
Event-Triggered Attitude Stabilization of
a Quadcopter

DIOGO ALMEIDA

Master’s Degree Project
Stockholm, Sweden 2014

XR-EE-RT 2014:011

Abstract

There are many possible ways to perform the attitude control of a quad-
copter and, recently, the subject of event-triggered control has become
relevant in the scientific community. This thesis deals with the analysis and
implementation of a saturating attitude controller for a quadcopter system,
together with the derivation of an event-triggering rule to work with it. Two
distinct rules are presented, one that ensures the stability of the closed loop
system, the other, a linearised version that does not. The way those were
derived consists in the use of a Lyapunov based approach. The stability of
the system when under these rules was verified experimentally.

Keywords: Non-linear control; Attitude stabilization; Event-triggering;
Quadcopter

i

To my mother

ii

Acknowledgements

I would like to thank all the friends that supported me during my study
years, that culminated with this report, as well as my family for the constant
support and encouragement.

Thanks to Dimos Dimarogonas for the supervision and for the suggestions
made during the course of the project.

Special thanks to my friends at the Smart Mobility Lab for all the help
in setting up the experiments and for the well spent moments. They are
Francisco Martucci, João Pedro and Matteo Vanin.

iii

Contents

1 Introduction 1
1.1 Rigid-body attitude control 1

1.1.1 Quadcopters . 1
1.2 Event-Triggering Framework 2
1.3 Objectives . 3
1.4 Thesis Outline . 3

2 Background 5
2.1 The quaternions . 5

2.1.1 Operations with quaternions 6
2.1.2 Quaternion of rotation 6

2.2 Quadcopter attitude control 7
2.2.1 Attitude dynamics . 8
2.2.2 Control approaches . 11
2.2.3 Proposed controller . 11

2.3 Event-Triggered control . 15

3 Event-Triggering Rule 18
3.1 Problem statement . 18
3.2 Rule derivation . 19
3.3 Simulation results . 22

3.3.1 Triggering results . 24

4 Implementation 27
4.1 The hardware . 27
4.2 Firmware . 28
4.3 Motor thrust and inertia moments 29
4.4 Test stand . 33

5 Results 34
5.1 Time-triggered results . 35

iv

5.2 Event-triggered results . 36

6 Conclusions 38
6.1 Future work . 38

A Linearised triggering rule derivation 40

B Experimental results 44

v

Chapter 1

Introduction

In recent years, the topic of event-triggered control has been subject of in-
terest by the part of the research community. Several different triggering
strategies have been developed and implemented with encouraging results,
allowing for the reduction of the number of computations required for the
successful execution of control algorithms. In this thesis, a saturating atti-
tude controller for a quadcopter is studied and implemented in a real system,
and a triggering rule to work with it is derived.

1.1 Rigid-body attitude control

The subject of attitude control of a rigid-body is a well-known problem,
that consists in sending the right command signals to a rigid-body system to
make it adopt a desired orientation, see figure 1.1. It is a tractable problem,
with well known kinematics and dynamics equations, with several admissible
stabilizing control laws [4] [22].

A quadcopter helicopter can be thought of as a rigid body system, with
the same six degrees of freedom and under-actuated dynamics ([15] [10], for
example). This allows the application of known rigid-body control techniques
to this kind of systems, or to help in the development of new ones.

1.1.1 Quadcopters

The concept of a quadcopter is not new. The first reported working system
was developed in 1907 [36], and one of the most successful designs for early
helicopter vehicles had precisely a quadcopter-like design [37]. It consists on
a set of four arms making a cross shape, with rotors on each end. It is under-
actuated, since it has six degrees of freedom (three spatial coordinates plus

1

Figure 1.1: The attitude control problem consists in aligning a body frame
(filled arrows) with a desired one (dashed)

three rotational angles) and only four actuators.
A quadcopter helicopter is controlled by changes in the rotation speeds of

its four rotors. Creating a differential in those speeds allows to tilt the quad-
copter frame, or to make it rotate around itself. Combining these movements,
it is possible to navigate around three-dimensional environments.

These easy to understand concepts and high flight manoeuvrability ca-
pabilities make the quadcopter an interesting platform to study. From the
attitude stabilization of this inherently unstable system [12][8] to flight in for-
mation even over complex environments [24]. This became possible over the
last decade, with the increasing availability of appropriate inertial measure-
ment units. These, together with inboard control units, allow for attitude
control algorithms to run and stabilize the system.

