(
nc
n
sin (180◦ − [θc + α])

)
+ α− 90◦ (6)

and is valid until the reflected light from the upper part of the fiber undergoes TIR at
the now tilted fiber end face, i.e. while the following condition is fulfilled

nc
n
sin (180− [θc + α]) ≤ 1⇒ 180− θc − arcsin n

nc
≤ α (7)

α

θc
90◦-θc

90◦-α
α

90◦-α θmax2

nc

n

(a) Upper ray undergoing TIR.

α

θc

90◦-θc
90◦-αα

θmax1nc

n

90◦+α
θc − α

90◦-α
α
90◦-α

(b) Lower ray undergoing TIR.

Figure 5: Refraction of light at the end of a fiber cleaved at an angle<90◦.
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α

α = 85◦

α = 60◦

2.9◦ 0.9◦
4.9◦ 11◦

7◦

Figure 6: Schematic illustration of skewed acceptance triangles for different cleaving
angles in the case of NA=0.05, n = 1 and nc = 1.4.

This gives a minimum value of at what angle the fiber can be cleaved to allow incident
light having its first reflection at the top of the fiber to undergo TIR.

The light reflected from the bottom of the fiber before reaching the fiber end should
be analyzed for two cases, depending on the cleaving angle. The first case is when the
light reflected from the bottom of the fiber is still incident on the opposite side of the
surface normal at the end face, relative to the light reflected from the top of the fiber.
Thus, the second case is when both are incident on the same side of the surface normal.
However, both of these analyzes lead to the same result and therefore only the second is
detailed here. Using Figure 5b and (1), the following equation can be set up

ncsin(θc − α) = nsin(90◦ − α− θmax1) (8)

where θmax1 was also defined for easier comparison with the numerical aperture before the
cleaving. Solving for θmax1 gives

θmax1 = 90◦ − α− arcsin
(
nc
n
sin(θc − α)

)
(9)

which is valid for
nc
n
sin(θc − α) ≤ 1⇒ θc − arcsin

(
n

nc

)
≤ α (10)

Figure 6 shows how the rays leading to TIR change as the cleaving angle is decreased.
It is seen that the acceptance triangle gets shifted as the cleaving angle decreases. The
acceptance cone, which is the 3-D version of the acceptance triangle, will therefore be
shifted in the plane of Figure 6 although it will be unaffected in the perpendicular plane.
This induced astigmatism; i.e. the diffraction angles, for light coupled out of the fiber,
being different in these planes; makes coupling light into the fiber more difficult. Using
cylindrical lenses, it is possible to reshape the laser beam, which makes the coupling of
light into the angle cleaved fiber more efficient.
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3 Models
Although geometric optics is sufficient to understand the most basic guiding properties
of optical fibers, it is insufficient for understanding pulse propagation. In this section,
two different models for pulse propagation in optical fibers, the generalized nonlinear
Schrödinger equation, GNLS, and the rate equations, are introduced.

3.1 Mawell’s Equations
The physics governing light in the classical, i.e. non quantum mechanical, regime is
contained within Maxwell’s equations, presented below in SI-units.

∇× E = −∂B
∂t

(11)

∇×H = J + ∂D
∂t

(12)

∇ ·D = ρ (13)
∇ ·B = 0 (14)

D = ε0E + P (15)
B = µ0H + M (16)

Where E is the electric field, H is the magnetic field, D is the electric flux density, B is the
magnetic flux density, J is the current density, P is the induced electric polarization, M is
the induced magnetic polarization, ρ is the charge density, ε0 is the vacuum permittivity
and µ0 is the vacuum permeability.

Optical fibers do not have free currents, J = 0, nor free charges, ρ = 0, and are
nonmagnetic, M = 0. Using this and taking the curl of (11) while using (16), (12) and
(15) along with the vector calculus identity ∇×∇× E = ∇(∇ · E)−∇2E yields

∇(∇ · E)−∇2E = −µ0ε0
∂2E
∂t2
− µ0

∂2P
∂t2

(17)

The polarization, P, is the material’s response to the electric field, E. Therefore, it
basically corresponds to the motion of the bound electrons in the material under influence
of the electric field. The oscillating motion of the electrons will depend upon the frequency
of the electric field. Thus, it is possible to expand P in a series of E with frequency-
dependent elements. If the electric field consist of N different frequencies, it can be
expressed as

E =
N∑
i=1

E(ωi) (18)

Therefore, a polarization oscillating at a frequency ω can be expressed as

P(ω)
ε0

= χ1(ω;ω1)E(ω1) + χ1(ω;ω2)E(ω2) + ...

+ χ2(ω;ω1, ω1)E(ω1)E(ω1) + 2χ2(ω;ω1, ω2)E(ω1)E(ω2) + ...

+ χ3(ω;ω1, ω1, ω1)E(ω1)E(ω1)E(ω1) + ...+ χ3(ω;ω2, ω2, ω1)E(ω2)E(ω2)E(ω1) + ...

(19)
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where the χi-terms are called electric susceptibilities and χ2(ω;ω1, ω2)E(ω1)E(ω2) =
χ2(ω;ω2, ω1)E(ω2)E(ω1) was used. This expression is valid in the electric dipole ap-
proximation and assuming that the medium response to the electric field is both local
and instantaneous [9]. That the medium response is local means that the polarization at
a given point in the medium is only dependent on the electric field at the same point.
This neglects effects such as the ability of the electric field to modify the wavefunctions
of nearby electrons. The instantaneous approximation neglects the effect of molecular
vibrations.

In order for the frequency-dependent elements, χi, to be able to account for all possible
frequency combinations they must be tensors. Thus, (19) can be written in tensor notation

Pp(ω)
ε0

= χ1
pq(ω;ωi)Eq(ωi) + χ2

pqr(ω;ωj, ωk)Eq(ωj)Er(ωk)+

χ3
pqrs(ω;ωl, ωm, ωn)Eq(ωl)Er(ωm)Es(ωn) + .......................

(20)

where repeated indices are summed over. χ1 is a second order tensor, i.e. a matrix, which
means that the first order approximation of the polarization is linear. Separating the first
order approximation from the higher order approximations makes it possible to write

P = ε0PL + ε0PNL = ε0χ
1(ω)E + ε0PNL (21)

where PL is the linear and PNL is the nonlinear part of the polarization. Using this and
(15) in (13) yields

0 = ∇ ·D = ∇ · (ε0E + ε0χ
1(ω)E + ε0PNL) = ∇ · (ε0εr(ω)E + ε0PNL) (22)

where εr(ω) = 1 + χ1(ω) was defined. Assuming a homogenous fiber, εr(ω) will not
be spatially dependent and therefore commute with the divergence operator. Since the
nonlinear effects are relatively weak in optical fibers [9], the nonlinear polarization’s spatial
dependence is neglected in presence of that of the electric field. Thus, (22) reduces to

ε0εr(ω)∇ · E = 0⇒ ∇ · E = 0 (23)

Using this result in (17) along with (21) yields

∇2E = µ0ε0
∂2E
∂t2

+ µ0
∂2PL

∂t2
+ µ0

∂2PNL

∂t2
(24)

3.1.1 Further approximations

Assuming that the polarization of the electric field is unchanged throughout the fiber,
which in general is not the case but is a good approximation for a fiber with stress rods,
the vector notation for the electric field in (24) can be exchanged to a scalar notation,
corresponding to the vector component of the electric field parallel to the polarization
axis. Also assuming that the electric field is quasi-monochromatic, i.e. ∆ω

ω0
<< 1 where

ω0 is the carrier frequency and ∆ω is the spectral width, it is possible to use the Slowly
Varying Envelope Approximation, SVEA, and express the electric field as

E(r, t) = 1
2[E0(r, t)e−iω0t + c.c.] (25)
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where E0(r, t) is a slowly varying function relative to the optical period and c.c. denotes
the complex conjugate of E0(r, t)e−iω0t. Using this in (20), expanded to third order, along
with that χ2 is zero for silica fibers due to inversion symmetry [9], yields

P (ω)
ε0

= χ1(ω;ω0)1
2[E0e

−iω0t + c.c.]+

χ3(ω;ω0, ω0, ω0)1
2[E0e

−iω0t + c.c.]12[E0e
−iω0t + c.c.]12[E0e

−iω0t + c.c.]

= χ1(ω;ω0)1
2[E0e

−iω0t + c.c.] + χ3(ω;ω0, ω0, ω0)1
8
(
E3

0e
−i3ω0t + 3|E0|2E0e

−iω0t + c.c.
)

(26)

The polarization thus have one frequency component at the same frequency as the incident
electric field, ω0, and one at its third harmonic, 3ω0. The third harmonic component
requires phase matching to give a significant contribution, which is not commonly designed
into optical fibers [9] and is therefore ignored. The polarization will thus only have a
component at the frequency ω0 and the χ-terms will therefore be written as χi(ω0;ω0, ...) =
χi. Inserting this in the scalar version of (24) yields

∇2 1
2[E0e

−iω0t + c.c.] = µ0ε0
∂2

∂t2
1
2[E0e

−iω0t + c.c.]+

µ0ε0
∂2

∂t2

[
χ1 1

2[E0e
−iω0t + c.c.] + χ3 1

2

(3
4 |E0|2E0e

−iω0t + c.c.
)]

= µ0ε0
∂2

∂t2

[(
1 + χ1 + χ3 3

4 |E0|2
) 1

2[E0e
−iω0t + c.c.]

]
............................................

(27)

Since the third order nonlinear response to the electric field is relatively small compared
to the linear one [9], the partial derivative acting on |E0|2 is ignored. Using this and
separating the equation into one for E0 and one for its conjugate yields the following
equation

∇2[E0(r, t)e−iω0t] = µ0ε0

(
1 + χ1 + χ3 3

4 |E0|2
)
∂2

∂t2
[E0(r, t)e−iω0t] (28)

Expressing this equation in cylindrical coordinates, exploiting the fiber’s symmetry
and using proper boundary conditions for the fiber core and cladding, it can be solved by
separation of variables [9]. The solutions can be written as

E0(r, t) = F (r)Ez(z, t) (29)

where Ez is the electric field distribution along the fiber and F (r) is a Bessel function,
which describes the radial distribution. The number of Bessel functions, of different
orders, that satisfy (28) is what determines the number of transverse modes that the fiber
can support. As the solution is separable, it is only the z-part that is of any interest for
pulse propagation. Therefore, the F (r) part will be discarded in this thesis.

