B,
ﬁf KTH 'S’;Xi

VETENSKAP
&9 OCH KONST &%

] o

a %‘Kﬁ 13

The origin and limitations of
the atomic rate equations

Robert Lindberg, rolindbe®@kth.se
Royal Institute of Technology
Department of Laser Physics

March 5, 2015

= Q™



Linear y

< P «F P «E>» «E» = o v



:
KTH %
& v &
Rass®
ment of
Physics

The origin and
limitations of
atomic rate

equations

Robert Lindberg

rolindbe@kth.se

Linear x

Chap 2 resonant-dipole equation (RDE):
S
PP N, %+ 2P = T % s AN(1)E(2)
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Linear x

Chap 2 resonant-dipole equation (RDE)

&L+ N, % + 2P = T2 Mad AN(1)E(t) =
Was solved |n the linear case: ,

E(t) =Re{E.&®t} = 1 (E&®t + Efe J0t)
P(t) =Re{P,e®*} =3 (P e/“’tJrP* —jot)

and using a constant AN(t) = AN.

«O» «Fr <

KAN(t)E(t)
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Linear x

Chap 2 resonant-dipole equation (RDE):
LL 1 N0, %+ 2P = 0 e AN () E (1)

Was solved |n the linear case: ,

E(t) = Re{Exe/?t} = I (E /¥t + Efe7®)

P(t) = Re{P,e/®t} = 3 (P«&/®t + Pie J®t)

and using a constant AN(t) = AN.

This gives:

_ AN o
Ex = ngiwquAwa — Lorentzian lineshape

= KAN(t)E(t)
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E(t) = Eisinm,t, keeping AN constant with P(0) = P/(0) =0
equations

However, solving the RDE at resonance by applying
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However, solving the RDE at resonance by applying
The origin and

E(t) = Ejsinm,t, keeping AN constant with P(0) = P/(0) =0
let P

_ = Py + Pip, RHS(Ph):O ansatz: Py, = Ae't,

Robers Lintberg RHS(Pip)=Ce/®" use u=ze/%" and Im{e/®'} =sinw,t
rolindbe@kth.se

Linear x
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However, solving the RDE at resonance by applying
The origin and

E(t) = Ejsinm,t, keeping AN constant with P(0) = P/(0) =0
let

_ P = P, + P, RHS(Ph):O ansatz: Py, = Ae't,
Robers Lintberg RHS(Pip)=Ce/®" use u=ze/%" and Im{e/®'} =sinw,t
rolindbe@kth.se
KANE:
Linear x P(t) = waAwal

Ao,
cos(@w,t) —e™ "2 tcos ( w2 —

Aw?2

«O» «Fr <
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However, solving the RDE at resonance by applying

Robert Lindberg

E(t) = Ejsinm,t, keeping AN constant with P(0) = P/(0) =0
let

P = Py + Pin, RHS(P,)=0 ansatz: P, = Ae',
RHS(P;,)=Ce/®t use u=ze/** and Im{e/®!} =sinw,t
rolindbe@kth.se
KANE: _ Aoy
Linear % 'D(t):_waTw; cos(w,t) —e™ 2 tcos( w2 —
Aw, =

Aw?2
2
v+ % if Aw, > v and Afa < cof, then

«O0» «F» « >



However, solving the RDE at resonance by applying
E(t) = Eisinw,t, keeping AN constant with P(0) = P'(0) =0
gives:
T‘he. origin and
o e let P = Py + Pp, RHS(P,)=0 ansatzz P, = Ae",
Robers Lintberg RHS(Pip)=Ce/®" use u=ze/%" and Im{e/®'} =sinw,t
rolindbe@kth.se
KANE: _Awy
B 7 (c)— S | cos(,) e 0cos o3 -
Aw,=y+ 4%, if Aw,>>yand 2
HOE

_ KANE

2
fa < ®2, then
_t
0. 00, [lfe T2}cos(wat)




However, solving the RDE at resonance by applying
E(t) = Eisinw,t, keeping AN constant with P(0) = P'(0) =0
gives:
T‘he. origin and
o e let P = Py + Pp, RHS(P,)=0 ansatzz P, = Ae",
Robers Lintberg RHS(Pip)=Ce/®" use u=ze/%" and Im{e/®'} =sinw,t
rolindbe@kth.se
KANE: _Awy
B 7 (c)— S | cos(,) e 0cos o3 -
Aw,=y+ 4%, if Aw,>>yand 2
HOE

_ KANE

2
fa < ®2, then
_t
.00, [lfe T2}cos(wat)

Conclusion:
If AN(t) changes
slowly compared to

T>, it can be treated
as constant in RDE.




