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Chap. 2 resonant-dipole equation (RDE):
d2P
dt2 + ∆ωa

dP
dt + ω2

a P = 3∗ωaελ 3γrad
4π2 ∆N(t)E (t) = K∆N(t)E (t)
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Chap. 2 resonant-dipole equation (RDE):
d2P
dt2 + ∆ωa

dP
dt + ω2

a P = 3∗ωaελ 3γrad
4π2 ∆N(t)E (t) = K∆N(t)E (t)

Was solved in the linear case:
E (t) = Re

{
Ex ejωt}= 1

2
(
Ex ejωt + E ∗x e−jωt)

P(t) = Re
{

Px ejωt}= 1
2
(
Px ejωt + P∗x e−jωt)

and using a constant ∆N(t) = ∆N.
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Chap. 2 resonant-dipole equation (RDE):
d2P
dt2 + ∆ωa

dP
dt + ω2

a P = 3∗ωaελ 3γrad
4π2 ∆N(t)E (t) = K∆N(t)E (t)

Was solved in the linear case:
E (t) = Re

{
Ex ejωt}= 1

2
(
Ex ejωt + E ∗x e−jωt)

P(t) = Re
{

Px ejωt}= 1
2
(
Px ejωt + P∗x e−jωt)

and using a constant ∆N(t) = ∆N.
This gives:
εχ = K ∆N

ω2a−ω2+jω∆ωa
→ Lorentzian lineshape
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However, solving the RDE at resonance by applying
E (t) = E1sinωat, keeping ∆N constant with P(0) = P ′(0) = 0
gives:
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However, solving the RDE at resonance by applying
E (t) = E1sinωat, keeping ∆N constant with P(0) = P ′(0) = 0
gives:
let P = Ph + Pih, RHS(Ph)=0 ansatz: Ph = Aert ,
RHS(Pih)=Cejωat use u = zejωat and Im

{
ejωat}=sinωat
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However, solving the RDE at resonance by applying
E (t) = E1sinωat, keeping ∆N constant with P(0) = P ′(0) = 0
gives:
let P = Ph + Pih, RHS(Ph)=0 ansatz: Ph = Aert ,
RHS(Pih)=Cejωat use u = zejωat and Im

{
ejωat}=sinωat

P(t) =−K∆NE1
ωa∆ωa

[
cos(ωat)− e−∆ωa

2 tcos
(√

ω2
a −

∆ω2a
4 t
)]
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However, solving the RDE at resonance by applying
E (t) = E1sinωat, keeping ∆N constant with P(0) = P ′(0) = 0
gives:
let P = Ph + Pih, RHS(Ph)=0 ansatz: Ph = Aert ,
RHS(Pih)=Cejωat use u = zejωat and Im

{
ejωat}=sinωat

P(t) =−K∆NE1
ωa∆ωa

[
cos(ωat)− e−∆ωa

2 tcos
(√

ω2
a −

∆ω2a
4 t
)]

∆ωa = γ + 2
T2

, if ∆ωa� γ and ∆ω2
a

4 � ω2
a , then
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However, solving the RDE at resonance by applying
E (t) = E1sinωat, keeping ∆N constant with P(0) = P ′(0) = 0
gives:
let P = Ph + Pih, RHS(Ph)=0 ansatz: Ph = Aert ,
RHS(Pih)=Cejωat use u = zejωat and Im

{
ejωat}=sinωat

P(t) =−K∆NE1
ωa∆ωa

[
cos(ωat)− e−∆ωa

2 tcos
(√

ω2
a −

∆ω2a
4 t
)]

∆ωa = γ + 2
T2

, if ∆ωa� γ and ∆ω2
a

4 � ω2
a , then

P(t)≈−K∆NE1
ωa∆ωa

[
1− e−

t
T2
]

cos(ωat)
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However, solving the RDE at resonance by applying
E (t) = E1sinωat, keeping ∆N constant with P(0) = P ′(0) = 0
gives:
let P = Ph + Pih, RHS(Ph)=0 ansatz: Ph = Aert ,
RHS(Pih)=Cejωat use u = zejωat and Im

{
ejωat}=sinωat

P(t) =−K∆NE1
ωa∆ωa

[
cos(ωat)− e−∆ωa

2 tcos
(√

ω2
a −

∆ω2a
4 t
)]

∆ωa = γ + 2
T2

, if ∆ωa� γ and ∆ω2
a

4 � ω2
a , then

P(t)≈−K∆NE1
ωa∆ωa

[
1− e−

t
T2
]

cos(ωat)

Conclusion:
If ∆N(t) changes
slowly compared to
T2, it can be treated
as constant in RDE.