By Fourier analysis it is possible to construct any absolutely integrable function, a
property that all functions representing physical signals must have, out of plane waves.
Therefore it is instructive to examine the propagation of a plane wave by setting

Ez(z, t)e−iω0t = Eei(Bz−ω0t) = Eei([B
′+iB′′]z−ω0t) (30)
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where E is a constant amplitude and B = B′ + iB′′ is the propagation constant. This
yields

µ0ε0

(
1 + χ1 + χ3 3

4 |Ee
−B′′z|2

)
ω2

0Ee
i(Bz−ω0t) = [B′ + iB′′]2Eei(Bz−ω0t) (31)

using µ0ε0 = 1
c2
, where c is the speed of light in vacuum, while solving for B, and account-

ing for that the χi-terms in general are complex, gives

B′ + iB′′ = ω0

c

√
1 + Re(χ1) + iIm(χ1) + 3

4[Re(χ3) + iIm(χ3)]|Ee−B′′z|2

= ω0n(ω0)
c

√√√√1 + i
Im(χ1)
n2(ω0) + 3

4n2(ω0) [Re(χ3) + iIm(χ3)]|Ee−B′′z|2

≈ ω0n(ω0)
c

(
1 + 1

2

(
i
Im(χ1)
n2(ω0) + 3

4n2(ω0) [Re(χ3) + iIm(χ3)]|Ee−B′′z|2
))

(32)

where the linear refractive index, n(ω0) =
√

1 + Re(χ1), was defined and the first order
Taylor expansion of the square root was used. The Taylor expansion assumes that the
terms in the inner parenthesis are much smaller than 1. Defining the following quantities

n2(ω0) = 3
8n(ω0)Re(χ

3) (33)

α(ω0) = ω0

n(ω0)cIm(χ1) (34)

α2(ω0) = 3ω0

4n(ω0)cIm(χ3) (35)

k0 = ω0

c
.................. (36)

where n2 is the nonlinear-index coefficient, α is the absorption coefficient, α2 is the two-
photon absorption coefficient, k0 is the wavenumber at the carrier frequency and using
that α2 is relatively small in silica fibers [9], (30) can be expressed as

Eei(Bz−ω0t) = Ee−
α(ω0)

2 ze
ik0

[
n(ω0)+n2(ω0)

∣∣∣∣Ee−α(ω0)
2

∣∣∣∣2
]
z

e−iω0t (37)

where the z part of the exponential has been separated into two for clarity. The first
exponential gives a damping of the amplitude, thus corresponding to absorption, while
the second exponential gives the acquired phase of the electric field as it propagates. A
closer look at the second exponential reveals that the third order nonlinear term gives an
intensity dependent phase, since

I = cn(ω0)ε0
2 |E|2 (38)

where I is the intensity.

3.2 The Generalized Nonlinear Schrödinger Equation
The following section derives the equation governing pulse propagation in optical fibers,
the GNLS, in a similar manner as in [11]. This is done by using that the refractive index
in an optical fiber consists of an intensity independent and an intensity dependent part.
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3.2.1 The Group Velocity

The phase of a plane wave in an optical fiber, see (37), is given by

φ(z, t) = k(ω, |E|2)z − ωt (39)

where the 0 subscript was dropped for brevity and where

k(ω, |E|2) = k0

[
n(ω) + n2(ω)

∣∣∣∣Ee−α(ω)
2

∣∣∣∣2
]

(40)

The phase fronts of the wave will move at the so called phase velocity given by

vp = dz

dt
=

dφ(z,t)
dt

dφ(z,t)
dz

= ω

k(ω, |E|2) (41)

This equation can be rewritten as

vpk(ω, |E|2)− ω = 0 (42)

Differentiating this equation, for when the frequency and wave number of the wave varies
as it does when there are several plane waves, yields

dω − dk(ω, |E|2)vg = 0⇒ vg = dω

dk(ω, |E|2) (43)

where the so called group velocity, vg, was introduced. The group velocity is the velocity
at which the resulting envelope of all the plane waves moves.

3.2.2 Derivation of a basic form

The starting point is to Taylor expand the wave number, given by (40), and the absorption
about the carrier frequency of the pulse, ω0,

k(ω, |E|2) = k0
[
n(ω) + n2(ω)|E|2

]
= kL(ω) + kNL(ω)|E|2

= kL(ω0) +
∞∑
n=1

dnkL(ω0)
dωn

(ω − ω0)n
n! +

(
kNL(ω0) +

∞∑
m=1

dmkNL(ω0)
dωm

(ω − ω0)m
m!

)
|E|2

(44)

α(ω) = α(ω0) +
∞∑
l=1

dlα(ω0)
dωl

(ω − ω0)l
l! (45)

It is customary to introduce the nonlinear parameter, γ, and define a new amplitude, A,
as

kNL|E|2 = 2πn2(ω0)
λ

|E|2 = 2πn2(ω0)
λ

2
ε0cn(ω0)Aeff

ε0cn(ω0)Aeff
2 |E|2

=
γ = 4πn2(ω0)

λε0cn(ω0)Aeff
, A =

√
ε0cn(ω0)Aeff

2 E

 = γ|A|2
(46)

where n2 is the nonlinear part of the refractive index, related to the χ3 tensor, expressed
in m2

V2 and Aeff is the effective mode area, i.e. the cross section area of the fiber that the
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guided mode covers. Using (38) it is clear that the absolute square of the new amplitude
is the pulse power.

Calling the frequency of the plane wave in (37) ω and expressing it in power amplitude
while removing the carrier frequency from it by multiplication with e−i(k0z−ω0t), where k0
is the linear part of the wavenumber at the carrier frequency ω0, yields

Aplane(z, t) = Ae−
α(ω)

2 ze
i

(
kL(ω)−kL(ω0)+γ(ω)

∣∣∣Ae−α(ω)
2 z
∣∣∣2)z

e−i(ω−ω0)t (47)

Examining the partial derivatives with respect to z and t

∂Aplane

∂z
=
(
−α(ω)

2 + i(kL(ω)− kL(ω0) + γ(ω)|Aplane|2)
)
Aplane (48)

∂nAplane

∂tn
= [−i(ω − ω0)]nAplane............................. (49)

makes it possible to fulfill (44) with the following equation

∂Aplane

∂z
= −1

2

(
α(ω0) +

∞∑
l=1

αl
il

l!
∂l

∂tl

)
Aplane −

( ∞∑
n=1

βn
in−1

n!
∂n

∂tn

)
Aplane

+
(
iγ(ω0) +

∞∑
m=1

γm
im−1

m!
∂m

∂tm

)
|Aplane|2Aplane

(50)

where the following parameters were introduced

βn = dnkL(ω0)
dωn

αl = dlα(ω0)
dωl

γm = 2
ε0cn(ω0)Aeff

dmKNL(ω0)
dωm

(51)

The group velocity, (43), is usually taken as only the derivative of the linear part of the
wave number. Thus, β1 = dkL(ω)

dω
= 1

vg
. The effect of the group velocity is to advance the

pulse in time. As the equation is to be solved numerically, it is more convenient to have
the pulse maintain a fixed position in time since that requires less time points. This can
be achieved by the following coordinate transformation

Z = z T = t− β1z (52)

and using that

∂A(Z, T )
∂z

= ∂A(Z, T )
∂Z

∂Z

∂z
+ ∂A(Z, T )

∂T

∂T

∂z
= ∂A(Z, T )

∂Z
− β1

∂A(Z, T )
∂T

∂A(Z, T )
∂t

= ∂A(Z, T )
∂T

∂T

∂t
+ ∂A(Z, T )

∂Z

∂Z

∂t
= ∂A(Z, T )

∂T

(53)

Then (50) can be expressed as

∂A

∂Z
= −1

2

(
α(ω0) +

∞∑
l=1

αl
il

l!
∂l

∂T l

)
A−

 ∞∑
n≥2

βn
in−1

n!
∂n

∂T n

A
+
(
iγ(ω0) +

∞∑
m=1

γm
im−1

m!
∂m

∂Tm

)
|A|2A

(54)

This equation is referred to as the Nonlinear Schrödinger Equation, NLS, when only the
first term in the second summation is present while the first and third summations are
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approximated by their zeroth terms, i.e. α(ω0) and γ(ω0). The reason for this is the
resemblance to a Schrödinger equation with a nonlinear potential and the space and time
derivatives interchanged. When summation terms of higher order, and also when more
terms describing effects not considered here, are present it is instead referred to as the
GNLS.

In practice, the third summation is well enough approximated by its two first terms
and γ1 can be approximated by γ(ω0)

ω0
for less spectral broadening than 20 THz [9]. The

resulting equation then becomes

∂A

∂Z
= −1

2

(
α(ω0) +

∞∑
l=1

αl
il

l!
∂l

∂T l

)
A−

 ∞∑
n≥2

βn
in−1

n!
∂n

∂T n

A
+ iγ(ω0)

(
1 + i

ω0

∂

∂T

)
|A|2A

(55)

3.2.3 Including the Raman term

As stated in section 3.1, the instantaneous approximation neglects the effect of molecular
vibrations. The vibrational response, also called the Raman response, in silica fibers occur
over a duration of 60-70 fs, making its negligence questionable for pulse widths < 1 ps
[9]. Including the Raman response amounts to re-expressing (19) and using perturbation
theory, the outline of this derivation is given in [9]. However, the resulting equation can
be obtained by changing the pulse power term in (55), i.e. |A|2, to its convolution with
the Raman response function, R(T ), given by

R(T ) = (1− fR)δ(T ) + fR
τ 2

1 + τ 2
2

τ1τ 2
2
θ(T )e

−T
τ2 sin

(−T
τ1

)
(56)

where fR is the fractional contribution of the Raman response, θ(T ) is the Heaviside step
function, τ1 and τ2 are parameters to adjust the function to the Raman gain spectrum.
The resulting generalized nonlinear Schrödinger equation then takes the form

∂A

∂Z
= −1

2

(
α(ω0) +

∞∑
l=1

αl
il

l!
∂l

∂T l

)
A−

 ∞∑
n≥2

βn
in−1

n!
∂n

∂T n

A
+ iγ(ω0)

(
1 + i

ω0

∂

∂T

)
A
∫ ∞
−∞

R(τ)|A(z, t− τ)|2dτ
(57)

3.2.4 The effect of gain dispersion

The first summation on the right hand side of (57) is the result of the frequency dependence
of the absorption. Isolating this summation and taking the Fourier transform of the
equation yields

∂A
∂Z

= −
(
α(ω0) +

∞∑
l=1

αl
il

l! (iω)l
)
A ⇒ A(Z, ω) = A(0, ω)e−

(
α(ω0)+

∑∞
l=1 αl

i2lωl
l!

)
z (58)

where A is the Fourier transform of A(Zi, t) with respect to time. This shows that the
frequency components of the pulse will experience different damping, i.e. absorption.
The convention of having a negative complex exponential for the carrier frequency in (28)
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affect the signs of the expansion terms in (50). Fourier transforming the nth derivative of
a function amounts to multiplying the transform of the function with (iω)n, as opposed to
(−iω)n. This is the reason for the alternating signs, due to i2l, in the frequency expansion
in the exponential.