2-level atomic rate equations
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2-level atomic RE

Classical definition of work:

_ _ du _
dU=F.dr=—qE-dr= 9 —E
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o du d du
ment of dU=F- -dr= _qur = dar — EE(—qr) = [‘u = —qr] = EE
e e Average over volume V containing N dipoles:
imitations o dU, _gd (LyN .y _ gdP
o vt it =Eg (VES1 ) =B
equations
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2-level atomic RE
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2-level atomic RE

Classical definition of work:

d
dU=F-dr=—qE-dr= 2/ =EZ(—qr)=[u=—qr] =E

Average over volume V' containing N dipoles:
du,

d (1yvN dP
i =E& (v f—ll(“Li)):_szft

. E=Re E1 w)e . :
Setting p_ RegPl(w)ef“’t} yields:
dUs,

«O» «Fr <

dt ij (E;P; —E;P}) +ij (El P162‘iwt —E] Pi{edjwt)
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2-level atomic RE

Classical definition of work:
dU=F-dr=—qE-dr= 9 —Ed(—qgr)=[u=—qr] =EZ
Average over volume V' containing N dipoles:

d(%a _Ed ( ,_1u,)—E£
ot
Setting IE EZ%EI :jwt% yields:
dUs — 12 (E;P; — E;P}) +42 (E,P;e¥®t — EjPje ¥°%)

At low powers and averaging over a few optical cycles gives:
du _jo
dt ‘av =7 (E{P, —E;P})

«AO>» «F>» «Z» « >
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2-level atomic RE

Classical definition of work:
dU=F-dr=—qE-dr= 9 —Ed(—qgr)=[u=—qr] =EZ
Average over volume V' containing N dipoles:

d(%a _Ed ( ,_1u,)—E£
ot
Setting IE EZ%EI :jwt% yields:
dUs — 12 (E;P; — E;P}) +42 (E,P;e¥®t — EjPje ¥°%)

At low powers and averaging over a few optical cycles gives:
du _jo
dt ‘av =7 (E{P, —E;P})

Assuming a linear x, i.e. Py(®)=¢ex(w)E;(w), gives:
% =177 (E{xE; —E X E})

«O» «Fr <

it
v
a

il
v

DEE



S,
FKTHE
& oo ©

e
Department of
Laser Physics

The origin and
limitations of
atomic rate
equations
Robert Lindberg
rolindbe@kth.se

2-level atomic RE

Let Elx*E*:(x y z) dt e* f*

3 ¥
and EI%TE]_ — (X* y* Z*) b* e* h*
C

c* x*
*
y
i z*
* d* gy X
y
i z

= E;x"E} = E{x'E;

«O» «Fr <
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a* b* c* x*
Department of ek * * * *
I)“,\L('rrf’llvsfiw Let Elx Ei= (X y Z) d e f y
The origin and g* h* i z*
limitations of £ g "
tomic rat:
ae:ua:io:se *q, T . * * * a:;< g* X
Robert Lindberg and El% El = (X y z ) b e h y
rolindbe@kth.se C* f* I* 7z
*E* _ X
= E; x"E] = E{x'E,;
2-level atomic RE Re—express the RHS:
du,| _ Jwe % (at _ — J(yt _
dt LV E (% X) E; = |Xah =73 (7( %)

= _7 1XahE1
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The origin and

a* b c* x*
Let Elx*E*:(x y z)

y
Robert Lindberg and Ei%TEl = (X* y* Z*) b* e* h* y
rolindbe@kth.se C* f* I* 7z
= E,x*E; = Ejx'E,
2-level atomic RE Re—express the RHS:
du,| _ e _ — (ot
W, = —E G - E = [ =4 2]
- 1XahE1
If x is isotropic (or at least diagonal), then
2" =x* = EixanE; = —2j% |E1|? which gives:
dU, o "
|~ oy (o) Er(@)P
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2-level atomic RE

a* b c* x*
Let E;x"E] = (x y z) dt e* f* y*

a* d* g* X
and Ei%TElz(X* y* z*) b* e* h* 3%
c* f* 0 z

= E;X'E] =Eix'E,
Re-express the RHS:

Ba| = —22Er (r" - 2) B, = [ =4 (27 - 1)]
- _% TXahEl
If x is isotropic (or at least diagonal), then
2 =x"= EjxanE; = —2j)("\E1|2 which gives:
dU, o "
Ue| =221 () Ea(w)?
This is the average power transfer per unit volume from a
sinusoidal field to the atoms in an isotropic and linear medium.
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Using the results in chap. 2, the power transfer equation can be
tment of expressed as:
Pl
The origin and dU, ) ) 3*1'37/rad 1
limitations of dt - 2
atomic rate av
equations
Robert Lindberg
rolindbe@kth.se

T 4n2Am, 1+<2(w—wa)

)2 (N1 — N2) | [Ex(w)[?