2-level atomic rate equations



The origin and
limitations of
atomic rate
equations

RobertoLindberg
rolindbe@kth.se

Linear χ

2-level atomic RE

BB radiation

NR relaxation

Resulting RE

Multi-level RE

Large signals

Classical definition of work:
dU = F ·dr =−qE ·dr⇒ dU

dt = E d
dt (−qr) = [µ =−qr] = Edµ

dt
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Classical definition of work:
dU = F ·dr =−qE ·dr⇒ dU

dt = E d
dt (−qr) = [µ =−qr] = Edµ

dt
Average over volume V containing N dipoles:
dUa
dt = E d

dt
( 1

V ∑
N
i=1 µi

)
= EdP

dt
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Classical definition of work:
dU = F ·dr =−qE ·dr⇒ dU

dt = E d
dt (−qr) = [µ =−qr] = Edµ

dt
Average over volume V containing N dipoles:
dUa
dt = E d

dt
( 1

V ∑
N
i=1 µi

)
= EdP

dt

Setting E = Re
{

E1(ω)ejωt}
P = Re

{
P1(ω)ejωt} yields:

dUa
dt = jω

4 (E∗1P∗1−E∗1P∗1) + jω
4
(
E∗1P∗1e2jωt −E∗1P∗1e−2jωt)
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Classical definition of work:
dU = F ·dr =−qE ·dr⇒ dU

dt = E d
dt (−qr) = [µ =−qr] = Edµ

dt
Average over volume V containing N dipoles:
dUa
dt = E d

dt
( 1

V ∑
N
i=1 µi

)
= EdP

dt

Setting E = Re
{

E1(ω)ejωt}
P = Re

{
P1(ω)ejωt} yields:

dUa
dt = jω

4 (E∗1P∗1−E∗1P∗1) + jω
4
(
E∗1P∗1e2jωt −E∗1P∗1e−2jωt)

At low powers and averaging over a few optical cycles gives:
dUa
dt

∣∣∣
av

= jω
4 (E∗1P∗1−E∗1P∗1)
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Classical definition of work:
dU = F ·dr =−qE ·dr⇒ dU

dt = E d
dt (−qr) = [µ =−qr] = Edµ

dt
Average over volume V containing N dipoles:
dUa
dt = E d

dt
( 1

V ∑
N
i=1 µi

)
= EdP

dt

Setting E = Re
{

E1(ω)ejωt}
P = Re

{
P1(ω)ejωt} yields:

dUa
dt = jω

4 (E∗1P∗1−E∗1P∗1) + jω
4
(
E∗1P∗1e2jωt −E∗1P∗1e−2jωt)

At low powers and averaging over a few optical cycles gives:
dUa
dt

∣∣∣
av

= jω
4 (E∗1P∗1−E∗1P∗1)

Assuming a linear χ, i.e. P∗1(ω) = εχ(ω)E∗1(ω), gives:
dUa
dt

∣∣∣
av

= jωε

4 (E∗1χE∗1−E∗1χ∗E∗1)
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Let E∗1χ∗E∗1 =
(
x y z

)a∗ b∗ c∗
d∗ e∗ f ∗
g∗ h∗ i∗

x∗
y∗
z∗


and E∗1χ†E∗1 =

(
x∗ y∗ z∗

)a∗ d∗ g∗
b∗ e∗ h∗
c∗ f ∗ i∗

x
y
z


⇒ E∗1χ∗E∗1 = E∗1χ†E∗1
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Let E∗1χ∗E∗1 =
(
x y z

)a∗ b∗ c∗
d∗ e∗ f ∗
g∗ h∗ i∗

x∗
y∗
z∗


and E∗1χ†E∗1 =

(
x∗ y∗ z∗

)a∗ d∗ g∗
b∗ e∗ h∗
c∗ f ∗ i∗

x
y
z


⇒ E∗1χ∗E∗1 = E∗1χ†E∗1

Re-express the RHS:
dUa
dt

∣∣∣
av

=− jωε

4 E∗1
(
χ†−χ

)
E∗1 =

[
χah = j

2
(
χ†−χ

)]
=−ωε

2 E∗1χahE∗1
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Let E∗1χ∗E∗1 =
(
x y z

)a∗ b∗ c∗
d∗ e∗ f ∗
g∗ h∗ i∗

x∗
y∗
z∗


and E∗1χ†E∗1 =

(
x∗ y∗ z∗

)a∗ d∗ g∗
b∗ e∗ h∗
c∗ f ∗ i∗

x
y
z


⇒ E∗1χ∗E∗1 = E∗1χ†E∗1

Re-express the RHS:
dUa
dt

∣∣∣
av

=− jωε

4 E∗1
(
χ†−χ

)
E∗1 =

[
χah = j

2
(
χ†−χ

)]
=−ωε

2 E∗1χahE∗1
If χ is isotropic (or at least diagonal), then
χ† = χ∗⇒ E∗1χahE∗1 =−2jχ ′′ |E1|2 which gives:
dUa
dt

∣∣∣
av

=−ωε

2 χ
′′(ω)|E1(ω)|2
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Let E∗1χ∗E∗1 =
(
x y z

)a∗ b∗ c∗
d∗ e∗ f ∗
g∗ h∗ i∗

x∗
y∗
z∗


and E∗1χ†E∗1 =

(
x∗ y∗ z∗

)a∗ d∗ g∗
b∗ e∗ h∗
c∗ f ∗ i∗

x
y
z


⇒ E∗1χ∗E∗1 = E∗1χ†E∗1

Re-express the RHS:
dUa
dt

∣∣∣
av

=− jωε

4 E∗1
(
χ†−χ

)
E∗1 =

[
χah = j

2
(
χ†−χ

)]
=−ωε

2 E∗1χahE∗1
If χ is isotropic (or at least diagonal), then
χ† = χ∗⇒ E∗1χahE∗1 =−2jχ ′′ |E1|2 which gives:
dUa
dt

∣∣∣
av

=−ωε

2 χ
′′(ω)|E1(ω)|2

This is the average power transfer per unit volume from a
sinusoidal field to the atoms in an isotropic and linear medium.
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Using the results in chap. 2, the power transfer equation can be
expressed as:
dUa
dt