1.2 Event-Triggering Framework

Today’s control systems are mostly digital, meaning that the control signal is
not evolving continuously in time, but instead it needs to be computed at dis-
crete times. Digital control has been extensively studied over the last century
[1][2], but solid results were present only for time-triggered systems, where
the control is updated at fixed time intervals. Nevertheless, it is known that
event-triggered approaches may outperform time-triggered ones, although
the analysis becomes more complex [6][18].

2

Event-triggered control is a control technique where the control signals
are computed only at instants where the plant is considered to need attention.
Usually, an event-triggered system has three main components, the controller,
an event generator and the network fabric, an abstraction of the network that
links the state sensing to the controller. Every time a measure of the plant
state fulfils a certain condition, the event generator feeds back the state to
the controller, that generates a new control signal. In between these instants,
the signal may be kept constant or follow some kind of interpolating function
[18].

The main purpose of this framework is to save network resources. This
may mean that more bandwidth will be available for other tasks that share
the network with the controller or that CPU usage can be minimized, and
mostly allows for the development of control systems that operate in a re-
source aware manner. While the reduction of the number of computations
is often the stated goal when developing this kind of systems, they can also
shorten the inter-sampling time when the system requires so. This can be
an advantage over the classical approach to digital control.

Some results for event-triggering control of dynamical systems have been
derived in recent years, where the event-triggering and feedback rule are
derived from a Control Lyapunov Function [23][27], while others create an
event-triggering rule after defining the controller [25][17].

1.3 Objectives

In this thesis, the Fast and Saturating Attitude controller [28] is discussed,
and an event-triggering rule to work with it is derived. Both the controller
and the triggering rule are then implemented on a real APM:Copter [33]
system, where the stabilizing properties can be verified. The triggering rule
is compared with an heuristic approach, both in simulation and practical
settings.

1.4 Thesis Outline

This report is organized as follows:

• In chapter 2, the necessary background for the project is given. This
includes quaternion based attitude parametrization, a discussion of the
proposed saturating controller and an introduction to event-triggering;

• Chapter 3 presents the event-triggering rule derivation, the main con-
tribution of the thesis. Two rules are proposed, one providing analyti-

3

cal stability guaranties, the other offering a simplification that reduces
significantly the computations that need to be carried out in between
sampling times. Both are compared with an heuristic error-based rule;

• Chapter 4 describes the implementation of the attitude control system
in a real quadcopter, together with an analysis of the results obtained;

• Finally, in chapter 6, conclusions and a discussion for future work are
presented.

4

Chapter 2

Background

For the discussion of the studied controller, a quaternion parametrization
of the attitude of a rigid body is used. The basics required to understand
that are presented in this chapter, together with the principles of working of
the attitude controller. Finally, an introduction to event-triggered control is
given. During the remaining of the text, all the norms ‖.‖ are the L2 norm
of a vector.

2.1 The quaternions

A quaternion is a mathematical object, originally aimed at expanding the
set of the complex numbers, C, into three dimensional space. This new
system would then add a second imaginary number, j, to an existing complex
number, such that j2 = −1. The idea behind this is that from that starting
point, the basic properties that make a closed algebraic set would be found,
and the existing operations in the complex set could be applied here as well
[32].

This proposed approach was not successful, but Hamilton (1805–1865)
noted that, by considering a number of the form

q = ix+ jy + kz + w, (2.1)

where
<(q) = w ∧ =(q) = xi+ jy + kz (2.2)

are, respectively, the real and the imaginary parts of a quaternion, the exten-
sion could be made, albeit not forming a mathematical corpus. The numbers
i, j and k obey the following rule:

i2 = j2 = k2 = ijk = −1, (2.3)

5

with w ∈ R. The numbers i, j and k can be thought of as an orthonormal
basis of R3. This makes for the imaginary part of a quaternion to be called
the vector part,

qv = [q1 q2 q3] · [i j k]> , (2.4)

with {q1, q2, q3} ∈ R, and qw ≡ w = q4. (2.1) can then be written as

q = [qv qw]> = [q1 q2 q3 q4]> , (2.5)

with the basis [i j k]> becoming implicit in the definition of the operations
over quaternions.

