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Pulse amplification in homogenous gain media

Approximations

1. Rate equation approximations are still valid, even though
pulse amplification often involves short pulses with fast time
variation and high intensities

2. The amplified pulse durations are short enough to neglect
any pumping effects and any upper-level relaxation effects
during the transit time of the pulse




Pulse amplification in homogenous gain media
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Pulse amplification in homogenous gain media

The rate of change of the stored signal in the length Az of the
medium is given by

0 . A . At
%ﬁem(zﬁ )AZ = 1(2,t) —1(Z+A2,t) + cAN(Z,0)I(2,0)AZ

Using (2, t)=cp..,(2,t) and combining with the rate equation for the
inverted population

ai(2,£)+ al(z,t)
ot ‘T ez
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2’0 AN(Z, DI, T
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Pulse amplification in homogenous gain media

Transformation from laboratory coordinates to a coordinate system
traveling along the pulse

_’\

Z=2 t=t—2/c

I(z,t) =1(2,t) N(z,t) =AN(, 1)

Previous equations then transform to

dl(z,t)
0z

=oN(z,t)I(z,1t) (1)

N

20
== (hw> N(z,)I(z,t) (2)




Pulse amplification in homogenous gain media

Integration of (1) over the entire amplifier and pulse

JI=Iout(t) dl
I I

z=L
— = O'J N(z t)dz
z=0

=Iin(t)

Defining the "total number of atoms”

zZ=L

N;o: (t) =J N(z, t)dz

z=0

Giving the solution

Iout(t) = Iin(t)eaNtOt(t) - G(t)lin(t) (3)

Where G(t) = eNeot(®) s the time varying gain at any instant within
the pulse




Integration of (2) over the entire amplifier length

ONpor () _ < 2* > JZ=L 9l(z,t)

0 z=L
— N(z t)dz =
ot L:o (z,0)dz =—75, ho)l_, ot

Which simplifies to

ON¢o 2"
ta;(t) _ _%[lout(t) — Iin ()]

And substituting (3) into this solution gives

ONgoe(8) 27 oNeot () _ 1) . _
o =~ (e = 1) (@] = @

- _Z [(1 — e—GNtot(t)) : Iin(t)]
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Pulse amplification in homogenous gain media




Pulse amplification in homogenous gain media

Suppose the total inversion before the pulse enters the media is

z=L
N, = f N(z, t)dz
z=0

The single pass power gain of the amplifier is then
GO — eO'No
Also, the pulse energies per area are defined as

t t

(O Ugue®) = | Toue(0)d

to

U@ = |

to
The saturation energy for the atomic medium is

_ hw




Pulse amplification in homogenous gain media

Integration of (4) provides the useful relations

Uy [ ) Ly, i (LG
Uin(t) = Usqe * In 1 — e=0Neor(t) | — 754 n 1-1/G(¢t)

eNo — 1 Gop— 1
Uput (t) = Usqe * In = Usqt "In| ——5—

eNtor(t) — 1

Using these relations one obtain

Go

G(t) =

Go — (Gy — 1)e~Uin(0)/Usat (5)
G(t) =1+ (GO — 1)e_UOut(t)/Usat




Pulse amplification in homogenous gain media

The relations (5) can be used to detemine the pulseshape after
passing though the amplifier

I Golin < Ugat 1)
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Pulse amplification in homogenous gain media
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Pulse amplification in homogenous gain media

The energy extracted from the amplifier is

Uextr = Uout — Uin = Usqr * ln(GO/Gf)

t—>oo

The available energy in the amplifier is
defines as

NO hw

Ugvait = Usar - In(Gy) =

2*




Pulse amplification in homogenous gain media

1000
The pulse energy gain can be defined as

Uwe ___ 0(Go= /(6 ~ 1))
U 1n((Go = 1)/(G; = 1)) = In(Go/Gp)

Gpe

-
o
o

The pulse extraction efficiency
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Pulse amplification in homogenous gain media
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Pulse propagation in nonlinear dispersive systems

When an electric field is applied to a transparent dielectric medium it
gives rise to a macroscopic polarization in the material

P(r,t) = gO(X(l)E +)((2)E2 +)((3)E3 -+ )

X - linear response. Refractive index &
Absorption

X2 - SHG, OPO, OPA etc...