∣∣∣
av

=−ωε

2

[
− 3∗λ 3γrad

4π2∆ωa
1

1+
(

2(ω−ωa)
∆ωa

)2 (N1−N2)
]
|E1(ω)|2
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Using the results in chap. 2, the power transfer equation can be
expressed as:
dUa
dt

∣∣∣
av

=−ωε

2

[
− 3∗λ 3γrad

4π2∆ωa
1

1+
(

2(ω−ωa)
∆ωa

)2 (N1−N2)
]
|E1(ω)|2

Defining the stimulated upward and downward transition
probabilities as: W12 = W21 = 3∗λ 3γrad

8π2∆ωa h̄
ε|E1(ω)|2

1+
(

2(ω−ωa)
∆ωa

)2
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Using the results in chap. 2, the power transfer equation can be
expressed as:
dUa
dt

∣∣∣
av

=−ωε

2

[
− 3∗λ 3γrad

4π2∆ωa
1

1+
(

2(ω−ωa)
∆ωa

)2 (N1−N2)
]
|E1(ω)|2

Defining the stimulated upward and downward transition
probabilities as: W12 = W21 = 3∗λ 3γrad

8π2∆ωa h̄
ε|E1(ω)|2

1+
(

2(ω−ωa)
∆ωa

)2

The power transfer equation can be expressed as:
dUa
dt

∣∣∣
av

= W12N1h̄ω−W21N2h̄ω
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Using the results in chap. 2, the power transfer equation can be
expressed as:
dUa
dt

∣∣∣
av

=−ωε

2

[
− 3∗λ 3γrad

4π2∆ωa
1

1+
(

2(ω−ωa)
∆ωa

)2 (N1−N2)
]
|E1(ω)|2

Defining the stimulated upward and downward transition
probabilities as: W12 = W21 = 3∗λ 3γrad

8π2∆ωa h̄
ε|E1(ω)|2

1+
(

2(ω−ωa)
∆ωa

)2

The power transfer equation can be expressed as:
dUa
dt

∣∣∣
av

= W12N1h̄ω−W21N2h̄ω

The energy will be stored in the upper level, so:
dN2
dt =−dN1

dt = d
dt
( 1

h̄ω
Ua
)∣∣

av = W12N1−W21N2
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Using the results in chap. 2, the power transfer equation can be
expressed as:
dUa
dt

∣∣∣
av

=−ωε

2

[
− 3∗λ 3γrad

4π2∆ωa
1

1+
(

2(ω−ωa)
∆ωa

)2 (N1−N2)
]
|E1(ω)|2

Defining the stimulated upward and downward transition
probabilities as: W12 = W21 = 3∗λ 3γrad

8π2∆ωa h̄
ε|E1(ω)|2

1+
(

2(ω−ωa)
∆ωa

)2

The power transfer equation can be expressed as:
dUa
dt

∣∣∣
av

= W12N1h̄ω−W21N2h̄ω

The energy will be stored in the upper level, so:
dN2
dt =−dN1

dt = d
dt
( 1

h̄ω
Ua
)∣∣

av = W12N1−W21N2
In the case of degeneracy and Ei < Ej , define: ∆N = gj

gi
Ni −Nj

and change

γrad→ γradij
λ → λij

∆ω →∆ωij
E (ω)→ E (ωij)

W12→Wij



Blackbody radiation
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Any volume of space in thermal equilibrium with its surroundings
contains blackbody radiation (BBR), if the volume is � λ the
magnitude is given by:
d |EBBR(ω)|2 = 16πh̄dω

ελ 3
(

e
h̄ω
kT −1

)
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Any volume of space in thermal equilibrium with its surroundings
contains blackbody radiation (BBR), if the volume is � λ the
magnitude is given by:
d |EBBR(ω)|2 = 16πh̄dω

ελ 3
(

e
h̄ω
kT −1

)
This field will induce stimulated transitions with transition
probabilities given by:
W12,BBR =

∫
dW12,BBR =

∫
∞

−∞

3∗λ 3γrad
8π2∆ωa h̄

ε

1+
(

2(ω−ωa)
∆ωa

)2
16πh̄

ελ 3
(

e
h̄ω
kT −1

)dω
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Any volume of space in thermal equilibrium with its surroundings
contains blackbody radiation (BBR), if the volume is � λ the
magnitude is given by:
d |EBBR(ω)|2 = 16πh̄dω

ελ 3
(

e
h̄ω
kT −1

)
This field will induce stimulated transitions with transition
probabilities given by:
W12,BBR =

∫
dW12,BBR =

∫
∞

−∞

3∗λ 3γrad
8π2∆ωa h̄

ε

1+
(

2(ω−ωa)
∆ωa

)2
16πh̄

ελ 3
(

e
h̄ω
kT −1

)dω

The blackbody spectrum is much broader than the atomic
linewidth, ∆ω, so it can be approximated by its value at the
resonance frequency, ωa, giving:
W12 = γrad

e
h̄ω
kT −1

∫
∞

−∞

2
π∆ωa

1
1+
(

2(ω−ωa)
∆ωa

)2 dω = γrad

e
h̄ω
kT −1

Independent of the atomic lineshape!
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Net power absorption?



