Task 5: Chapter 10 Charlotte Liljestrand cl@laserphysics.kth.se

Assume a Nd:YAG laser operated in the pulsed regime with 200 mJ pulses at 100Hz. The pulses can be assumed to be Gaussian in time with a FWHM pulse length τ =6.5 ns. The laser has an M²~1.

- 1. Assume a pulse is sent through a homogenous saturable amplifier with a small signal gain $G_0=\exp(2\alpha_0L)$. Plot the input and output intensities $I_{in}(t)$ and $I_{out}(t)$ versus t for gains $G_0=3$, 10 and 100 and for various sizes of the beam size ω_0 so that Uin/Usat=0.01, 0.1 and 1.0.
- 2. A KTP crystal is pumped using the given laser. How hard does the laser need to be focused to obtain a spatial soliton? Assume that the refractive index and the Kerr nonlinearity of KTP are n_0 = 1.747869 and n_2 =1.2*10⁻¹⁵ cm²/W for the given wavelength (1064 nm). Is the formation of a first order spatial soliton somehow related to the length of the KTP crystal? For the given pulse properties, KTP has a damage threshold of ~10 J/cm², would the crystal be able to withstand the intensity needed to form a spatial soliton?
- 3. Is it possible to get self-phase modulation employing the second order nonlinearity of a material? If so, how and what could be the application? Discuss!