Only in noncentrosymmetric materials e.g.
KTP, LiNbO,

X3) - THG, FWM, Kerr Effect etc..




Pulse propagation in nonlinear dispersive systems

X(3) is present in all optical materials.
For a strong electric field the total displacement d is

d=¢(1+ X(l))E + X(g)EB
Resulting in a nonlinear respons of the refractive index

n =ng + n,pE?

Can be induced by applying an
electric field and induce birefringence,
e.g in Kerr Light Modulators and
Pockels cells




Pulse propagation in nonlinear dispersive systems

For a Kerr Light modulator voltages in the rage of 25000 V are required
for a noticable effect A
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polarizer analyzer

Nitrobenzen: 4 4x 10"

Kerr Constant K (mV ™) Water: 52x107"
Oxide glass: ~1x10™"




Pulse propagation in nonlinear dispersive systems

Optical Kerr effect: The optical signal is strong enough to induce the
Xz)E? term
3w generation (generally weak)
X3)E? <

refractive index change n = ngy + ny;I
Present in all optical materials

« Self focusing
« Self phase modulation




Pulse propagation in nonlinear dispersive systems

Self focusing
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Pulse propagation in nonlinear dispersive systems

Self focusing

input beam output beam
z=0 z=24 cm




Pulse propagation in nonlinear dispersive systems

Self phase modulation: the temporal analoge to self focusing
An = n(t) —ng = nyI(t)

An optical pulse traveling through a nonlinear material will
then experience a phase shift of

d
Normally n,; > 0 so aAqb(t) = Aw; <0

I(n
pulse envelope / w|(l‘)

frequency chirp /




Pulse propagation in nonlinear dispersive systems

Assume Gaussian unchirped input pulse

E(t) = Eje~ %’ I(t) = I e~2at"

Passing through a nonlinear medium of length L it acquires a
phase shift
27T(Tl0 + nZII)L

() = ————
With the phase shift derivative being

a¢ _ 27Tn21L al 4‘7Tan2110L

_ 2

9t 1 o0t A

That is, the pulse will acquire significant amount of self phase
modulation if

1 L=10m
=1iny, =3-107° cm? /Wi =~ 30 MW /cm?
A=0.5pum

lo

- 27Tn21L




Pulse propagation in nonlinear dispersive systems

Linear disperion + Nonlinear effect
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Nonlinear Schrodinger Equation

A pulse propagating in a nonlinear media or along a fiber
can be described with the nonlinear Schrodinger equation

LI N

ot 2 at2 2 E@zt)=0

Can be expanded to account for various nonlinear effects
such as Raman scattering, SHG etc. Here only the Kerr
effect is considered.
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Pulse propagation in an optical fiber
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Pulse propagation in

FIGURE 10.14

Pulse broadening produced
by self-phase modulation plus
positive dispersion for a 5.5
ps, 10 W input pulse at Ao

= 590 nm traveling through
increasing lengths of single-
mode fiber.
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Pulse propagation in an optical fiber
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FIGURE 10.15

Self-broadening of an initial 6-ps 100-W pulse after propagation through 30 m of single-
mode fiber. (a) Output pulse intensity versus time. (b) Output frequency chirp. (c) Out-
put pulse spectrum. (d) Result of linear dispersive compression of this chirped pulse.




Pulse propagation in nonlinear dispersive systems

Application: Pulse compression

input pulse 30m optical fiber output pulse

' dlﬂraritlon
grating

compressed
pulse
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Soliton in optical fiber
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Soliton in optical fiber

Solitons are a solution to the NLSE, and at lower order, N=1, has the

form ,
t — tO - Z/vg .
E(t) = E,sech - exp(j(Qt — kz))
0

1.0 ~
S |
o 0.5 -
a ]

1
S ™ N N
2 < e =
'& - §\$\°<\°Q
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Soliton in optical fiber

Higher order solitons, N>1, reproduce themselves at periodic distances
along the fiber
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