The origin and
limitations of
atomic rate
equations

RobertoLindberg
rolindbe@kth.se

Linear χ

2-level atomic RE

BB radiation

NR relaxation

Resulting RE

Multi-level RE

Large signals

Net power absorption?
energy flow out of the atoms
energy flow into the atoms = (W21,BBR+γrad)N2

W12,BBRN1
=[

W12,BBR = W21,BBR, γrad + W21,BBR = W21,BBRe h̄ω

kT , N2
N1

= e−
h̄ω

kTa
]

= e
h̄ω

k ( 1
T −

1
Ta ) = 1 if T = Ta

i.e. no net power transfer at thermal equilibrium.
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Net power absorption?
energy flow out of the atoms
energy flow into the atoms = (W21,BBR+γrad)N2

W12,BBRN1
=[

W12,BBR = W21,BBR, γrad + W21,BBR = W21,BBRe h̄ω

kT , N2
N1

= e−
h̄ω

kTa
]

= e
h̄ω

k ( 1
T −

1
Ta ) = 1 if T = Ta

i.e. no net power transfer at thermal equilibrium.
Detailed balance
Overall thermal equilibrium requires the spontaneous emission
rate, given by γrad, to equal the BBR absorption rate for all
transitions and all frequencies in each transition ⇒ atomic
transitions must have the same lineshapes for spontaneous
emission as for stimulated absorption!
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Net power absorption?
energy flow out of the atoms
energy flow into the atoms = (W21,BBR+γrad)N2

W12,BBRN1
=[

W12,BBR = W21,BBR, γrad + W21,BBR = W21,BBRe h̄ω

kT , N2
N1

= e−
h̄ω

kTa
]

= e
h̄ω

k ( 1
T −

1
Ta ) = 1 if T = Ta

i.e. no net power transfer at thermal equilibrium.
Detailed balance
Overall thermal equilibrium requires the spontaneous emission
rate, given by γrad, to equal the BBR absorption rate for all
transitions and all frequencies in each transition ⇒ atomic
transitions must have the same lineshapes for spontaneous
emission as for stimulated absorption!
Degeneracy
In the case of degeneracy, the transition rate probabilities are
given by:
Wji ,BBR = gi

gj
Wij,BBR = γrad,ij

e
h̄ωij
kT −1



Non-radiative relaxation
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At any finite temperature there will be some motion of atoms,
for instance motion of gas particles and lattice vibrations. The
collisions and vibrations transfer energy to and from the atoms
and can therefore induce stimulated transitions with associated
decay rates and transition probabilities:
Wji ,nr = gi

gj
Wij,nr = γnr,ij

e
h̄ωij
kTnr −1
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At any finite temperature there will be some motion of atoms,
for instance motion of gas particles and lattice vibrations. The
collisions and vibrations transfer energy to and from the atoms
and can therefore induce stimulated transitions with associated
decay rates and transition probabilities:
Wji ,nr = gi

gj
Wij,nr = γnr,ij

e
h̄ωij
kTnr −1

This has actually been used to make ”acoustic lasers”, see for
instance:
Phonon Lasing in an Electromechanical Resonator, I. Mahboob,
K. Nishiguchi, A. Fujiwara, and H. Yamaguchi, Phys. Rev. Lett.
110, 127202
Phonon Laser Action in a Tunable Two-Level System, Ivan S.
Grudinin, Hansuek Lee, O. Painter, and Kerry J. Vahala, Phys.
Rev. Lett. 104, 083901



Resulting rate equations
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The transition probabilities resulting from thermal effects can be
expressed as:
wji = Wji ,BBR + γrad + Wji ,nr + γji ,nr
wij = Wij,BBR + Wij,nr
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The transition probabilities resulting from thermal effects can be
expressed as:
wji = Wji ,BBR + γrad + Wji ,nr + γji ,nr
wij = Wij,BBR + Wij,nr
If T = Tnr, the ratio of the transition probabilities is given by:
wij
wji

= gj
gi

e−
h̄ωji
kT ⇒ wij < wji
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The transition probabilities resulting from thermal effects can be
expressed as:
wji = Wji ,BBR + γrad + Wji ,nr + γji ,nr
wij = Wij,BBR + Wij,nr
If T = Tnr, the ratio of the transition probabilities is given by:
wij
wji

= gj
gi

e−
h̄ωji
kT ⇒ wij < wji

At optical frequencies/wavelengths:
h̄ω

k = [λ = 550 nm]≈ 26000 K⇒ 1
e

h̄ω
kT −1

= [T = 300 K]≈ 0
which means that the upper level population because of thermal
effects will be negligible and:
wji ≈ γji ,rad + γji ,nr
wij ≈ 0
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Including the thermal transition probabilities in the 2-level atomic
rate equation yields:
dN1
dt =−dN2

dt =−(W12 + w12)N1 + (W21 + w21)N2
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Including the thermal transition probabilities in the 2-level atomic
rate equation yields:
dN1
dt =−dN2

dt =−(W12 + w12)N1 + (W21 + w21)N2
Assume no degeneracy and define N = N1(t) + N2(t) and
∆N(t) = N1(t)−N2(t), this gives:
d∆N

dt =−2(W12 + w12)N1 + 2(W21 + w21)N2

=−2W12∆N− (w12 + w21)
(

∆N− w21−w12
w12+w21

N
)
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Including the thermal transition probabilities in the 2-level atomic
rate equation yields:
dN1
dt =−dN2

dt =−(W12 + w12)N1 + (W21 + w21)N2
Assume no degeneracy and define N = N1(t) + N2(t) and
∆N(t) = N1(t)−N2(t), this gives:
d∆N

dt =−2(W12 + w12)N1 + 2(W21 + w21)N2

=−2W12∆N− (w12 + w21)
(

∆N− w21−w12
w12+w21

N
)