2.1.1 Operations with quaternions

The basic operations that can be done with quaternions are analogue to the
ones found in C, and their derivation can be done by taking the real and
vector parts of the quaternion and using them as the real and imaginary
parts of a complex number, together with (2.3). We then have

q + p = [qv + pv qw + pw]> (addition)

q× p =
[
q>v pv + qvpw + qwpv + qwpw

]>
(Multiplication)

q = [−qv qw]> (Conjugate)

(2.6)

where the multiplication operation can be written in matrix form

p× q =

q4 q3 −q2 q1

−q3 q4 q1 q2

q2 −q1 q4 q3

−q1 −q2 −q3 q4

︸ ︷︷ ︸

W(q)

p. (2.7)

2.1.2 Quaternion of rotation

Quaternions can be used to represent the attitude of a rigid body, in which
case they are restricted to have unit norm [3]. This is achieved by codifying
an axis and an angle of rotation around it, using the vector and scalar parts
(2.2). The quaternion (2.5) becomes

q =
[
sin
(α

2

)
e cos

(α
2

)]>
(2.8)

6

1

2

3

4

Figure 2.1: Quadcopter top view with the motors direction of rotation iden-
tified

where e is the axis of rotation. This representation has the advantage of not
having singularities (where different attitudes give rise to the same represen-
tation). Note that the conjugate operation, q, represents the inverse rotation
of (2.8), with −α as the angle of rotation. One caveat of this representation
is that it is not unique, namely, q and −q represent the same orientation
(easily verifiable from (2.8)). Still, there are workarounds this that avoid the
unwinding effect, a behaviour that occurs when doing attitude control and
the controller makes the system rotate ’the other way around’ to achieve the
equilibrium [22].

2.2 Quadcopter attitude control

A quadcopter is composed of a base frame (two perpendicular arms, forming
a cross) with four motors, one at each end. At the center, the electronics
to power the motors, the battery and the controller (plus other accessories)
are located. Each motor is attached to a propeller and, when rotating, a lift
force, the thrust, is produced.

At the same time, the propeller’s rotation is counteracted by the air
resistance, generating a drag force in the opposite direction of the propeller
rotation movement. For this reason, motors along the same axis rotate in the
opposite direction of motors in the other one (figure 2.1). This means that,

7

Figure 2.2: Body frame and Euler angles of the quadcopter

by keeping the sum of the rotation speeds of motors in the same axis equal
to the sum in the other axis, the drag forces are cancelled and the vehicle
will not rotate around itself.

The purpose of attitude control is to regulate the speed of each individual
motor so that the quadcopter assumes a desired orientation with respect
to a fixed reference frame. A body frame is defined, which has the same
orientation as the quadcopter. Usually, it has its x and y axis along the
body frame arms, see figure 2.2. The way one regulates the attitude of a
quadcopter is by defining a set of three angles (the Euler angles), roll (φ),
pitch (θ) and yaw (γ). This is convenient, since it is known that a rotation
may be decomposed into three successive rotations of these angles, and they
can be directly manipulated by adjusting the speed difference of motors along
the same axis to change either the roll or the pitch (figure 2.3), and by using
the drag forces, the yaw can be changed, see figure 2.4. For this reason, and
even though quaternions will be used for representing the attitude, roll, pitch
and yaw will be referenced along this report.

2.2.1 Attitude dynamics

To be able to do a controller project, the dynamics of the system need to
be modelled. A commonly used model is to assume the quadcopter as a
rigid body and model it using the Newton-Euler laws. That way, the only
system dependent parameter is the inertia moments matrix, J [22]. The state
variables are the attitude quaternion, q and the angular velocities along x,

8

Figure 2.3: By changing the speed of motors along the same axis, roll and
pitch can be adjusted

y and z in the body frame, ω = [ωx ωy ωz]
>:

q̇ = −1

2
WR(q)ω

Jω̇ = Jω × ω + τ

, (2.9)

where WR(q) is the same matrix as in (2.7), without the last column. τ =
[τx τy τz]

> are the control torques applied around x, y and z, respectively.
They are generated by changing the motors speeds. A difference in the speed
of the motors along the x axis will generate a torque along y (affecting the
pitch), and a difference in the speed differential on the y axis will generate
a torque around x (affecting the roll). The yaw torque comes from the
drag forces, and is obtained by changing the difference in speed of motors
in different axis. These torques are proportional to the thrust, Ti, generated
by each motor, and to the drag forces in the case of the torque around z.
Those in turn are proportional to the square of the rotation speeds of each
motor, ωi for i ∈ [1 2 3 4] (numbered as in figure 2.1), referring to each of
the motors [26], or can be modelled as proportional to the PWM signal sent
to the motors speed controllers [27]. This later approach is favoured, since
in the experimental setup a PWM signal is the final output of the control
board.