2-level atomic RE

«O» «Fr <
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2-level atomic RE

Using the results in chap. 2, the power transfer equation can be

expressed as:

dU, _ e 3 A3'Yrad 1

Defining the stimulated upward and downward transition

AflR~A . _ — 3*A3Vrad S‘El( )‘2
probabilities as: Wi, = Why = 872R0sf 1, (2(0-02))?
+(25a?)

«AO>» «F>» «» «

— 2
da |, 2 4n2Aa, 1+<M)2(Nl N2) | |E1(o)|
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Using the results in chap. 2, the power transfer equation can be
e

Department of expressed as

Laser Physics

The origin and dU, e 3*A%%ad 1

limitations of dt - 2

atomic rate av

equations
Robert Lindberg
rolindbe@kth.se

p)

T 4n2A0, 1+<M)2 (Nl — NZ) |E1(CO)‘

Defining the stimulated upward and downward transition
probabilities as: Wio = Why

2-level atomic RE

— 3*A3Vrad

8n2Awsh cBio)
2 1+( (0— wa)>
The power transfer equation can be expressed as
dt » = W12 N1 hw — W21 Nzﬁa)

«O» «Fr <
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2-level atomic RE

Using the results in chap. 2, the power transfer equation can be
expressed as:

dU,
dt

_ _we 3* A3y, 1 2
w2 | a0, 1+(22; wa))2(N1_N2) |Ex()|

Defining the stimulated upward and downward transition

AflR~A . _ — 3*A3Vrad S‘El( )‘2
probabilities as: Wi, = Why = 872R0sf 1, (2(0-02))?
+(%5a)

The power transfer equation can be expressed as:
La| = WiaNyfio — WorNafio

The energy will be stored in the upper level, so:
Mo — Th — 4 (Ly,)| =W — Warly

Tdt i)

dt dt — dt av

«O» «Fr <
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ﬂ"gi?‘?@“?ﬁ Using the results in chap. 2, the power transfer equation can be
expressed as:
The or\g|;1 and dU, _ W& 3" As%ad 1 N- N E 2
imitations o -~ 2 1= IN2 1O
Iatotmtic ratef CE av 2 471:2A0)a 1+<M)2( ) | ( )‘
equations . . ..
Robert Lindberg Defining the stimulated upward and downward transition

rolindbe@kth.se 3*A3Vrad 8‘ El ( ) ‘2

8m2Am,h 1+( (wwwa)>2
a

probabilities as: Wi, = Why =

The power transfer equation can be expressed as:
dUa‘ = Wan Ny i — Way Nafio

2-level atomic RE

dt
The energy will be stored in the upper level, so:
dN, _ dNy _ d (1
F =% = & (FaVa) ., = WaaN1 — War

In the case of degeneracy and E; < Ej, define: AN = %N,- —N;
Yrad = Vradij
Ao — Awj

E(w) — E(wj)

and change Wi — W
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Blackbody radiation
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BB radiation

Any volume of space in thermal equilibrium with its surroundings

contains blackbody radiation (BBR), if the volume is > A the
magnitude is given by:

d|Eggr(0)* =

16nhd®

)il
eA3 (eﬁ 71>

«O» «Fr <
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BB radiation

Any volume of space in thermal equilibrium with its surroundings
contains blackbody radiation (BBR), if the volume is > A the
magnitude is given by:
d|EBBR(w)|2 _ 167r$a)

eA3(ekT —1
This field will induce stimulated transitions with transition
probabilities given by:
Wizger = [ dWisrger = [" o s L, _do

5 5 © 812 Aw,h 1+< 2(0— wa)> £7L3<eﬁ71>

«AO>» «F>» «Z» « > =] Q>
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BB radiation

Any volume of space in thermal equilibrium with its surroundings
contains blackbody radiation (BBR), if the volume is > A the
magnitude is given by:
d|Eger(0)[* = —1F0@
eA3( ekT —1
This field will induce stimulated transitions with transition
probabilities given by:
A3y, € 16mh

Wiz ger = [ dWioger = [, oflad do

J f J f 8m2Aw,h 1+< 2(w— wa)>2 £Z3<e%71>
The blackbody spectrum is much broader than the atomic
linewidth, A, so it can be approximated by its value at the
resonance frequency, @,, giving:

W12_ ;);rad jw 1 2d0)_ Zrad
e e me Ageal ) R

Independent of the atomic lineshape!

«O» «Fr <
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Net power absorption?
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BB radiation

Net power absorption?

energy flow out of the atoms
energy flow into the atoms

(Way,gBR+¥ad ) N2
Wiz 8RN

ho (1 _

L) =1iT=T,

i.e. no net power transfer at thermal equilibrium.