At thermal equilibrium, w12
w21

= e− h̄ω

kT = N20
N10

which makes
w21−w12
w12+w21

N = N10−N20 = ∆N0. Using this and defining the
relaxation time as w12 + w21 = 1

T1
gives:

d∆N
dt =−2W12∆N− ∆N−∆N0

T1
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Including the thermal transition probabilities in the 2-level atomic
rate equation yields:
dN1
dt =−dN2

dt =−(W12 + w12)N1 + (W21 + w21)N2
Assume no degeneracy and define N = N1(t) + N2(t) and
∆N(t) = N1(t)−N2(t), this gives:
d∆N

dt =−2(W12 + w12)N1 + 2(W21 + w21)N2

=−2W12∆N− (w12 + w21)
(

∆N− w21−w12
w12+w21

N
)

At thermal equilibrium, w12
w21

= e− h̄ω

kT = N20
N10

which makes
w21−w12
w12+w21

N = N10−N20 = ∆N0. Using this and defining the
relaxation time as w12 + w21 = 1

T1
gives:

d∆N
dt =−2W12∆N− ∆N−∆N0

T1
Which can be expressed as:
d∆N

dt + ∆N−∆N0
T1

=−2W12∆N =− 2
h̄ω

dUa
dt

∣∣∣
av

Where the rightmost equal sign shows the rate equations
approximation.
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Using the integrating factor, the solution is found to be:
∆N(t) = ∆N0

2W12T1+1 +
(

∆N(0)− ∆N0
2W12T1+1

)
e−
(

2W12+ 1
T1

)
t
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Using the integrating factor, the solution is found to be:
∆N(t) = ∆N0

2W12T1+1 +
(

∆N(0)− ∆N0
2W12T1+1

)
e−
(

2W12+ 1
T1

)
t

Steady state is obtained as t→∞, which gives ∆Nss = ∆N0
2W12T1+1 .
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Using the integrating factor, the solution is found to be:
∆N(t) = ∆N0

2W12T1+1 +
(

∆N(0)− ∆N0
2W12T1+1

)
e−
(

2W12+ 1
T1

)
t

Steady state is obtained as t→∞, which gives ∆Nss = ∆N0
2W12T1+1 .

As W12 ∝ |E |2, the population difference will decrease as the
signal power increases. This is referred to as homogeneous
saturation of the population difference and is what primarily
determines the power level lasers will oscillate on, as the gain is
proportional to the population difference. It can also be seen
that with no applied signal, i.e. W12 = 0, the population tends to
the thermal equilibrium population difference ∆N0.
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Examples of transient behavior of ∆N
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The requirement that ∆N(t) changes slowly compared to T2, or
∆ωa if not simplified, which was assumed when deriving the
linear χ, means that:
2W12 + 1

T1
�∆ωa = γ + 2

T2
= [γ = decay rate] = 1

T1
+ 1

T2
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The requirement that ∆N(t) changes slowly compared to T2, or
∆ωa if not simplified, which was assumed when deriving the
linear χ, means that:
2W12 + 1

T1
�∆ωa = γ + 2

T2
= [γ = decay rate] = 1

T1
+ 1

T2
.

Which in turn means that:
• 1

T1
� 1

T2
, i.e. the system dephases long before it has relaxed.

•W12�∆ωa, i.e. ∆N decays much slower than P(t) reaches
steady state.
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The requirement that ∆N(t) changes slowly compared to T2, or
∆ωa if not simplified, which was assumed when deriving the
linear χ, means that:
2W12 + 1

T1
�∆ωa = γ + 2

T2
= [γ = decay rate] = 1

T1
+ 1

T2
.

Which in turn means that:
• 1

T1
� 1

T2
, i.e. the system dephases long before it has relaxed.

•W12�∆ωa, i.e. ∆N decays much slower than P(t) reaches
steady state.

For electric dipole transitions W12 = 3∗λ 3γrad
8π2∆ωa h̄

ε|E1(ω)|2

1+
(

2(ω−ωa)
∆ωa

)2 , which

is maximized at resonance, i.e. ω = ωa.
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The requirement that ∆N(t) changes slowly compared to T2, or
∆ωa if not simplified, which was assumed when deriving the
linear χ, means that:
2W12 + 1

T1
�∆ωa = γ + 2

T2
= [γ = decay rate] = 1

T1
+ 1

T2
.

Which in turn means that:
• 1

T1
� 1

T2
, i.e. the system dephases long before it has relaxed.

•W12�∆ωa, i.e. ∆N decays much slower than P(t) reaches
steady state.