3.2.5 The effect of group velocity dispersion

The effects of the second summation’s terms in (57) can be analyzed by excluding the
other ones yielding

∂A

∂Z
= −

 ∞∑
n≥2

βn
in−1

n!
∂n

∂T n

A (59)

Fourier transforming this equation gives

∂A
∂Z

= −
 ∞∑
n≥2

βn
in−1

n! (iω)n
A ⇒ A(Z, ω) = A(0, ω)ei

(∑∞
n≥2 βn

(−1)n
n! ωn

)
z

⇒ A(Z, T ) =
∫ +∞

−∞
A(0, ω)ei

(∑∞
n≥2 βn

(−1)n
n! ωn

)
z
e−iωTdω.............................

(60)

In this way the summation terms introduce additional frequency dependent phase terms.
Since β1 is the inverse group velocity, β2 is the first order change of the inverse group
velocity with frequency, see (51), called the Group Velocity Dispersion, GVD, parameter.
Similarly, higher order β-terms give higher order changes of the inverse group velocity with
frequency. Non zero βn≥2 terms indicate that the group velocity differ with frequency.
This means that the frequency components constituting the pulse envelope will move at
different velocities. Thus, the βn≥2 terms will affect the pulse shape. In practice the GVD
parameter is usually the dominating term [9]. It is therefore the only term whose effect
will be detailed here. By using a Gaussian pulse the effect of the GVD can be clearly seen
without too complicated expressions.

A(0, T ) = e
− T2

2T2
0 ⇒ A(0, ω) =

√
2πT0e

−
ω2T2

0
2

⇒ A(Z, T ) = T0

∫ +∞

−∞
e−

ω2T2
0

2 ei
β2
2 ω

2ze−iωTdω = T0√
T 2

0 − iβ2Z
e
− T2

2(T2
0−iβ2Z)

= T0

(T 4
0 + β2

2Z
2)1/4 e

iarg((T 2
0−iβ2z)−1/2)e

−
T2(T2

0 +iβ2z)
2(T4

0 +β2
2Z

2)

= 1(
1 + β2

2Z
2

T 2
0

)1/4 e

− T2

2T2
0

(
1+

β2
2Z

2

T2
0

)−i( β2zT
2

2(T4
0 +β2

2Z
2)
−arg((T 2

0−iβ2z)−1/2)
)
.............................

(61)

where arg(c) denotes the phase of a complex number c. The effect of the GVD parameter
is thus seen to spread the pulse and introduce a time dependent phase factor. The
instantaneous frequency is given by − ∂φ

∂T
where φ is the phase, the minus comes from

the choice e−iω0T for the carrier frequency. The instantaneous frequency of the pulse,
including the phases from the amplitude A and the carrier frequency ω0, is given by

− ∂φ
∂T

= − ∂

∂T

(
−ω0T −

β2ZT
2

2(T 4
0 + β2

2Z
2) − arg

(
(T 2

0 − iβ2Z)−1/2
))

= ω0+ β2ZT

T 4
0 + β2

2Z
2 (62)
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Figure 7: Comparison of chirped and unchirped 170 fs Gaussian pulses with a carrier
frequency of 10 THz.

which is time dependent, also referred to as being chirped. The time at which the instan-
taneous frequency is zero is given by

T− ∂φ
∂T

=0 = −ω0(T 4
0 + β2

2Z
2)

β2Z
(63)

Beyond this time, the magnitude of the frequency will increase symmetrically in both
positive and negative T-direction. In the normal dispersion regime where β2 > 0, the
pulse will be positively chirped and T− ∂φ

∂T
=0 will be located on the negative T-axis. Since

the carrier frequencies are generally quite large, the T− ∂φ
∂T

=0 will be located far out on
the negative T-axis where the pulse curve is very close to zero. Therefore, the increase
in magnitude of the frequency in negative T-direction beyond T− ∂φ

∂T
=0 is negligible. A

positively chirped pulse is therefore said to increase its frequency with time. The opposite
situation occurs in the so called anomalous dispersion regime where β2 < 0. In this case
the pulse is negatively chirped and its frequency is said to decrease over time. Examples
of chirped Gaussian pulses are shown in Figure 7. These were obtained by plotting the
real part of the pulse amplitudes and including the complex exponential containing the
carrier frequency.

3.2.6 The effect of self phase modulation

The effect of the first nonlinear term in (57) is analyzed by isolating it and neglecting the
Raman contribution, giving

∂A

∂Z
= iγ|A|2A (64)
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Expressing the amplitude as A(Z, T ) = V (Z, T )eiΦ(Z,T ) makes it possible to separate this
equation in one equation for the real parts and one for the imaginary parts.

∂V

∂Z
eiΦ + i

∂Φ
∂Z

V eiΦ = iγ|V |2V eiΦ ⇒
{

∂V
∂Z

= 0
∂Φ
∂Z

= γ|V |2 ⇒
{

V = V0(T )
Φ = γ|V0(T )|2Z + C

(65)

The amplitude can then be expressed as

A(Z, T ) = V0(T )ei(γ|V0(T )|2Z+C) ⇒ A(0, T ) = V0(T )eiC ⇒ A(Z, T ) = A(0, T )eiγ|A(0,T )|2Z

(66)

In this way the nonlinear term introduces a power dependent phase, a phenomenon called
Self Phase Modulation, SPM. SPM only affects the phase of the pulse while its time profile
is unchanged. The SPM leads to an instantaneous frequency, see (62), of

− ∂φ
∂T

= − ∂

∂T
(−ω0T + Φ) = ω0 − γ

∂

∂T
|A(0, T )|2Z (67)

However, unlike (62), this chirp’s magnitude increases the further the pulse propagates.
This means that the pulse itself gives rise to new frequency components as it propagates.
As is evident in (67), the effect of SPM is very dependent on the pulse shape.

(a) Unchirped Gaussian. (b) SPM chirp.

(c) Positively chirped Gaussian, C = 6. (d) Negatively chirped Gaussian, C = −6.

Figure 8: The effect of SPM on 170 fs Gaussian pulses after a propagation distance of
L along the fiber with γ = 1 m−1W−1.
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For an unchirped pulse, the new frequency components will broaden the pulse spec-
trum. In the case of a chirped pulse, the SPM chirp will add to the pulse chirp. These
effects are demonstrated for a Gaussian pulse, normalized such that its maximum value
is one and such that its carrier frequency is zero:

A(0, T ) = e−(1+iC)T
2

4 ⇒


− ∂φ
∂T

= γTe−
T2
2 = Ψ(T )

A(Z, T ) = e
−T

2
4 +i

(
−C T2

4 +γe−
T2
2 Z

) (68)

where C is the chirp parameter and the SPM chirp, Ψ(T ), was defined. In Figure 8b
it is seen that the SPM chirp, apart from at the critical points, has the same value at
least at two different times. Thus, there are different times at which the instantaneous
frequency is the same. These times correspond to frequency components/waves of the
same frequency, but with different phases, that can interfere. The interference results in
the oscillations that can be seen in all of the spectra. It is seen that the spectrum of the
positively chirped pulse, Figure 8c, broadens faster than the unchirped pulse’s spectrum,
Figure 8a. The reason for this is that the SPM chirp and the positive chirp have the
same sign so that they add without any cancellation. This results in a more chirped pulse
which in turn gives a broader spectrum. The negatively chirped pulse, Figure 8d, first
narrows the spectrum but then starts broadening it. The narrowing is because of the
negatively chirped pulse having the opposite sign of the SPM chirp. They will therefore
add with some cancellation and the total chirp will decrease. However, since the SPM
chirp increases as the pulse propagates, it eventually gets greater than the negative chirp
and the spectrum will start to broaden.

3.2.7 The interplay between GVD and SPM

The parts of the pulse envelope consisting of the new frequency components resulting
from SPM will move at different velocities, given by the GVD. Therefore, these frequency
components can either result in pulse broadening or narrowing. And since SPM depends
on the pulse shape it will be affected by the broadening or narrowing from the GVD.
Because of this coupled dependence, the combined effects of GVD and SPM will depend
very much on the particular pulse considered. They will also depend a lot on the fiber
parameters β2 and γ. The importance of these parameters can be seen by introducing

τ = T
T0

A(Z, T ) =
√
P0U(Z, T ) (69)

where T0 is the pulse duration and P0 is the peak pulse power. Using these in the GNLS,
(57), with n = 2 and only including the terms for GVD and SPM yields

∂U

∂Z
= −i β2

2T 2
0

∂2U

∂τ 2 + iγP0|U |2U = −isgn(β2)
2LD

∂2U

∂τ 2 + i
1

LNL
|U |2U (70)

where the dispersion length, LD, and the nonlinear length, LNL, were defined as

LD = T 2
0
|β2| LNL = 1

γP0
(71)

Defining their ratio as

N2 = LD
LNL

= T 2
0 γP0

|β2|
(72)
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(a) Time profiles for N 2= 0.026. (b) Spectra for N 2= 0.026.

(c) Time profiles for N 2= 0.26. (d) Spectra for N 2= 0.26.

(e) Time profiles for N 2= 2.6. (f) Spectra for N 2= 2.6.

Figure 9: Comparison between output pulse and spectrum, normalized by the top values
of the input Gaussian’s time profile and spectrum, propagated 1 m for different
values of N2 in the normal and anomalous dispersion regime.
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gives a quantity for the relative strength of the GVD and SPM. It follows from (70) that
the smallest of LD and LNL will give the most dominating term. Therefore, GVD will
dominate if N � 1 and SPM if N � 1. Also note that the sign of β2 will be of importance.

In Figure 9 three different situations are shown for an unchirped 15 fs Gaussian input
pulse. It is seen that for N2 = 0.026 the dispersion regime does not make much difference,
since the nonlinear contribution does not yield enough SPM for the dispersion regimes
to respond different to. When N2 = 0.262 it is seen that the anomalous regime gives
spectral narrowing and less pulse broadening than the normal regime which gives spectral
broadening. In the case of N2 = 2.6 the pulse in the anomalous regime has narrowed its
spectrum while the pulse in the normal regime has broadened its spectrum. The difference
in pulse broadening is also clearly apparent for the time profiles.