«O» «Fr <

Wi2 gBBR = Wh1 BBR: Yrad + Wo1 BBR = Wo1 BRRE
=e k (T

x|t
I8
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BB radiation

Net power absorption?
energy flow out of the atoms __ (W21.BBR+7rad)N2

energy flow into the atoms Wiz ger M1 -

ﬂ\g

Wi2 gBBR = Wh1 BBR: Yrad + Wo1 BBR = Wo1 BRRE

ho

—e®(TT) it T =T,

i.e. no net power transfer at thermal equilibrium.

Detailed balance

Overall thermal equilibrium requires the spontaneous emission
rate, given by ¥.4, to equal the BBR absorption rate for all
transitions and all frequencies in each transition = atomic
transitions must have the same lineshapes for spontaneous
emission as for stimulated absorption!

«AO>» «F>» «Z» « >
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|
(‘D‘

Xt

o



VETENSKAP
s
"
LD
Department of
Laser Physics

The origin and
limitations of
atomic rate
equations
Robert Lindberg
rolindbe@kth.se

BB radiation

Net power absorption?

energy flow out of the atoms __ (W21.BBR+7rad)N2
energy flow into the atoms W15 gBer N1

ﬂ\g
2z
I
®

Wi2 gBBR = Wh1 BBR: Yrad + Wo1 BBR = Wo1 BRRE

ho

—e®(TT) it T =T,

i.e. no net power transfer at thermal equilibrium.

Detailed balance

Overall thermal equilibrium requires the spontaneous emission
rate, given by ¥.4, to equal the BBR absorption rate for all
transitions and all frequencies in each transition = atomic
transitions must have the same lineshapes for spontaneous
emission as for stimulated absorption!

Degeneracy

In the case of degeneracy, the transition rate probabilities are
given by:

Yrad
WJ,BBR—gWUBBR—#

Ij
e kT —1

«AO>» «F>» «Z» « >

Xt
tS]
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Non-radiative relaxation
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NR relaxation

At any finite temperature there will be some motion of atoms,
for instance motion of gas particles and lattice vibrations. The
collisions and vibrations transfer energy to and from the atoms
and can therefore induce stimulated transitions with associated
decay rates and transition probabilities:

& — _tni
VVJI,nr — gji VVU,nr - ﬁw,-j

ekTnr —1

«O» «Fr <
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NR relaxation

At any finite temperature there will be some motion of atoms,
for instance motion of gas particles and lattice vibrations. The
collisions and vibrations transfer energy to and from the atoms
and can therefore induce stimulated transitions with associated
decay rates and transition probabilities:
VVji,nr = & VVij,nr = %

& eanUr -1
This has actually been used to make "acoustic lasers”, see for
instance:

Phonon Lasing in an Electromechanical Resonator, |. Mahboob,

K. Nishiguchi, A. Fujiwara, and H. Yamaguchi, Phys. Rev. Lett.

110, 127202
Phonon Laser Action in a Tunable Two-Level System, lvan S.

Grudinin, Hansuek Lee, O. Painter, and Kerry J. Vahala, Phys.
Rev. Lett. 104, 083901

«AO>» «F>» «Z» « > =
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The transition probabilities resulting from thermal effects can be
tment of expressed as:
Ph

wi = W Wi nr+ i
The origin and JI VVJ’vBBR + ﬁ;d + Wiinr + Yjinr
limitations of Wi = - .
atomic rate U U/BBR + y,nr
equations
Robert Lindberg
rolindbe@kth.se

Resulting RE
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Resulting RE

The transition probabilities resulting from thermal effects can be

expressed as:

Wijj = VVji,BBR + Yrad + VVji,nr + Yji.nr

wij = Wi; ger + Wijnr

If T = T,,, the ratio of the transition probabilities is given by
Wi _ & < e

W =g K= Wi < W

i

«O» «Fr <
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Spyoorconst 57 The transition probabilities resulting from thermal effects can be
Yot
r— expressed as:
Laser Physics
The origin and Wiji = VVJ'LBBR + Yrad + VVji,nr + Yji.nr
fimitations of wij = Wij gR + Wijnr
equations If T = T, the ratio of the transition probabilities is given by:
Robert Lindberg Wi g ﬁml
rolindbe@kth.se Wij __ &
W =5 T = wy < w
At optlcal frequenaes/wavelengths
=[A =550 nm] ~ 26000 K= —5>— = [T =300 K] =0

K1

which means that the upper level population because of thermal
effects will be negligible and:

Wiji = %’i,rad + ')O'i,nr

wij = 0]