For electric dipole transitions W12 = 3∗λ 3γrad
8π2∆ωa h̄

ε|E1(ω)|2

1+
(

2(ω−ωa)
∆ωa

)2 , which

is maximized at resonance, i.e. ω = ωa. Using this in the latter
inequality leads to:
|E |2� h̄∆ω2

a
γradλ 3ε

Which also holds for high power lasers that use materials with
wide atomic linewidths.
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Saturation occurs when 2W12T1 ≥ 1⇔W12 ≥ 1
2T1

.
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Saturation occurs when 2W12T1 ≥ 1⇔W12 ≥ 1
2T1

. This means
that if 1

2T1
≤W12�∆ωa, the system can be saturated without

violating the rate equations approximation.
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Saturation occurs when 2W12T1 ≥ 1⇔W12 ≥ 1
2T1

. This means
that if 1

2T1
≤W12�∆ωa, the system can be saturated without

violating the rate equations approximation.
In the case of degeneracy, define ∆N(t) = g2

g1
N1(t)−N2(t) and

use Weff = 1
2 (W12 + W21), where g1W12 = g2W21, instead of

W12.



Multi-level rate equations
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In real atomic systems there are many energy levels, Ei , with
different degeneracies, gi , and time varying populations, Ni (t). A
signal consisting of several frequencies may be near several
resonance frequencies and will thus in general induce multiple
transitions. If the resonance frequencies differ by a few
linewidths, each frequency component will only affect transitions
between two levels. In this case, and assuming no interference
between the transitions, the RE for each population is given by:
dNt
dt =−∑j 6=i (Wij + wij)Ni + ∑j 6=i (Wji + wji )Nj
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In real atomic systems there are many energy levels, Ei , with
different degeneracies, gi , and time varying populations, Ni (t). A
signal consisting of several frequencies may be near several
resonance frequencies and will thus in general induce multiple
transitions. If the resonance frequencies differ by a few
linewidths, each frequency component will only affect transitions
between two levels. In this case, and assuming no interference
between the transitions, the RE for each population is given by:
dNt
dt =−∑j 6=i (Wij + wij)Ni + ∑j 6=i (Wji + wji )Nj

The relaxations between arbitrary levels are in general very
complicated to calculate and are most often guessed at or
measured. However, they are always related by: wij

wji
= gj

gi
e−

h̄ωij
kT .
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For k levels, there will be k such equations which can be written
in matrix form as:

d
dt

N1
...

Nk

=

−∑j 6=1 (W1j + w1j ) · · · (Wk1 + wk1)
...

. . .
...

(W1k + w1k ) · · · −∑j 6=k
(
Wkj + wkj

)

N1

...
Nk


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For k levels, there will be k such equations which can be written
in matrix form as:

d
dt

N1
...

Nk

=

−∑j 6=1 (W1j + w1j ) · · · (Wk1 + wk1)
...

. . .
...

(W1k + w1k ) · · · −∑j 6=k
(
Wkj + wkj

)

N1

...
Nk


If the total number of atoms in all energy levels is constant, there
will also be an equation for the conservation of atoms:
∑

k
i=1 Ni = N. This results in k−1 independent equations and

any row in the matrix can be exchanged for a row of ones and
the corresponding population to N (use that dN

dt = 0).
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For k levels, there will be k such equations which can be written
in matrix form as:

d
dt

N1
...

Nk

=

−∑j 6=1 (W1j + w1j ) · · · (Wk1 + wk1)
...

. . .
...

(W1k + w1k ) · · · −∑j 6=k
(
Wkj + wkj

)

N1

...
Nk


If the total number of atoms in all energy levels is constant, there
will also be an equation for the conservation of atoms:
∑

k
i=1 Ni = N. This results in k−1 independent equations and

any row in the matrix can be exchanged for a row of ones and
the corresponding population to N (use that dN

dt = 0).
In steady state, the matrix equation can be solved with gauss
elimination. From this it can be found that by increasing the
amplitude on one transition but not the others will lead to
∆Nij,ss = ∆Nij,0

1+
Wij

Wij,sat

, where the ij-terms on the RHS will depend on

the relaxations rates and applied signals on the other transitions.
The proof can be found on p. 216-217 in Siegmann.



Simplified large signal analysis
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Starting from the RDE:
d2P
dt2 + ∆ωa

dP
dt + ω2

a P = 3∗ωaελ 3γrad
4π2 ∆N(t)E (t) = K∆N(t)E (t)
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Starting from the RDE:
d2P
dt2 + ∆ωa

dP
dt + ω2

a P = 3∗ωaελ 3γrad
4π2 ∆N(t)E (t) = K∆N(t)E (t)

And studying it on resonance for E (t) = Re
{

E1(t)ejωat}
P(t) = Re

{
−jP1(t)ejωat},

the −j-factor is because P(t) is −90◦ out of phase with E (t) at
resonance,
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Starting from the RDE:
d2P
dt2 + ∆ωa

dP
dt + ω2

a P = 3∗ωaελ 3γrad
4π2 ∆N(t)E (t) = K∆N(t)E (t)

And studying it on resonance for E (t) = Re
{

E1(t)ejωat}
P(t) = Re

{
−jP1(t)ejωat},

the −j-factor is because P(t) is −90◦ out of phase with E (t) at
resonance, and using that ∆ωa� ωa and the slowly varying
envelope approximation (SVEA), which assumes that P1(t)
doesn’t change much in one optical cycle, 1