3.2.8 The effect of self-steepening

Isolating the term in (57) stemming from the power dependence of the refractive index
yields

∂A

∂Z
= −γ(ω0)

ω0

∂

∂T
(|A|2A) (73)

Since this equation is nonlinear, it cannot rigorously be solved using Fourier analysis.
However, considering a very slowly variating power envelope, with respect to the optical
frequency, the basic influence of this term can be analyzed by initially treating the pulse
power, |A|2, as being constant. The constancy of the pulse power makes it possible to

Figure 10: The effect of self-steepening for a 150 fs Gaussian pulse propagated 6 m in a
fiber with γ = 5 · 10−4 W−1m−1.
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Fourier transform the equation and get

∂A
∂Z

= −γ(ω0)
ω0

iω|A|2A ⇒ A = e−iω
γ(ω0)
ω0
|A|2zA ⇒ A = A

(
T − γ(ω0)

ω0
|A|2z

)
(74)

which implies that parts of the pulse with higher power will undergo more positive time
translation, i.e. experience more lag, than parts with lower power. This suggests that
the pulse tails will move faster than the peak. The result is that the trailing pulse edge
will get steeper while the front pulse edge gets less steep. This situation is referred to as
self-steepening and is illustrated in Figure 10.

3.2.9 The Raman effect

Introducing the Raman term in section 3.2.3 amounted to an exchange of the pulse power,
|A|2, for its convolution with the Raman response function, R(t). Convolutions give the
area of the product between two functions as one is translated relative to the other.
Therefore, the Raman convolution can be interpreted as the result of the interaction
between the pulse power envelope and the molecular vibrations.

The actual Raman effect consists of a photon being converted into another photon
with lower energy, i.e. longer wavelength/lower frequency, and a phonon, i.e. a lattice
vibration. This means that the Raman convolution will introduce asymmetry in the
spectrum by shifting energy towards lower frequencies. This is illustrated in Figure 11 by
comparing the effects on a 150 fs pulse only including the second last terms in (55) and
(57). The reversed phenomenon, i.e. when a phonon combines with a photon to generate
a higher frequency photon, is referred to as the anti-Stokes effect. As the anti-Stokes
effect rarely occurs [9], it will not be included in this analysis.

Figure 11: The effect of the Raman convolution on a 150 fs Gaussian pulse propagated
6 m in a fiber with γ = 5 · 10−4 W−1m−1.
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3.3 The Rate Equations
Modeling the two stark split manifolds of the doped Yb-ions as two effective energy levels,
with electron population densities N1 and N2 for the effective ground and excited level
respectively, spatially dependent rate equations can be set up. These equations describe
the power propagation and the electron energy level population along the fiber.

The power propagation will depend on the amount of light that is absorbed by the
lower level and emitted by the upper level, as well as on the fiber losses. Assuming
a uniform transverse power distribution, a reasonable approximation for a single mode
fiber, the transverse profile can be neglected as far as the power propagation along the
fiber is concerned. In this case, the following equation can be set up

∂Pλ
∂z

= Γ (σe(λ)N2 − σa(λ)N1)Pλ − ηPλ (75)

where Pλ is the optical power at a given wavelength λ, σe(λ) is the emission cross section
at that wavelength which gives a measure of how probable the emission is, σa(λ) is the
absorption cross section, η represent the fiber losses and Γ is the overlap factor. The
overlap factor represents how well the guided light overlaps with the doped rare-earth
ions in the core.

Since propagating light will induce both emission and absorption, the power will vary
with time. Taking this into account along with the light’s phase velocity, vp(λ), yields

∂Pλ
∂z

+ 1
vp(λ)

∂Pλ
∂t

= Γ (σe(λ)N2 − σa(λ)N1)Pλ − ηPλ (76)

The change of the upper level population with respect to time will depend on the
upper level life time for the electrons, as well as on the amount of electrons raised to the
upper level due to photon absorption and depopulation due to stimulated emission. This
can be expressed as

∂N2

∂t
= K(λ)Γ (σe(λ)N2 − σa(λ)N1)Pλ −

N2

τ
(77)

where τ is the upper level life time and K(λ) converts the power into number of photons
per area per time. Since the light of concern is propagating in the core, the area to be
divided by is the core area, Ac. Dividing the power by the energy gives the number of
photons per time. Thus, K(λ) can be exchanged for its constituents

∂N2

∂t
= Γλ
hcAc

(σe(λ)N2 − σa(λ)N1)Pλ −
N2

τ
(78)

where h is Planck’s constant and the relation for the photon energy Ephoton = hc
λ
was used.

3.3.1 Accounting for amplified spontaneous emission

The spontaneously emitted power can be expressed with the photon energy Ephoton =
hc
λ

= hf , where f is the frequency, and the upper level life time, τ ,

PSE = hf

τ
(79)

where SE stands for spontaneous emission. The probability that the de-excitation occurs
at a given frequency is described by the so called normalized line shape g(f − f0), where
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f0 is the frequency at which the function is centered, integrated over a frequency range.
Using a small frequency range, the integral can be approximated by the multiplication
g(f − f0)∆f . As the spontaneously emitted light in general occur at more than one
wavelength, several propagation equations are needed. The frequency difference between
the frequencies that are assigned their own propagation equations is what will constitute
the frequency range ∆f . Since the propagation equations are only concerned with the
z-direction, the dopants at each infinitesimal transverse plane are accounted for by multi-
plying the population density by the core area. Using this reasoning and that the amount
of spontaneous emission will depend on the population of excited electrons, the following
term for the guided part of the spontaneously emitted power, commonly referred to as
amplified spontaneous emission, ASE, can be obtained

g(f − f0)∆f hf
τ
N2r

2
cπ

where rc is the core radius. The spontaneously emitted light will be sent out in random
directions and will not in general undergo TIR. Thus, only a fraction, F , of the sponta-
neously emitted light will be guided. The number of supported fiber modes, m, must also
be taken into account. Therefore, a more complete term describing ASE is given by

g(f − f0)∆f hf
τ
N2mΓFr2

cπ

Using that the fiber used in this master thesis is single mode, i.e. m = 1, and obtaining
the expression for F from the local capture fraction in [12] gives

g(f − f0)∆f hf
τ
N2Γ λ2

4πn2

where λ is the wavelength of the spontaneously emitted light and n is the refractive index
of the core. Using the relation between the normalized line shape and cross-section along
with the expression for the inverse life time of spontaneous emission in [13], the following
term for the ASE is obtained

Γσe(λ)N2∆f 2hc
λ

Lastly, re-expressing ∆f by
df

dλ
= d

dλ

(
c

λ

)
= − c

λ2 ⇒ ∆f = c

λ2 ∆λ (80)

gives the following term accounting for ASE

PASE = Γσe(λ)N2
2hc2∆λ
λ3 (81)

3.3.2 Resulting rate equations

The pump light and the light to be amplified make up two different signals. Taking
this and that they may contain several wavelengths each into account gives the following
spatially dependent rate equations

∂N2

∂t
= Γp
hcAc

J∑
j=1

λpj [σa(λ
p
j)N1 − σe(λpj)N2]Pp(λpj)

+ Γs
hcAc

K∑
k=1

λsk[σa(λsk)N1 − σe(λsk)N2]P±s (λsk)−
N2

τ

(82)
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N1 = NT −N2 (83)

∂P±p (λpj)
∂z

± 1
vp(λpj)

∂P±p (λpj)
∂t

= ±
(
Γp[σe(λpj)N2 − σa(λpj)N1]P±p (λpj)− ηpP±p (λpj)

)
(84)

∂P±s (λsk)
∂z

± 1
vp(λsk)

∂Ps(λsk)
∂t

= ±
(
Γs[σe(λsk)N2 − σa(λsk)N1]P±s (λsk)− ηsP±s (λsk)

+Γsσe(λsk)N2
2hc2∆λ

[λsk]3

) (85)

where ηp is the pump loss, ηs is the signal loss, NT is the doping concentration which is
assumed to be constant throughout the fiber, P±p is the pump power, P±s are the signal
power of the forward, +, and backward, −, propagating beams due to reflection at the
fiber end and/or counter propagating beams.

3.3.3 Gain saturation

As mentioned earlier, the induced de-excitation of the excited electrons in the doped ions
is what adds more photons to the signal that is to be amplified. Given that there is a
finite amount of dopants, there will also be a finite amount of photons that can be added
to a signal. Thus, the photons added to more powerful signals, containing more photons,

Figure 12: Logarithmic plot, for easier comparison, of the power profile of a Gaussian
pulse experiencing gain saturation.

25



will constitute smaller fractions of the signals’ total number of photons, i.e. more powerful
signals will experience less gain. This situation is referred to as gain saturation.

Apart from reducing the gain, gain saturation can also lead to pulse distortion. This
happens when the de-excitation due to the leading edge results in too few excited electrons
to amplify the trailing edge by an equal amount. As the pulse is further amplified, this
effect becomes more pronounced.

The effect of gain saturation on a 1 ps monochromatic Gaussian pulse is showed in
Figure 12. In this figure it is seen that the trailing edge reaches a maximum level, where
the green and red graphs overlap, beyond which it cannot be further amplified. The
leading part however, will be further amplified which leads to pulse distortion. This
distortion alters the pulse shape, which can be seen by noting that the red graph does
not have a Gaussian profile.
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4 Numerical Analysis
As it is only possible to obtain analytic solutions for the GNLS and the rate equations
in some special cases, it will in general not be possible to solve the coupling between the
two models analytically. Therefore, they must be solved numerically. In this section, the
numerical approach used for solving the coupling between the two models is outlined.

4.1 Solving the GNLS with a fourth-order Runge-Kutta in the
Interaction Picture Method

This method uses a concept, similar to the interaction picture from Quantum Mechanics,
to express the GNLS, (57), in a such a way that it is solvable using a fourth-order Runge-
Kutta scheme [14].

4.1.1 The quantum mechanical interaction picture

The interaction picture is applicable when the Hamiltonian, Ĥ, can be divided into a
time-dependent and a time-independet part.

Ĥ = Ĥ1 + Ĥ2(t) (86)

A Schrödinger state vector, |a〉, is transformed into an interaction state vector, |a〉I , by
multiplying it by the following complex exponential

|a〉I = ei
Ĥ1t
~ |a〉 (87)

where ~ = h
2π . Taking the time derivative of the interaction state vector and using the

chain rule for differentiation as well as the Schrödinger equation, i~ ∂
∂t
|a〉 = Ĥ |a〉, results

in an interaction picture Schrödinger equation.

∂

∂t
|a〉I = − i

~
ei
Ĥ1t
~ Ĥ2(t) |a〉 = 1

i~
ei
Ĥ1t
~ Ĥ2(t)e−i

Ĥ1t
~ ei

Ĥ1t
~ |a〉 = 1

i~
HI |a〉I ⇒ i~

∂

∂t
|a〉I = HI |a〉I

(88)

Where the interaction Hamiltonian was defined as

HI = ei
Ĥ1t
~ Ĥ2(t)e−i

Ĥ1t
~ (89)

Working in the eigen basis, {|b〉}, of the time-independet part of the original Hamiltonian
yields coupled differential equations for the expansion coefficents of |a〉I in {|b〉}. After
solving these equations, the Schrödinger state vector is then obtained by multiplying
the interaction state vector, now expressed in {|b〉}, by the conjugate of the complex
exponential used to transform the Schrödinger state vector.