Resulting RE

«AO>» «F>» «Z» « > =] Q>
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; Including the thermal transition probabilities in the 2-level atomic
L o -
tment of rate equation yields:
Pl dN; _ dN,
The origin and dt
limitations of

dt
atomic rate
equations

Robert Lindberg
rolindbe@kth.se

— (Waz + wio) Ni + (Wa1 + wo1) N

Resulting RE

«O» «Fr <
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Including the thermal transition probabilities in the 2-level atomic

rtment of rate equation yields:
B = I —  (Wip+ wip) Ny + (Wart + wat) No
fimitations of Assume no degeneracy and define N = Ny(t)+ N(t) and
e eAva(t) = Ni(t) — Na(t), this gives:
rolindbe@kth.se 5 —2 ( Wio + W12) Niy+2 ( Whi + W21) N>
— 2WirAN — (wio + way) (AN e /v)

Resulting RE
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Resulting RE

Including the thermal transition probabilities in the 2-level atomic

rate equation yields:
M — Mo —  (Wap + wi) Ny + (War + war) No

Assume no degeneracy and define N = Ny (t)+ Ny(t) and
AN(t) = Nyi(t) — No(t), this gives:

% —2(Wha +wiz) Ny +2(War + war) No
= —2Who AN — (wiz + way) (AN - 2222 )

. _ho .

At thermal equilibrium, Y2 — e~ %T = % which makes
w21

Wo1—wip

waTwe N = Nig — Nog = ANo. Usmg this and defining the
relaxation time as wio + w1 = ﬁ gives:

dAN _ _ AN—AN
LN — —2Wip AN — ANAN

«AO>» «F>» «» «
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Resulting RE

Including the thermal transition probabilities in the 2-level atomic

rate equation yields:
M — Mo —  (Wap + wi) Ny + (War + war) No

Assume no degeneracy and define N = Ny (t)+ Ny(t) and
AN(t) = Nyi(t) — No(t), this gives:

% —2(Wi2 + wiz) Ny +2(Whay + wop) N

= —2Who AN — (wiz + way) (AN - 2222 )

wig+wa
hw

At thermal equilibrium, %i —e kT = % which makes

DA-M2 N — Nyg — Npg = ANp. Usmg this and defining the

wi2+wa1
relaxation time as wyp + wpp = ﬁ gives:

dAN —2W12AN AN—-ANy

dt T

Which can be expressed as:

dAN | AN-ANy _ _ 2 du
a T 1 = 2WnAN=—z5 S5

Where the rightmost equal sign shows the rate equations
approximation.

AO>» «F>» «E»r» « =
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Resulting RE

ANy

Using the integrating factor, the solution is found to be:
AN(t)

AN
= 2Wip T1+1 + (AN(O) 0

«O» «Fr <

- 2Wio T1+1
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Resulting RE

Using the integrating factor, the solution is found to be:

AN(t) AN

_ 1
= W‘F(AN(O) A)e (2W12+T1>t

- 2Wio T1+1
Steady state is obtained as t — oo, which gives ANy =

«O» «Fr <
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Resulting RE

Using the integrating factor, the solution is found to be:
AN, AN, —(2Wio++ )t

Steady state is obtained as t — oo, which gives ANss = %.

As Wi o< |E|?, the population difference will decrease as the
signal power increases. This is referred to as homogeneous
saturation of the population difference and is what primarily
determines the power level lasers will oscillate on, as the gain is
proportional to the population difference. It can also be seen
that with no applied signal, i.e. Wj> =0, the population tends to
the thermal equilibrium population difference ANp.
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Resulting RE
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Resulting RE

The requirement that AN(t) changes slowly compared to T», or

A, if not simplified, which was assumed when deriving the
linear ¥, means that:

2W12+ <<A(Da—’)/+

= [y = decay rate] = f I T%

«AO>» «F>» «» «
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Resulting RE

The requirement that AN(t) changes slowly compared to T», or

A, if not simplified, which was assumed when deriving the
linear ¥, means that:

2W12+ <<A(Da—’)/+

1
= [y = decay rate] = f I
Which in turn means that

?2.
o K T% i.e. the system dephases long before it has relaxed

oWis < Aw,, i.e. AN decays much slower than P(t) reaches
steady state.
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Resulting RE

The requirement that AN(t) changes slowly compared to T», or

A, if not simplified, which was assumed when deriving the
linear ¥, means that:

2W12+ <<A(Da—’)/+
Which in turn means that
.% < T% i.e. the system dephases long before it has relaxed.

oWis < Aw,, i.e. AN decays much slower than P(t) reaches
steady state.