ωa
, such that P ′′1 can

be omitted leads to:
P ′1 + ∆ωa

2 P1 = K∆N(t)E1(t)
2ωa
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Starting from the RDE:
d2P
dt2 + ∆ωa

dP
dt + ω2

a P = 3∗ωaελ 3γrad
4π2 ∆N(t)E (t) = K∆N(t)E (t)

And studying it on resonance for E (t) = Re
{

E1(t)ejωat}
P(t) = Re

{
−jP1(t)ejωat},

the −j-factor is because P(t) is −90◦ out of phase with E (t) at
resonance, and using that ∆ωa� ωa and the slowly varying
envelope approximation (SVEA), which assumes that P1(t)
doesn’t change much in one optical cycle, 1

ωa
, such that P ′′1 can

be omitted leads to:
P ′1 + ∆ωa

2 P1 = K∆N(t)E1(t)
2ωa

From the RE section, we found that:
d∆N

dt + ∆N−∆N0
T1

=− 2
h̄ω

dUa
dt

∣∣∣
av

=− 2
h̄ω

E dP
dt
∣∣
av
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Starting from the RDE:
d2P
dt2 + ∆ωa

dP
dt + ω2

a P = 3∗ωaελ 3γrad
4π2 ∆N(t)E (t) = K∆N(t)E (t)

And studying it on resonance for E (t) = Re
{

E1(t)ejωat}
P(t) = Re

{
−jP1(t)ejωat},

the −j-factor is because P(t) is −90◦ out of phase with E (t) at
resonance, and using that ∆ωa� ωa and the slowly varying
envelope approximation (SVEA), which assumes that P1(t)
doesn’t change much in one optical cycle, 1

ωa
, such that P ′′1 can

be omitted leads to:
P ′1 + ∆ωa

2 P1 = K∆N(t)E1(t)
2ωa

From the RE section, we found that:
d∆N

dt + ∆N−∆N0
T1

=− 2
h̄ω

dUa
dt

∣∣∣
av

=− 2
h̄ω

E dP
dt
∣∣
av

Using the same E (t) and P(t) as for the RDE and assuming that
E1(t) and P1(t) are real yields:
d∆N

dt + ∆N−∆N0
T1

=− 1
h̄ E1P1
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Setting E1(t) =
{

E , t > 0
0, t < 0 and solving the ∆N-equation for P1

for t > 0 yields:
P1 =− h̄

E

(
d∆N

dt + ∆N−∆N0
T1

)
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Setting E1(t) =
{

E , t > 0
0, t < 0 and solving the ∆N-equation for P1

for t > 0 yields:
P1 =− h̄

E

(
d∆N

dt + ∆N−∆N0
T1

)
Using this in the modified RDE gives:(

d2

dt2 +
(

∆ωa
2 + 1

T1

)
d
dt + ∆ωa

2T1
+ ω2

R

)
∆N(t) = ∆ωa∆N0

2T1
And in a similar manner:(

d2

dt2 +
(

∆ωa
2 + 1

T1

)
d
dt + ∆ωa

2T1
+ ω2

R

)
P(t) = KE∆N0

2T1ωa

where the Rabi frequency was defined as ωR = KE2
2h̄ωa

.
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Setting E1(t) =
{

E , t > 0
0, t < 0 and solving the ∆N-equation for P1

for t > 0 yields:
P1 =− h̄

E

(
d∆N

dt + ∆N−∆N0
T1

)
Using this in the modified RDE gives:(

d2

dt2 +
(

∆ωa
2 + 1

T1

)
d
dt + ∆ωa

2T1
+ ω2

R

)
∆N(t) = ∆ωa∆N0

2T1
And in a similar manner:(

d2

dt2 +
(

∆ωa
2 + 1

T1

)
d
dt + ∆ωa

2T1
+ ω2

R

)
P(t) = KE∆N0

2T1ωa

where the Rabi frequency was defined as ωR = KE2
2h̄ωa

.
These decoupled DEs are on the form: x ′′ +k1x ′ +k2x = f , where

k1 = ∆ωa
2 + 1

T1
, k2 = ∆ωa

2T1
+ ω2

R and f =
{

∆ωa∆N0
2T1

, x = ∆N
KE∆N0
2T1ωa

, x = P
.
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Let x = xh + xih where x ′′h + k1x ′h + k2xh = 0
x ′′ih + k1x ′ih + k2xih = f

. As f is a

constant, xih = f
k2

, use the ansatz xh = Aert .
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Let x = xh + xih where x ′′h + k1x ′h + k2xh = 0
x ′′ih + k1x ′ih + k2xih = f

. As f is a

constant, xih = f
k2

, use the ansatz xh = Aert .
This gives:

x(t) = e−
k1
2

A1cosh(ω̂t) + A2√
ω̂2
|ω̂2|

sinh(ω̂t)

+ f
k2

where A1 = x(0)− f
k2

, A2 = x ′ (0)+ k1
2

ω̂
and ω̂ =

√
k2

1
4 −k2.
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Let x = xh + xih where x ′′h + k1x ′h + k2xh = 0
x ′′ih + k1x ′ih + k2xih = f

. As f is a

constant, xih = f
k2

, use the ansatz xh = Aert .
This gives:

x(t) = e−
k1
2

A1cosh(ω̂t) + A2√
ω̂2
|ω̂2|

sinh(ω̂t)

+ f
k2

where A1 = x(0)− f
k2

, A2 = x ′ (0)+ k1
2

ω̂
and ω̂ =

√
k2

1
4 −k2.