4.1.2 Applying the concept to the GNLS

The right hand side of the GNLS, (57), can be divided into a linear and a nonlinear part
with respect to the amplitude A. The linear part represents the effects of gain dispersion
and GVD while the nonlinear part represents SPM, self-steepening and the Raman effect.
In this way (57) can be expressed as:

∂A

∂Z
=
(
D̂ + N̂

)
A (90)
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where D̂, the dispersion operator, and N̂ , the nonlinear operator, are given by

D̂ = −1
2

(
α(ω0) +

∞∑
l=1

αl
il

l!
∂l

∂T l

)
−

∑
n≥2

βn
in−1

n!
∂n

∂T n


N̂ = iγ(ω0) 1

A

(
1 + i

ω0

∂

∂T

)
A
∫ ∞
−∞

R(τ)|A(z, t− τ)|2dτ
(91)

The dispersion operator is used, like the time-independent part of the Hamiltonian, to
transform the amplitude A into an interaction amplitude AI in the following way

AI = e−(Z−Z′)D̂A (92)

where Z ′ is the separation distance between the normal and interaction pictures and can
be chosen arbitrarily. Taking the partial derivative with respect to Z of the interaction
amplitude and using the chain rule for differentiation along with (90) yields

∂AI

∂Z
= e−(Z−Z′)D̂N̂A = e−(Z−Z′)D̂N̂e(Z−Z′)D̂e−(Z−Z′)D̂A = N IAI (93)

where the interaction nonlinear operator, N I , was defined as

N I = e−(Z−Z′)D̂N̂e(Z−Z′)D̂ (94)

As will be seen in section 4.1.4, (93) has a suitable form to be solved by a fourth-order
Runge-Kutta method.

4.1.3 The Fourth-Order Runge-Kutta Method

A system of first order ordinary differential equations, all having the same dependent
variable, can be written like

dy
dz

= f(y, z) (95)

The easiest way to numerically solve this type of equations, is to approximate the deriva-
tive by its definition and using a small step, ∆z, instead of the limit. This is equivalent
to approximate the solutions, y, by their Taylor expansions truncated after two terms.
The truncation leads to an error proportional to ∆z2 each time the method is used, ie.
each time a small step is taken. The number of steps will be given by n = zend−zstart

∆z ∝ 1
∆z

and thus the global error will be proportional to ∆z.
The fourth-order Runge-Kutta method, RK4, is a more refined way of approximating

the derivative, and has a global error proportional to ∆z4. This method is given by [15]

k1 = ∆zf(yi, zi)
k2 = ∆zf(yi + k1/2, zi + ∆z/2)
k3 = ∆zf(yi + k2/2, zi + ∆z/2)
k4 = ∆zf(yi + k3, zi + ∆z)
yi+1 = yi + [k1 + 2(k2 + k3) + k4]/6

(96)

where yi = y(zi), yi+1 = y(zi+1) and zi+1 = z + ∆z.
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4.1.4 RK4 applied to the GNLS in the Interaction Picture

The GNLS in the interaction picture, (93), has the same form as (95), which means that
the RK4 method can be used to solve it. Applying (96) to (93) and using the definitions
of the interaction nonlinear operator, (94), and the interaction amplitude, (92), gives

k1 = ∆Ze−(Zi−Z′)D̂N̂(A(Zi, T ))A(Zi, T )
k2 = ∆Ze−(Zi+∆Z/2−Z′)D̂N̂(e(Zi+∆Z/2−Z′)D̂[AI(Zi, T ) + k1/2])e(Zi+∆Z/2−Z′)D̂[AI(Zi, T ) + k1/2]
k3 = ∆Ze−(Zi+∆Z/2−Z′)D̂N̂(e(Zi+∆Z/2−Z′)D̂[AI(Zi, T ) + k2/2])e(Zi+∆Z/2−Z′)D̂[AI(Zi, T ) + k2/2]
k4 = ∆Ze−(Zi+∆Z−Z′)D̂N̂(e(Zi+∆Z−Z′)D̂[AI(Zi, T ) + k3])e(Zi+∆Z−Z′)D̂[AI(Zi, T ) + k3]
AI(Zi + ∆Z, T ) = AI(Zi, T ) + [k1 + 2(k2 + k3) + k4]/6followed by a red fragment bajs bajs bajs

(97)

Choosing the arbitrary parameter as Z ′ = Zi + ∆Z/2 eliminates the exponentials in k2
and k3. The amplitude in the normal picture is obtained by multiplying the interaction
amplitude by the positive version of the exponential in (92). Multiplying k4 with this
exponential cancels k4’s first exponential, making it possible to redefine it along with the
equation for AI(Zi + ∆Z, T ). All of this leads to the following method for obtaining
A(Zi + ∆Z, T )

AI(Zi, T ) = e∆Z
2 D̂A(Zi, T )

k1 = ∆Ze∆Z
2 D̂N̂(A(Zi, T ))A(Zi, T )

k2 = ∆ZN̂(AI(Zi, T ) + k1/2)[AI(Zi, T ) + k1/2]
k3 = ∆ZN̂(AI(Zi, T ) + k2/2)[AI(Zi, T ) + k2/2]
k4 = ∆ZN̂(e∆Z

2 D̂[AI(Zi, T ) + k3])e∆Z
2 D̂[AI(Zi, T ) + k3]

A(Zi + ∆Z, T ) = A(Zi, T ) + e∆Z
2 D̂[k1 + (k2 + k3)/3] + k4/6

(98)

This is the Fourth-Order Runge-Kutta in the Interaction Picture method, RK4IP.

4.1.5 The dispersion exponential

The dispersion exponential appears in several places in the RK4IP. For example, it acts
on the normal amplitude when calculating the interaction amplitude

AI(Zi, T ) = e∆Z
2 D̂A(Zi, T ) = e−

1
2

(
α(ω0)+

∑∞
l=1 αl

il

l!
∂l

∂T l

)
−
∑∞

n=2 βn
in−1
n!

∂n

∂TnA(Zi, T ) (99)

Using Fourier analysis, the derivatives in the exponential can be bypassed

e−
1
2

(
α(ω0)+

∑∞
l=1 αl

il

l!
∂l

∂T l

)
−
∑∞

n=2 βn
in−1
n!

∂n

∂TnA(Zi, T ) =

F−1{F{e−
1
2

(
α(ω0)+

∑∞
l=1 αl

il

l!
∂l

∂T l

)
−
∑∞

n=2 βn
in−1
n!

∂n

∂TnA(Zi, T )}} =

F−1{e−
1
2

(
α(ω0)+

∑∞
l=1 αl

i2lωl
l!

)
−
∑∞

n=2 βn
i2n−1
n! ωn

A(Zi, ω)}

(100)

where F denotes Fourier transformation. In this way the sums of derivatives are trans-
formed to polynomials in frequency. Thus, the functions that the dispersion exponential
are to operate on are Fourier transformed and multiplied by the frequency dispersion
exponential, the products are then inversely transformed.
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4.1.6 Occurring phenomena when using numerical Fourier transforms

The numerical model is set up in MATLAB, which uses a numerical algorithm to compute
Fourier transforms called fft. This method computes the Fourier integral using numerical
time steps of one. The transform must then be multiplied by the actual time step,
used to set up the function to be transformed, if the energy is to be preserved and the
spectrum is to show anything more than a relative distribution of the energy amongst
the frequency components. The fft function will also give shifted spectra, such that the
highest frequencies are centered in the middle, for real functions. They must therefore be
shifted back using the function fftshift.

The Raman convolution is computed using the Fourier convolution theorem. As both
the pulse power and the Raman functions are real valued, their convolution must also
yield a real valued function. However, as the product of the Fourier transforms of the
Raman function and the pulse power is inversely transformed, using the ifft function,
it acquires small imaginary values. These values are a pure numerical artifact and will
grow for each convolution they undergo. The solution is to take the absolute value of the
inversely transformed product, using the abs function.

4.2 Solving the rate equations with an iterative fourth-order
Runge-Kutta method

This section starts out with justifying why the rate equations, (82)-(85), can be solved in
steady state and then outlines an iterative method to solve them.

4.2.1 Motivation for solving the rate equations in steady state

A propagating pulse will depopulate the excited electronic energy level due to induced
stimulated emission. The amount of depopulation depends on the pulse’s duration, form

Figure 13: N2(t) at z = 0 for different initial conditions N2(0).
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and energy. Depending on the pump’s repopulation rate of the excited level and the
pulses’ repetition rate, the population of excited electrons can either be fluctuating with
time or attain a non changing steady state profile.

The rate equations can be used to obtain the rate of the re-population along the fiber.
However, due to fiber losses and absorption, the pump power will always be highest at
the fiber end at which it is launched into. Therefore, analyzing the re-population at this
end will give an upper limit to its rate.

Considering monochromatic continuous-wave pumping, the pump power will be con-
stant at the end it is launched into and equation (82) is reduced to

∂N2

∂t
= Γp
hcAc

λp[σa(λp)NT − (σa(λp) + σe(λp))N2]Pp(λp)−
N2

τ
(101)

where (83) was used. This equation can be solved analytically using the integrating factor,
yielding

N2(t) =
Γpλpσa(λp)NTPp(λp)

(
1− e−[(σa(λp)+σe(λp))Pp(λp)+ 1

τ ]t
)

hc
(
(σa(λp) + σe(λp))Pp(λp) + 1

τ

) +N2(0)e−[(σa(λp)+σe(λp))Pp(λp)+ 1
τ ]t

(102)

The parameters for the pump and active fiber that are to be simulated in this master thesis
are given in Table 1, found in section 5. In Figure 13, (102) is plotted for different starting
values of N2(0) for the extreme case of a pump power of 1000 W. Although this pump
power is about two orders of magnitude greater than what is attainable from the laser
diode that is to be used for pumping, the recovery time of N2 is in the order of µs. Given
that the pulses that are to be amplified have a repetition rate of 217 MHz, corresponding
to 4.6 ns between consecutive pulses, the re-population rate will be insufficient to recover
the upper level population along the fiber in between the pulses. This implies that the
stimulated emission induced by the pulses and the pump will reach a steady state, where
they balance each other.

Solving the rate equations in steady state will only include the effect of gain saturation
on the total gain but not on the pulse shape, as that is a transient effect.