= [y = decay rate] = f I T%

*13 2
For electric dipole transitions Wi, = ;’EQ}“A}Z:dﬁ €(E(1a5(1)a))))2, which
a 1+ o a

is maximized at resonance, i.e. @ = @;.
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Resulting RE

The requirement that AN(t) changes slowly compared to T», or
A, if not simplified, which was assumed when deriving the
linear ), means that:

2Wio + T% < Aw, =7+ % = [y = decay rate] = T% S5 T%
Which in turn means that:

.% < T% i.e. the system dephases long before it has relaxed.

oWis < Aw,, i.e. AN decays much slower than P(t) reaches
steady state.

g d T — 3*}'37rad ‘E‘El(m)‘2

For electric dipole transitions Wi, = 8728 0s 1, (2(0—0a)
+(*za)
is maximized at resonance, i.e. @ = ®@,. Using this in the latter

inequality leads to:

hAw3
EI? < =15

Which also holds for high power lasers that use materials with
wide atomic linewidths.

>, Which

«AO>» «F>» «Z» « > =
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Resulting RE

Saturation occurs when 2Wi T1 > 1 < Wqp > %
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Resulting RE

Saturation occurs when 2Wj>T1 > 1< Wip > ﬁ This means

that if % < Wis < Aw,, the system can be saturated without
violating the rate equations approximation.

«O» «Fr <
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Resulting RE

Saturation occurs when 2Wj>T1 > 1< Wip > ﬁ This means

that if ﬁ < Wis < Aw,, the system can be saturated without
violating the rate equations approximation.

In the case of degeneracy, define AN(t) = %Nl(t) — N(t) and

use Weg = %(ng + Wh1), where g1 Wip = goWh;, instead of
Whs.

«AO>» «F>» «» «
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Multi-level RE

In real atomic systems there are many energy levels, E;, with
different degeneracies, g;, and time varying populations, N;(t). A
signal consisting of several frequencies may be near several
resonance frequencies and will thus in general induce multiple
transitions. If the resonance frequencies differ by a few
linewidths, each frequency component will only affect transitions
between two levels. In this case, and assuming no interference
between the transitions, the RE for each population is given by:
B = — ¥ i (Wi + wig) Ny + Lz (Wi + wi) N

«AO>» «F>» «» «
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Multi-level RE

In real atomic systems there are many energy levels, E;, with
different degeneracies, g;, and time varying populations, N;(t). A
signal consisting of several frequencies may be near several
resonance frequencies and will thus in general induce multiple
transitions. If the resonance frequencies differ by a few
linewidths, each frequency component will only affect transitions
between two levels. In this case, and assuming no interference
between the transitions, the RE for each population is given by:
G =~ i (Wi + wy) Ni+ Zjosi (Wi + wir) N

The relaxatlons between arbitrary levels are in general very

complicated to calculate and are most often guessed at or

hoj;

Wi: . ij

measured. However, they are always related by: —2% = %e KT .
1

«AO>» «F>» «Z» « > =] Q>
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in matrix form as:
P Ny —Yjz1 (Waj + wj) (Wia + wia) Ny
The origin and
limitations of d _ . .
atomic rate dt - . . .
equations -y 5 q
Robert Lindberg Nie (Wi +wik) Yk (Wig + wig) Ni
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Multi-level RE
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Multi-level RE

For k levels, there will be k such equations which can be written
in matrix form as:

Ny =Yz (Waj+wyy) - (W + wia) Ny

S

Ny (Wak + wik) o =Y (Wi +wig)/ \Ni
If the total number of atoms in all energy levels is constant, there
will also be an equation for the conservation of atoms:
fozl N; = N. This results in k—1 independent equations and
any row in the matrix can be exchanged for a row of ones and
the corresponding population to N (use that ‘Z,—’:’ =0).

«AO>» «F>» «Z» « > =] Q>
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Multi-level RE

For k levels, there will be k such equations which can be written
in matrix form as:

Ny =Yz (Waj+wyy) - (W + wia) Ny
e 5 5 z
Ny (Wak + wik) o =Y (Wi +wig)/ \Ni
If the total number of atoms in all energy levels is constant, there
will also be an equation for the conservation of atoms:
fozl N; = N. This results in k—1 independent equations and
any row in the matrix can be exchanged for a row of ones and
the corresponding population to N (use that ‘Z,—’:’ =0).

In steady state, the matrix equation can be solved with gauss
elimination. From this it can be found that by increasing the
amplitude on one transition but not the others will lead to
ANj e = :vavf where the jj-terms on the RHS will depend on

Wij,sat
the relaxations rates and applied signals on the other transitions.

The proof can be found on p. 216-217 in Siegmann.