If ∆N(0) = ∆N0 and ∆N ′(0) = 0, one finds:
∆N(t) =

∆N0

1+
2T1ω2

R
∆ωa

1 + 2T1ω2
R

∆ωa

cosh(ω̂t) + 1√
ω̂2
|ω̂2|

sinh(ω̂t)

e−
k1
2 t


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For a very weak signal, ωR �∆ωa and 1
T1
�∆ωa, one finds

that:
k1
2ω̂
≈ 1, ω̂− k1

2 ≈−
(

1
T1

+ 2ω2
R

∆ωa

)
and −ω̂ + k1

2 ≈−
∆ωa

2 .
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For a very weak signal, ωR �∆ωa and 1
T1
�∆ωa, one finds

that:
k1
2ω̂
≈ 1, ω̂− k1

2 ≈−
(

1
T1

+ 2ω2
R

∆ωa

)
and −ω̂ + k1

2 ≈−
∆ωa

2 .
This in turn yields:

(cosh(ω̂t) + sinh(ω̂t))e−
k1
2 t ≈ e

−
(

1
T1

+
2ω2

R
∆ωa

)
t

+ e−∆ωa
2 t

≈ e
−
(

1
T1

+
2ω2

R
∆ωa

)
t
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For a very weak signal, ωR �∆ωa and 1
T1
�∆ωa, one finds

that:
k1
2ω̂
≈ 1, ω̂− k1

2 ≈−
(

1
T1

+ 2ω2
R

∆ωa

)
and −ω̂ + k1

2 ≈−
∆ωa

2 .
This in turn yields:

(cosh(ω̂t) + sinh(ω̂t))e−
k1
2 t ≈ e

−
(

1
T1

+
2ω2

R
∆ωa

)
t

+ e−∆ωa
2 t

≈ e
−
(

1
T1

+
2ω2

R
∆ωa

)
t
, such that:

∆N(t) = ∆N0

1+
2T1ω2

R
∆ωa

1 + 2T1ω2
R

∆ωa
e
−
(

1
T1

+
2ω2

R
∆ωa

)
t


=
[

ω2
R

∆ωa
= 3∗γradελ 3|E |2

8π2h̄∆ωa
= W12 @ resonance

]
= ∆N0

1+2T1W12

(
1 + 2T1W12e−

(
1

T1
+2W12

)
t
)

which is the RE result.
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If ωR > ∆ωa
4 −

1
2T1
⇒ ω̂ becomes complex and sinh

cosh→
j · sin
cos , and

∆N(t) starts oscillating with a frequency of ω̂, this is referred to
as Rabi flopping.
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If ωR > ∆ωa
4 −

1
2T1
⇒ ω̂ becomes complex and sinh

cosh→
j · sin
cos , and

∆N(t) starts oscillating with a frequency of ω̂, this is referred to
as Rabi flopping.
In the strong signal regime, where ωR �∆ωa and ωR � 1

T1
,

ω̂ ≈ ωR and k1
2ω̂
≈ 0 so only the cos-term is left. However, the

decaying exponential is still left and as t→ ∞ ∆N tends towards
the same value as the RE approximation.
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If ωR > ∆ωa
4 −

1
2T1
⇒ ω̂ becomes complex and sinh

cosh→
j · sin
cos , and

∆N(t) starts oscillating with a frequency of ω̂, this is referred to
as Rabi flopping.
In the strong signal regime, where ωR �∆ωa and ωR � 1

T1
,

ω̂ ≈ ωR and k1
2ω̂
≈ 0 so only the cos-term is left. However, the

decaying exponential is still left and as t→ ∞ ∆N tends towards
the same value as the RE approximation.
The RE condition W12�∆ωa can now be re-expressed as
ωR �∆ωa. This implies that a dephasing or relaxing event is
sure to occur and break the Rabi flopping before a cycle is
completed.
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Examples of transient behavior of ∆N
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It has experimentally been
shown that the inversion
can be inverted by applying
a pulse of duration Tp
such that ωRTp = π. And
also inverted and inverted
back if ωRTp = 2π, which
means that the pulse
doesn’t deliver any energy
to the atoms and thus
propagates almost
attenuation free.
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If an applied signal is strong enough to induce Rabi flopping on
some transition i → j , another signal on for example transition
i → k will be modulated, by something like the Rabi frequency,
due to the moulation of the population from the Rabi flopping.



Problem from the book
Siegmann p.203, Problems for 4.4, task 1
Designed problem
In a two level system, find the symmetrical offset, ω0, for two
sinusoidal signals, i.e. E =Re

{
E1ejω1t + E2ejω2t} where

ω1 = ωa−ω0 and ω2 = ωa + ω0, that assures that their combined
change in stored energy equals the change in stored energy at
resonance. Derive a general expression and apply it to the specific
situation when |E1|2 = 1

4 |Ea|2 and |E2|2 = 3
4 |Ea|2 where Ea is the

amplitude at resonance.
Hints: Assume low power, P = εχE and average over a few optical

cycles.
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