4.2.2 Solving the rate equations in steady state

The steady state settles in as the transient behaviors have vanished, which mathematically
is expressed as the time derivatives in the rate equations, (82)-(85), being zero. Using
(83) in (82) and solving for N2 yields

N2 =
Γp
hcAc

∑J
j=1 λ

p
jσa(λ

p
j)NTPp(λpj) + Γs

hcAc

∑K
k=1 λ

s
kσa(λsk)NTP

±
s (λsk)

Γp
hcAc

∑J
j=1 λ

p
j [σa(λ

p
j) + σe(λpj)]Pp(λ

p
j) + Γs

hcAc

∑K
k=1 λ

s
k[σa(λsk) + σe(λsk)N2]P±s (λsk)− 1

τ

(103)

which along with (84) and (85); that in steady state only contain z-derivatives, which
means that they can be solved by the RK4 outlined in 4.1.3; gives the population density
of excited electrons along the fiber.
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4.2.3 Frequency decomposition of the signal

As the rate equations, (82)-(85), are wavelength dependent, the laser pulse is Fourier
transformed to obtain its frequency constituents. The resulting spectrum is then renor-
malized such that its sum corresponds to the mean power. This is done by dividing the
spectrum by its summation and multiplying the result by the mean power to be simu-
lated. Since the Fourier transform by default is centered around the frequency zero, it is
shifted such that the power spectrum instead is centered at the carrier frequency of the
pulse, f0 = c

λ0
. The frequency components of the power spectrum are then related to their

corresponding wavelength through λ = c
f
. Each wavelength constituent is then given its

own propagation equation, (85). These propagation equations are coupled through the
upper level population equation (103).

4.2.4 Co-propagating signal and pump

The situation when the signal and pump are coupled in at the same fiber end is referred
to as co-propagation. Solving the steady state rate equations in this case starts with
calculating N2(z = 0) using the incident pump and signal in (103). The value of N2(z = 0)
is then used to propagate the pump and signal to z = dz using (84) and (85). These values
are used to calculate N2(z = dz) which is used to further propagate the pump and signal.
This process is iterated until z = L, where L is the length of the fiber, where the following
boundary condition is applied:

P−(z = L) = RLP
+(z = L) (104)

where RL is the reflectivity of the fiber end at z = L and P represents both pump
and signal power. After updating the values of the back propagating pump and signal,
N2(z = L) is recalculated and used to propagate the signal and pump from z = L to
z = 0 in a similar manner as described above. At z = 0, the following boundary condition
is applied:

P+(z = 0) = P+
ref(z = 0) +R0P

−(z = 0) (105)

where P+
ref represents the pump and signal powers that are launched into the fiber end

z = 0 and R0 is the reflectivity of that fiber end. The updated forward propagating pump
and signal powers are then used to obtain N2(z = 0), which is then used to propagate the
pump and signal along the fiber in the same way as described above.

The process of calculating N2 from z = 0 to z = L and from z = L to z = 0 is iterated
until the sum of the signal, both forward and back propagating, at the fiber end z = L has
not changed, more than some predetermined tolerance, between the last two iterations.

In the very first iteration, only the pump at z = 0 is propagated from z = 0 to z = L
and only the pump and back propagating signal are considered during the propagation
from z = L to z = 0.

4.2.5 Counter-propagating signal and pump

When the pump and signal are coupled in at opposite fiber ends, the situation is referred
to as counter-propagation. In this case, the steady state rate equations are solved in the
same iterative manner as in the co-propagating case but with the following boundary
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conditions

P+
s (z = 0) = P+

s ref(z = 0) +R0P
−
s (z = 0) (106)

P+
p (z = 0) = R0P

−
p (z = 0) (107)

P−s (z = L) = RLP
+
s (z = L) (108)

P−p (z = L) = P−p ref(z = L) +RLP
+
p (z = L) (109)

where Ps and Pp denote the signal and pump powers respectively and the ref subscripts
refer to the launched powers.

The first iteration is now solved by applying the pump from z = L while the backward
propagating signal, still the one propagating from z = L to z = 0, is set to zero and the
forward propagating signal is ignored in the propagation to z = 0.

Just like in the co-propagating case, this process is iterated until the signal, both
forward and back propagating, at z = L has not changed, more than some predetermined
tolerance, between the last two iterations. However, as the last iteration is the one from
z = 0 to z = L, the pump power does not necessarily reach its initial value at z = L.
Therefore, an outer loop, that updates the initial value of the pump power until the final
value at z = L matches the applied power, is added. For each iteration of the outer loop,
the initial pump’s value is updated by adding the following factor to it

corr = sgn(P0 − Pi) · 10floor(log10(P0−Pi)) (110)

where sgn denotes the sign function, floor denotes rounding off to the nearest lower integer,
P0 is the applied pump power and Pi is the current pump power as a result from the last
rate equations solution from z = 0 to z = L. The corr-factor thus adds or subtracts a one
times the order of magnitude of the difference between the applied and calculated pump
power. The outer loop is set to run until the calculated pump power matches the applied
one within some predetermined tolerance.

4.3 Combining the two models
The steady state rate equations are first solved for a given wavelength interval around the
pulse’s carrier wavelength. The resulting upper level population, N2(z) = N2(Z), is used
to obtain the absorption along the fiber. Using the right hand side of (76) and (83) the
absorption can be expressed as

α(Z, λ) = −Γs [(σe(λ) + σa(λ))N2(Z)− σa(λ)NT ] + η (111)

The value for the absorption at each Z-point along the fiber is used in the GNLS to
propagate the pulse to the next Z-point.

A flowchart of the program is given in Figure 14.
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Figure 14: Flowchart of the program.

4.4 Numerically accounting for gain dispersion
As the cross section data used for solving the rate equations is experimentally collected,
there is no analytic function for obtaining the expansion coefficients in (58). Therefore, the
wavelength dependent absorption is instead polynomially approximated in the proximity
of the carrier wavelength.

At each position along the fiber, the order of the polynomial approximation is chosen
such that the absorption increases beyond the considered wavelength span. This is mainly
done to avoid infinite values as a result of too large positive real numbers in the dispersion
exponential, see (99), but also to ensure that the impact of the wavelength components in
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Figure 15: Choosing a suitable polynomial fit for the gain dispersion.

the considered wavelength span will be of most importance. Figure 15 shows the difference
in absorption profiles when choosing a polynomial of order 10, the green graph, and 8, the
red graph, to approximate the absorption, based on the cross section data, at a specific
point along the fiber.
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5 Setting the simulation parameters
In this section, the setting of the simulation parameters is detailed. These parameters are
summarized in Table 1.

5.1 Parameters specifying the seed pulse
The pulse’s full width half maximum, FWHM, was measured to be 170 fs and had a
repetition rate of 217 MHz and a carrier wavelength of 1038 nm. The pulse amplitude
had a transform limited, which means that the product of the pulse’s time and spectral
FWHMs is at its minimum and that the pulse is unchirped, hyperbolic secant time profile
and a power envelope of a squared hyperbolic secant. The energy of such a pulse with a
peak power of P0 is obtained through the following integral

P0

∫ ∞
−∞

sech2
(
T

T0

)
dT = 2P0T0 (112)

where T0 = FWHM
1.7627 . Multiplication with the repetition rate, Rr, yields the mean power.

Pm = 2P0T0Rr (113)

Parameter group Parameter Value Source

Seed

λ0 1038 nm Measured
FWHM 170 fs Measured
Rr 217 MHz Measured
Pm 0.36 W Measured

Coupling efficiency 60% Estimated

Pump
λp 976 nm Measured

Applied pump powers 0.8− 16 W Measured
Coupling efficiency 85% Estimated

Fiber

σa(λp) 2.4254 · 10−24 m2 [1]
NT 6.3 · 1025 m−3 Calculated
τ 840 µs [1]
L 5.2 m Measured
rcore 10 µm NUFERN specification

rcladding 200 µm NUFERN specification
ηs −1 dBkm−1 [16]
ηp −1.5 dBkm−1 [16]
γ 0.45 mW−1m−1 Calculated
fR 0.18 [9]
τ1 12.2 fs [9]
τ2 32 fs [9]
Γs 0.97 Calculated
Γp 0.0025 Calculated
β2 18 ps2

km Calculated
β3 0.042 ps3

km Calculated
R0 8 · 10−4 Calculated
RL 8 · 10−4 Calculated

Table 1: Summary of the simulation parameters.
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Thus, the peak amplitude of the input pulse used in the simulations will be given by

A0 =
√
P0 =

√
Pm

2T0Rr

(114)

for a given value of Pm. The seed input power simulated in this master thesis was 0.36
W. The amount of signal power that was actually coupled into the fiber was estimated to
be 60%.

5.2 Parameters specifying the pump
The pump was a volume bragg grating stabilized continuous wave laser diode, LIMO40-
F200-DL976-LM, operating at a wavelength of 976 nm. The pump beam was coupled into
a delivery fiber with a core radius of 200 µm, which had a numerical aperture of 0.22. It
was estimated that 85% of the pump’s output power, ranging from 0.8 W to 16 W, was
coupled into the active fiber.

5.3 Parameters specifying the fiber
The single mode double clad polarization maintaining Yb-doped active fiber had a core
radius of 10 µm and a cladding radius of 200 µm. The fiber loss at the signal wavelength

Figure 16: Line through the core and fitted Gaussian curve.
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was set to -1 dBkm−1 and -1.5 dBkm−1 at the pump wavelength [16]. The upper level life
time of the Yb-ions was 840 µs.

A fiber length of 5.2 meters was chosen as the fiber’s small signal absorption at the
pump wavelength, αss = 1.65dBm−1, suggests that almost 9 dB of the pump will have
been absorbed by then. This implies that the pulse would not experience as much gain
further on but instead just keep broadening due to longer interaction with the nonlinear
effects.

The signal overlap factor, Γs, was approximated as the ratio between the core and
effective mode area, giving a value of 0.97. The pump overlap factor Γp was approximated
as the ratio between the core and cladding area, giving a value of 0.0025.

The amount of the pump that is absorbed per meter can be expressed as the product
between the pump wavelength cross section, the pump’s overlap factor and the doping
concentration. Thus, the following differential equation can be set up

dPpump
dz

= −NTΓpσabs(λpump)Ppump (115)

This equation can be solved using the integrating factor, which gives

Ppump(z) = Ppump(0)e−NTΓpσabs(λpump)z (116)

The small signal absorption expressed in decibel is defined as

αss = 10log10

(
Ppump(z)
Ppump(0)

)
(117)

Using this in (116) and setting z = 1 m and solving for NT gives

NT = −
ln
(
10αss

10
)

Γpσabs(λpump)
(118)

The absorption cross section value at the pump wavelength was 2.4·10−24 m2, which gave
a doping concentration of 6.3·1025 m−3.