«AO>» «F>» «Z» « > =] Q>
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= KAN(t)E(t)

Large signals
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Starting from the RDE:

2 % 3
L+ D, % + 2P = 3 Tad AN()E(t) = KAN(t)E(t)
jat
lmiatons o And studying it on resonance for E(t Re {Ex(t)e/®" }

P(t) = Re{—jPy(t)e/®t}’
equations .
Robert Lindberg

the —j-factor is because P(t) is —90° out of phase with E(t)
rolindbe@kth.se resonance,

Large signals
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Large signals

Starting from the RDE:

2 i a 2'3 ra S

L+ N, 9L + 2P = 2922 had AN(t)E(t) = KAN(t)E(t)
E(t)= Re{El e""a }

And studying it on resonance for P(t) = Re {—jPy(t)efost )

the —j-factor is because P(t) is —90° out of phase with E(t) at

resonance, and using that A®w, < @, and the slowly varying
envelope approximation (SVEA), which assumes that Py(t )

doesn't change much in one optical cycle, 2 o such that P; can
be omitted leads to:
P; Awa B = KAN(t)El(f)

«AO>» «F>» «Z» « > =]
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Large signals

Starting from the RDE:

2 % 3

9B+ D0, % + 2P = T had AN(1)E(t) = KAN(t)E(t)
E(t Re{El e’“’at}

And studying it on resonance for P(t) Re{ Pyt elwat}'

the —j-factor is because P(t) is —90° out of phase with E(t) at

resonance, and using that A®w, < @, and the slowly varying
envelope approximation (SVEA), which assumes that Py(t )
doesn’t change much in one optical cycle

be omitted Iead’?At% .
Ao, t)Eq(t
Pl Aw P = 2() 1(t)

. w , such that P1 can

,
From the RE section, we found that:

dglv_i_mv ANg _ _ 2 dUp| _ _ 2 pdpP
t

. ho dt

«AO>» «F>» «Z» « > =
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Large signals

Starting from the RDE:

L L N0, + w2 P = T had AN(1)E(t) = KAN(E)E(t)
E(t) =Re{Ei(t)e/?*}

P(t) = Re{—jPy(t)e/®t}’

the —j-factor is because P(t) is —90° out of phase with E(t) at

resonance, and using that Aw, < ®, and the slowly varying

envelope approximation (SVEA), which assumes that Py(t )

doesn’t change much in one optical cycle such that P} can

be omitted Iead’?At% .
Ao, t)Eq(t
Pl Aw P = 2() 1(t)

And studying it on resonance for

ywl

,
From the RE section, we found that:
dAN | AN-ANg _ _ 2 dUp| _ _ 2 pdP

@& T T T fe at|,
Using the same E(t) and P(t) as for the RDE and assuming that
Ei(t) and Pi(t) are real yields:

dAN | AN-ANy _ 1
@& v rE1P1

«AO>» «F>» «Z» « > =] Q>
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Large signals

Setting Ei(t) =

for t > 0 yields:

P =

h

E

(

dAN
a T

E, t>

INTENTA

T

)

«O» «Fr <
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Large signals

Setting E1(t) = g ;z(()) and solving the AN-equation for Py

for t > 0 yields:

_ K (dAN | AN-AN,
Pi=—("% +—F

Using this in the modified RDE gives:

A, 2 _ Aw,AN,
(dt2+( 2 1) 4+ 58+ 0F) AN(t) = AL
And in a similar manner

A 2 5 p) __ KEAN,

(5 T1) F ‘H"R) P(t) = 270,

. 2
where the Rabi frequency was defined as wr = 72};’:;)3

«AO>» «F>» «Z» « >
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Large signals

Setting E1(t) = g ;z(()) and solving the AN-equation for Py

for t > 0 yields:

_ K (dAN | AN-AN,
Pi=—("% +—F

Using this in the modified RDE gives:

Aw, 3 _ Aw@;AN,
(dt2+( 2 1) 4+ 58+ 0F) AN(t) = AL
And in a similar manner:

Aw, 5 2 _ KEAN,

dt2+ w+T1)dt+27a')1+wR)'D(t)— 0

2T1 0,
where the Rabi frequency was defined as wr = %
These decoupled DEs are on the form: x + klxl + kox = f, where
AwaANo X = AN
_Aw, | 1 _ Ao, 2 _ 21, ' X T
k]_— 2(1) +ﬁ,k = 2-(,0-1 +(DR and f— KEANO .

2T10, x=P
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Large signals

Let x = x, + x;, where

x(t)=e 2 | Arcosh(dt) +

where A; = x(0) — £

/ .

leih + koxip = f

constant, xj, = Ffz use the ansatz x;, = Ae't.
This gives:

X
o A2 =

(

)f/;; + /(1X,/7 + koxp, =0

As f is a
Xipt+
Ay o ioa f
22 sinh(®t) | + 4
(62|

k-
0)++4 A
- and @ =

k2
VA k.