The effective mode area used to compute the nonlinear parameter γ in the GNLS,
(46), was experimentally determined by analyzing an image of the output fiber end when
the signal was applied without any pump. A Gaussian curve was fitted to the pixel values
of one row through the core, this corresponds to approximating the transverse mode
distribution as Gaussian, see Figure 16. The fitted w-parameter was used as the mode
radius, thus the effective mode area was given by πw2. The w-parameter was given in
pixels, and was converted to meters by measuring how many pixels that corresponded to
the cladding diameter of 400 µm. This resulted in an effective mode radius of 10.13 µm.
The value for n2(ω0) was set to 5.33·10−23 m2V−2 and was obtained from the value of
nI2 = 2n2

cn(ω0)ε0 for 1053 nm, the measured value closest to the carrier wavelength, in [17].
n(ω0), obtained from (119), was 1.45 for the carrier wavelength. This gave a γ value of
0.45 mW−1m−1. The Raman parameters τ1, τ2 and fR were respectively set to 12.2 fs,
32 fs and 0.18 [9]. By using the Sellmeier model for the wavelength dependence of the
refractive index of fused silica [18]

n =
√

1 + 0.6961663λ2

λ2 − 0.06840432 + 0.4079426λ2

λ2 − 0.11624142 + 0.8974794λ2

λ2 − 9.8961612 (119)
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θ

Figure 17: Two identical fibers with an angular offset of θ.

re-expressed as a function of ω = 2πc
λ
, the group velocity dispersion expansion terms

appearing in (59) were obtained by setting kL = 2πω
c
n(ω) and using (51). In the final

simulations, only the terms β2 = 18 ps2
km and β3 = 0.042 ps3

km were used. The fiber’s end
reflections can be approximated by analyzing the coupling of an optical signal between two
identical fibers spliced with an angular offset, related to the fiber’s cleave angle. Using the
refractive index of the fiber’s core at the carrier wavelength, nc, the w-parameter of the
optical signal, the angular offset between the fibers, θ, see Figure 17, and the wavelength,
the amount of the signal that is coupled into the second fiber is given by [19]

T = e−
π2n2

cθ
2w2

λ2 (120)

By multiplying this amount with the Fresnel reflection at the cleaved fiber end, for a wave
propagating parallel with the optical axis of the fiber, the reflected amount is obtained.
As the cleaved end faces were perpendicular to the stress rods’ axis that the polarization
was aligned with, only the Fresnel equation for the s-polarization needs to be considered.
Thus, the fiber’s end reflections are given by

R =

∣∣∣∣∣∣∣∣
nccos

(
π
2 − θcleave

)
− nt

√
1− n2

c

n2
t
sin2

(
π
2 − θcleave

)
nccos

(
π
2 − θcleave

)
+ nt

√
1− n2

c

n2
t
sin2

(
π
2 − θcleave

)
∣∣∣∣∣∣∣∣
2

e−
π2n2

c(π2−θcleave)2
w2

λ2 (121)

where nt is the refractive index of the medium the signal is transmitted to from the core
and the angle θ in Figure 17 was re-expressed in terms of the cleave angle defined in
section 2.7.1, here denoted by θcleave instead of α as to not confuse it with the small signal
absorption, αss. Using that the cleave angle was 85◦, that the laser beam was transmitted

Figure 18: Experimentally collected cross section data from [1].
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to air from the core, i.e. nt ≈ 1, the w-parameter and the refractive index for the carrier
wavelength given above, the reflectance was found to be 8·10−4.

The experimentally collected cross section data, obtained from [1], is shown in Figure
18.

5.4 Parameters specifying the computations
In this section, the parameters affecting the numerical computations are given.

5.4.1 Time steps

The MATLAB program was developed using test pulses with durations of a few ps to 100
fs. In order to resolve the time profiles of the short pulses, the sampling frequency must
be high. To get a good resolved frequency profile, a wide enough time window of the
pulses must be used. These parameters affect the number of data points and will thus
determine the simulation time. Empirical optimization of these parameters lead to the
following rules

expref = round(log10(T0))
Ts = 10expref−2

|T | ≤ 5 · 10expref−1.5
(122)

where expref is a reference value, T0 is the pulse duration, Ts is the time resolution, i.e.
the inverse sampling frequency, and round denotes rounding off to the nearest integer.

5.4.2 Fiber steps, convergence limits and wavelength span

The fiber length of 5.2 m was discretized to 100 points. This fiber step was chosen as to
not get too time consuming simulations. The RK4IP has a global error proportional to
the fourth power of the fiber step, which in this case is only about 7 ·10−6.

The convergence limit for the rate equations was set to 10−7 while the convergence
limit for the counter propagating outer loop was set to 10−5. These values were set such
that they would not yield too time consuming simulations while still providing low risk
of divergent numerical solutions.

The wavelength span ranged from 1020 nm to 1105 nm. This range was chosen as
to cover a broad spectrum extending further towards longer wavelengths as to reflect the
gain asymmetry of Yb, see Figure 18.
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6 Experimental setup
To check the validity of the numerical model, a counter propagating cladding pumped
laser amplifier, with a 5.2 m long Yb-doped fiber as amplifying medium, was set up. The
fiber was pumped by a 976 nm laser diode. The pump beam was first collimated with a
40 mm lens. The collimated beam was then focused into the fiber through another 40 mm
lens. The unabsorbed pump was then collimated through a 30 mm lens. The collimated
unabsorbed pump was monitored to optimize the pump coupling into the fiber. The
optimization was performed using a low pump power and adjusting the fiber position to
maximize the ASE, which was read off a powermeter.

The mode-locked seed laser with 170 fs transform limited hyperbolic secant pulses at
1038 nm was then coupled into the fiber after passing a λ

2 -plate, which was used to align
the seed laser’s polarization with the stress rods. The in-coupling of the seed was done
using two mirrors, which were high reflective, HR, at 1038 nm and high transmitting,
HT, at 976 nm, and two apertures. The mirror closest to the seed laser was adjusted
such that the laser hit the middle of an aperture placed in front of the second HR mirror.
The second mirror was adjusted such that the laser hit the middle of an aperture placed
in front of the 30 mm lens. A third mirror with the same HR/HT characteristics as the
other two mirrors was then inserted between the two 40 mm lenses, as to redirect the
output signal away from the pump’s path. A CCD-camera was placed in the beam path
after the third mirror to facilitate the alignment. The fiber end facing the 40 mm lens was
then de-collimated in order to image the fiber end onto the camera. The position of the
fiber end closest to the seed laser was then adjusted to maximize the amount of saturated
pixels in the core of the imaged fiber end. Once that was maximized, a powermeter was
used to minimize the seed signal, as that suggests that the seed is absorbed in the core
instead of guided through the cladding.

The fiber end facing the 40 mm lens was then collimated again and a glass plate
was inserted in the path of the output beam path to couple the Fresnel reflection into
a spectrometer. A powermeter was then placed in the transmitted beam path instead
of the CCD-camera. Three metallic flip mirrors and two stationary metallic mirrors
were inserted to give the possibility of coupling both the input and output beam into
an autocorrelator for pulse duration measurements. Lastly, a powermeter was placed
behind the second mirror that the seed laser passes so that the unabsorbed pump could
be measured. The resulting setup is schematically illustrated in Figure 19.
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Figure 19: Experimental setup.
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7 Results
Below, the results from the experimental setup and the simulations are first displayed
separately and then compared to each other.

7.1 Experimental results
The experimentally collected amplifier characteristics from the setup in Figure 19 are
given in Figure 20. Since the output power was measured after passing through a thick
piece of glass, giving two Fresnel reflections, the measured value will be approximately
10% less than the actual output power. Taking this into account and subtracting the
unabsorbed pump power, the slope efficiency of the laser amplifier, i.e. the slope of the
output versus absorbed pump power, is 76 %.

Figure 20: Measured spectrum, output power and FWHM of the output pulses for in-
creased pump power.

43



7.2 Simulated results
The simulated results for the output power characteristics, inversion and pump profiles,
time and spectral profiles, autocorrelation profiles and pulse durations, represented by
the pulses’ FWHMs, the relative change in powers and FWHMs between simulated points
along the fiber are given in Figure 21. Rather than displaying the spectral intensity for
the output spectrum, the power spectrum obtained by multiplying the absolute squared
Fourier transform by the squared repetition rate is shown, this is done for easier com-

Figure 21: Simulated laser amplifier characteristics for multiple pump powers.
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parison with the experimental data. The simulated pulse powers are calculated as the
integrals, using a trapezoidal scheme, of the squared amplitudes multiplied by the repe-
tition frequency. These powers correspond to the mean powers that would be read off a
powermeter. Also, note that the simulated unabsorbed pump powers have been subtracted
from the simulated launched pump powers in the top graph. This gives a simulated slope
efficiency of 77%.

7.3 Comparison of results
The simulated and measured pulse durations, output powers and four of the output spec-
tra are plotted together in Figure 22 for comparison. The measured output powers in this
figure are those for which glass losses and unabsorbed pump power have been accounted
for. For easier comparison, the spectra have been normalized by their peak value.

Figure 22: Comparison of simulated and measured amplifier characteristics.
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8 Discussion
Figure 22 shows that the simulated output powers are in almost perfect agreement with
the measurements, which suggests that the model is successful in modeling the pulse
amplification as far as power gain is concerned.

The simulated pulse durations are all slightly shorter than the measured values. How-
ever, the curve formed by the simulated pulse durations closely resembles an average
curve, with a vertical offset, that could be fitted in the middle of the measured values.
This offset could be a consequence of:

• The GVD parameters being inaccurate and thus not broadening the pulse enough.

• The nonlinear parameter being too small to give enough spectral broadening through
SPM. This would result in there not being enough new frequencies generated as the
pulse propagates for the GVD to act on, which would cause the pulses to not broaden
as much.

• Additional effects have to be taken into account, for example the neglected effect of
gain saturation on the pulse shape might affect the pulse durations.

In Figure 22, it is seen that the measured and simulated spectra qualitatively show the
same trend, i.e. being broadened more towards longer wavelengths and having ripples in
the long wavelength part of the spectra at higher pump powers. However, quantitatively
it is evident that the numerical model is incapable of broadening the spectra enough as
the pump power is increased. This might be caused by:

• The Raman parameters not being accurate enough and thus not shifting the correct
amount of energy to longer wavelengths.

• The nonlinear parameter being inaccurate and not yielding enough spectral broad-
ening through SPM.

• The cross section data is invalid and does not yield enough gain for the longer
wavelengths.

• Additional effects have to be taken into account, for example the neglected effect of
gain saturation on the pulse shape might contribute in such a way that the spectra
would be affected.

Due to the glass plate, only some percentage of the pulse will be coupled into the
spectrometer. This means that the actual power spectrum should be about one order
of magnitude greater than the measured one. Comparing the orders of magnitude for
the simulated and measured power spectrum, indeed shows that the simulated spectrum
is about one order of magnitude greater. The power spectra obtained from the steady
state rate equations, see Figure 23, are about four orders of magnitude greater than the
measured spectra and also have completely different shapes. This shows that they are
insufficient for modeling pulse propagation.

Using the values for Pm, the signal coupling efficiency, γ, FWHM and β2 in Table 1
in section 5 and (114) as well as (72) gives a N ≈ 1.1, suggesting that neither the effects
of SPM and GVD should be dominating. However, looking at the increase in spectral
width in the measured spectra as well the increase in pulse duration as the pump power
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Figure 23: Simulated output spectra from the rate equations.

is increased, it seems like the spectral width increases more rapidly. To confirm this, the
spectral width and pulse durations, normalized by the spectral width and pulse duration
at the lowest applied pump power, were plotted. The result is shown in Figure 24, where
it is also seen that the simulations show the same tendency. However, the relative increase
in spectral width deviates more from the measured one as the pump is increased. This
also suggests that either the simulation parameters are not in complete agreement with
the actual setup and/or that more effects need to be considered.

Figure 24: Relative increase in spectral width and pulse durations.
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8.1 The relative importance of the GNLS terms
In order to investigate the relative importance of the different terms appearing in the
GNLS, they are neglected in turns. The results are compared with the measurements
in Figure 25. The measured output powers are the ones for which the glass losses and
unabsorbed pump are accounted.

It can be seen that the simulated spectra are wavelength shifted compared to the
measured ones when gain dispersion is neglected, see Figure 25a. This is a result of the
spectra also being broadened towards shorter wavelengths. In turn, this means that there
will be a greater variety of wavelength components propagating at different velocities
because of the GVD. Therefore, the pulse durations are expected to increase more as the
pump power is increased, which can be seen in the same figure.

Neglecting self-steepening and the Raman effect, see Figure 25b-c, does not affect the
results by any noticeable amount.

However, also neglecting SPM has a tremendous impact, see Figure 25d. In this case,
the only effect directly affecting the spectra is gain dispersion. This results in less pulse
broadening through GVD as the pulse propagates, since there are no new wavelength
components added to the spectra when the pulse is propagating. It also seems like the
GVD and the gain dispersion start balancing each other as the pump power is increased.
This can be seen by noticing that the spectra, which are actually being compressed as
the pump power is increased, and the pulse durations, which are also compressed as the
spectra are compressed, seem to change less as the pump power is increased.

The case when the Raman effect, self-steepening and the GVD are neglected does not
yield pulse like solutions and are therefore not included.

This successive negligence of terms suggests that the most important effects to con-
sider when solving the GNLS, for this amplifier configuration, are GVD, SPM and gain
dispersion. It also implies that the impact of gain dispersion; which is an often neglected
effect when solving the GNLS see for example [9], [11] and [14]; is necessary to consider
in order to avoid getting wavelength shifted simulated spectra compared to the measured
spectra, to get a similar trend for the simulated pulse durations as for the measured ones
and a comparable slope efficiency.

(a) Comparison of simulated and measured amplifier characteristics neglecting gain dispersion
by only using the absorption for the carrier wavelength.
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(b) Comparison of simulated and measured amplifier characteristics neglecting self steepening.

(c) Comparison of simulated and measured amplifier characteristics neglecting self steepening
and the Raman effect.

(d) Comparison of simulated and measured amplifier characteristics neglecting self steepening,
the Raman effect and SPM.

Figure 25: The effects of neglecting terms in the GNLS.
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8.2 The effect of a non uniform upper level population
To see the effect of accounting for the non uniform upper level population density; resulting
from the varying absorption of the pump, stimulated and spontaneous emission along the
fiber; the simulations are run using constant absorptions based on the measured data.
These are obtained by

P (L) = P (0)e−α(λ0)L ⇒ α(λ0) = ln
(P (0)

P (L)

)1/L
 (123)

where λ0 denotes the carrier wavelength, P (L) is the output power and P (0) is the input
power. The corresponding upper level populations are obtained by solving (111) for N2
while using the cross sections for the carrier wavelength, giving

N2 =
η−α(λ0)

Γs + σa(λ0)NT

σe(λ0) + σa(λ0) (124)

This value is then used in (111) to include the gain dispersion. The unabsorbed pump
powers, subtracted from the launched pump powers to get the absorbed pump, are in this
case the measured ones.

Figure 26: Simulated laser amplifier characteristics for increased pump power with con-
stant absorption.
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Figure 27: The effect of using constant absorption while solving the GNLS.

The simulated results are shown in Figure 26 and their comparison with the mea-
surements are given in Figure 27. It is seen that the output powers are all greater than
the measured ones, even at the lowest pump powers. However, the pulse durations and
spectra give comparable results to the simulations where at least the non constant upper
level population density, gain dispersion, GVD and SPM are accounted for.

Interestingly, these simulations give better correlation with the measurements than
the ones neglecting gain dispersion but having a non constant upper level population.
However, using this approach requires knowledge of the output power. It is therefore only
possible to simulate already existing setups, unless the constant absorptions are estimated.

That these simulations correlate better with the measurements, than the simulations
where gain dispersion was neglected, implies that only accounting for a nonuniform upper
level population profile in the GNLS need not give better agreements with measurements
than using a constant absorption.

It seems that the combination of a nonuniform upper level population and gain disper-
sion is required to give better agreement with measurements than just using a constant
absorption.

8.3 The relative change in power and pulse duration
Looking at the simulated results in Figure 21, it is seen that the relative change in power
very much follows the upper level profile, which was to be expected since the upper level
population density determines the gain. It is evident; by comparing the relative power
changes from the simulations with a constant gain, seen in Figure 26, to the ones in Figure
21; that after half of the fiber, the relative change in power in the case of a constant gain
exceeds the one in the case with a non constant gain at all pump powers. This is the
reason why the constant gains yield greater output powers.

In Figure 21, it can also be seen that the pulse is actually experiencing a net loss of
power in the initial part of the fiber at the four lowest pump powers. At the two lowest
pump powers, it takes more than half of the fiber before the pulses start experiencing a net
gain. This could be an explanation as to why there seems to be a different gradient in the
measured pulse durations between these two pump powers, see Figure 20. A comparison
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Figure 28: Comparison of the simulated pulse durations when neglecting different ef-
fects.

of the pulse durations in Figure 22, Figure 25a-c and Figure 27, is shown in Figure 28. In
this figure, it is seen that a similar gradient between the two lowest pump powers, as the
one in the measured pulse durations, is only present in the simulations where at least the
non constant upper level population density, gain dispersion, GVD and SPM are taken
into account.

Two interesting observations about the relative changes in FWHMs at different pump
powers are that they follow very similar curves, even at the lowest pump powers unlike
the relative changes in power, and that they mostly differ in the region 0.25-4 m. It is
also interesting to note that the relative changes in FWHMs along the fiber are almost
identical in Figure 21 and Figure 26. This and the discussion above suggest that as long
as the pulse is experiencing a net gain throughout the entire fiber, the gain profile itself
is not as vital for predicting pulse durations as it is for predicting pulse powers.

52



9 Conclusion and outlook
To conclude, a numerical model, combining the steady state rate equations with the gener-
alized nonlinear Schrödinger equation, for simulating amplification of high repetition rate
mode-locked laser pulses in active fibers was developed. The presented model accounted
for effects such as GVD, SPM, self-steepening, the Raman effect, gain dispersion and non
constant upper level population along the fiber.

A MOPA setup was set up to verify the model’s validity by comparison of the simu-
lated and the measured data. The results show that the simulated data is in very good
agreement with the measured data in terms of output power characteristics, in good
agreement in terms of pulse durations and in fairly good agreement in terms of output
spectra.

Comparison of the simulations where effects were neglected in turns implies that gain
dispersion on its own is a more important effect than a non constant upper level population
density, whose importance was the main aim of this thesis to investigate, as far as corre-
lation between the simulated and measured data is concerned. However, to asses whether
this holds in general or only for the MOPA setup considered here, further measurements
and simulations are required.

Although many of the simulation parameters used in this master thesis were tabulated
values rather than measured values on the actual setup, the deviations between measured
and simulated data are not that pronounced. Thus, as simulations often are used to
understand general behavior, the presented model could be used for comparison between
different fiber amplifier designs. However, further measurements should be carried out to
assure the model’s general validity before relying too much on such comparisons.

9.1 Future work
Below follows some potential future work for improving the presented model and for
further testing its validity, as well as some possible future work for the experimental
setup.

9.1.1 Implementing parallel computing

As the calculations for different simulated pump powers are independent, multiple pump
powers could be simulated in parallel by implementing parallel computing. This would
drastically reduce the simulation time when simulating more than one pump powers.

9.1.2 Improving the handling of gain dispersion

In principle, there could be several polynomial approximations that yield increased ab-
sorption outside the considered wavelength span. Thus, further restraint as to how the
order of the polynomial approximation is chosen could improve the simulated results.
Preferably some restraint which quantifies how well the polynomial approximation cor-
relate with the absorption it is supposed to approximate. Another alternative would be
to stitch several polynomial approximations together for different parts of the considered
wavelength span.

The main problem however, is to acquire a valid behavior outside the considered
wavelength interval.
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9.1.3 Extending the model

As the presented model is based on the assumption that the transverse beam profile can
be neglected, effects such as that the focused beams, pump and seed laser, are more
intense in the center of the fiber are neglected. As the upper level population and all
of the considered nonlinear effects are power dependent, the propagation conditions will
depend on the radial distance from the center of the fiber. Thus, a transversely resolved
model might be able to improve the simulated results.

It would be interesting to investigate whether an additional term could be included
in the GNLS to account for the transient type of gain saturation, since that effect is
neglected by solving the rate equations in steady state.

9.1.4 Further measurements

A continuation of this work should include measurements on a greater variety of pulses in
terms of different input powers, durations, spectra and time profiles. These measurements
should be compared to simulations using the presented model to provide a more general
grasp of its validity.

Comparison of simulations and measurements on different fibers would also help in
grasping the models’ validity. Also, measuring the model parameters, see Table 1 in
section 5, on the actual fiber, instead of using tabulated data, would yield a more fair
comparison between the simulations and measurements.

9.1.5 Co-propagation

As the model only was tested for a counter-propagating amplifier setup in this thesis, it
would be beneficial to investigate how well it works for co-propagating setups in order to
get a better understanding of the models’ validity.

9.1.6 Pulse compression

Since the pulses are broadened during the amplification, it would be interesting to ex-
perimentally investigate whether it is possible to compress them using for example a
diffraction grating or a suitable optical fiber. It would also be interesting to see if the
model presented here could be extended to include pulse compression as well.

9.1.7 Pumping nonlinear processes

Nonlinear processes, for example optical parametric oscillation where a photon gets con-
verted into two photons of lower energy, require intense pump sources in order to have a
good conversion efficiency. As the MOPA setup set up in this work was able to produce
3 ps pulses with a mean power of almost 10 W, it would be a good candidate for such a
pump source.
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