«O» «Fr <
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Large signals

" /!
x, + kix, + koxp =0
Let x = x,+ xj, where i "1Tp T F27h .
X, + klxih + koxip =
constant, xj, = k%’ use the ansatz x;, = Ae't.

This gives:

As f is a

k
x(t) =e 2 [ Ajcosh(@t) + —2—sinh(dt) | + £

|&2]
/ ’L )
where A; = x(0) — ,7'; Ay = % and @ =1/ %1 —ko.
If AN(0) = ANp and AN'(0) =0, one finds:

AN(t) =

AN, 2T 03 2 1 A K,

1+2T10w%\, 14+ =52 | cosh(t) + — sinh(®t) | e 2
23 6?]

«AO>» «F>» «Z» « >
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Large signals

For a very weak signal, wp < Aw, and T% < Aw,, one finds

that:

ki Nk 203

K1 PO (S A ke
s~ O—F =~ (T1+Awa)and O+ 5

This in turn yields:

A LA _kiy *(%fﬂ‘;)t
(cosh(@t) +sinh(®dt))e 2t ~e \'! +e

«AO>» «F>» «» «
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The origin and 2%)% ) wfgz*(%+Aui) and 7w+%%7A2wa'
limitations of . . .
atomic rate This in turn yields:
eqllatlcﬂs
Robert Lindberg

k ( 1 +2w%>t N
i N o N “\ Ty [
rolindbe@kth.se (COSh(wt) + S|nh(wt)) e_?lt ~e T; " Awa + e_ﬁjt

2
(1,29
T1 " Awa

e

t
) , such that:

~

2 <1+2w'2?>t
2Ti0 ~| 71+ o,
AN(t)= 580, (14 Z30ke \T1 50

2T1w% Ao
I+ 7%a,
2 31E12
[ 3*yraded®|E|
= R, — STMECEAEISFE
_ = {Awa = T82hho, Wi2 @ resonance
Large signals

1
AN, —(+2Wha )t
_:uzrff/vu(lJrleWHe X >>

which is the RE result.
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Large signals

Acoa

sinh j-sin

— 5 = @ becomes complex and -/ , and
cosh cos

AN(t) starts oscHIatmg with a frequency of @, this is referred to

as Rabi flopping.
In the strong signal regime, where @Wg > A®, and wg > Ti

If op >

D ~ OR and % ~ 0 so only the cos-term is left. However, the
decaying exponent|al is still left and as t — oo AN tends towards
the same value as the RE approximation.

«AO>» «F>» «Z» « > =] Q>



£t
KTH ¥
’{k verensiar 55

¥ och konsT 9%

The origin and
limitations of
atomic rate
equations
Robert Lindberg
rolindbe@kth.se

Large signals

Acoa

sinh _>J~Sln, and
cosh cos
AN(t) starts oscillating with a frequency of @, this is referred to
as Rabi flopping.

In the strong signal regime, where @Wg > A®, and wg > Ti

D ~ OR and % ~ 0 so only the cos-term is left. However, the
decaying exponent|al is still left and as t — oo AN tends towards
the same value as the RE approximation.

The RE condition Wiy < A®@, can now be re-expressed as

WOR < A®,. This implies that a dephasing or relaxing event is
sure to occur and break the Rabi flopping before a cycle is
completed.

If op > 2T = @ becomes complex and

«O» «Fr <

it
v
a
il
v
it

DEE



The origin and
limitations of

Examples of transient behavior of AN

We/Awy = 0,16

atomic rate
equations

Robert Lindberg
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rate-equation limit

Large signals
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Large signals

It has experimentally been
shown that the inversion

can be inverted by applying

a pulse of duration T,
such that wg T, = w. And
also inverted and inverted
back if @wr T, =27, which
means that the pulse
doesn’t deliver any energy
to the atoms and thus
propagates almost
attenuation free.
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Large signals

If an applied signal is strong enough to induce Rabi flopping on
some transition i — j, another signal on for example transition
i — k will be modulated, by something like the Rabi frequency,
due to the moulation of the population from the Rabi flopping.

«O» «Fr <



Problem from the book

Siegmann p.203, Problems for 4.4, task 1

Designed problem

In a two level system, find the symmetrical offset, @y, for two
sinusoidal signals, i.e. E:Re{Eleja’lt—i—Egej“’?t} where

W, = W, — g and @y = @, + @y, that assures that their combined
change in stored energy equals the change in stored energy at
resonance. Derive a general expression and apply it to the specific
situation when |E;|? = 1|E,|? and |E5|2 = 2|E4|2 where E; is the
amplitude at resonance.

Hints: Assume low power, P = €xE and average over a few optical
cycles.

«4O0>» «F>» «E>» <«
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