The total thrust of the quadcopter (that allows it to hover and have a
translational movement) is simply the sum of each individual motor thrust.

9

Figure 2.4: By changing the difference between motor speeds on different
axis, an angular movement around z is produced

Summarizing this discussion, we have
T = cT

∑4
i=1 ui

τx = dcT (u3 − u4)
τy = dcT (u2 − u1)
τz = cD (u3 + u4 − u1 − u2)

, (2.10)

where cT (N.s−1) and cD (N.m.s−1) are coefficients that relate the PWM sig-
nal to the generated thrust or Drag forces, respectively, and d is the distance
of each motor to the center of mass of the quad, assumed to be the center of
the base frame. ui represents the PWM width in seconds, for the motor i.
(2.10) forms a set of linear equations,

[
T
τ

]
=

cT cT cT cT
0 0 dcT −dcT
dcT −dcT 0 0
−cD −cD cD cD

︸ ︷︷ ︸

Γ

u1

u2

u3

u4

 . (2.11)

To obtain the PWM values to be sent to the motors, one just needs to invert
Γ and multiply it by the Thrust and torques vector.

10

2.2.2 Control approaches

A common approach to the attitude control of a quadcopter is to continu-
ously measure an error term for each of the Euler angles and feed them to
a PID control algorithm [15] [10] [13]. This has advantages in terms of sim-
plicity and its an effective way of stabilizing the attitude, that can be tuned
experimentally in a way that has few to none dependences on the system
model.

Other controllers have been developed, as a LQ controller [13], and some
that take into account the non-linearities of the model, such as PD2 [15],
backstepping [31] [16] or other Lyapunov based approaches [12]. The motiva-
tions for each implementation are diverse, but the general idea is to include
more information about the system in the design process, so that the perfor-
mance of the control (in settling time or smoothness, for instance) is better.

2.2.3 Proposed controller

The controller that was studied and implemented in the project was firstly
introduced as a thrust direction controller [29], meaning that its only purpose
was to align the thrust vector of the quadcopter, see figure 2.5, regulating
the yaw rate to be zero at any given time.

The controller was later expanded to cover the full attitude of the system
[28].

A fundamental result from non-linear control theory that is heavily used
here is the Lyapunov Stability Theorem:

Theorem 1 (Lyapunov Stability). Let ẋ = f(x), with f(0) = 0, x ∈ Rn

and 0 ∈ Ω ∈ Rn. If there exists a C1 function V : Ω→ R such that

1. V(0) = 0

2. V(x) > 0 for all x ∈ Ω, x 6= 0

3. V̇(x) ≤ 0 for all x ∈ Ω

then x = 0 is locally stable.

Proof. Proof can be found in any reference textbook, such as [9].

The controller implements an energy shaping technique [7], where the
system is viewed as an ”energy-transformation device”. Here, stability is
achieved by forcing the closed loop system to adopt a desired energy function.
This allows for the transient behaviour of the system to be considered in the

11

Figure 2.5: Thrust vector displacement

design process, for instance, by adopting as a Lyapunov function the energy of
the system, that is null at the desired equilibrium, plus an artificial term, that
ensures that the system adopts a desirable behaviour. This is the approach
taken by the authors of [29] [28].

The added artificial term allows for problem specific solutions to be in-
cluded, and in this case, a saturating behaviour was implemented. The con-
troller design process requires the definition of the maximum control torques
that will be available for use, favouring their exploitation whenever possible,
by saturating the control output. Furthermore, it is given priority to the
alignment of the thrust vector, since that is the fundamental operation for
successful positioning of the quadcopter. Therefore, the maximum available
torques are defined over the xy axis and separately for the z axis

τ = [τ xy τz]
> , τ xy = [τx τy]

> . (2.12)

The quaternion notation is particularly convenient to exploit these
torques, since its angle and axis of rotation interpretation may be directly
applied to the notion that we want to control the thrust vector orientation.
Firstly, the attitude error is introduced:

q = qb × qd = [q1 q2 q3 q4]> , (2.13)

where qb is the current orientation and qd the desired one. The error q may
be decomposed in the sequence of two other displacements, one of the thrust
axis, qxy = [qx qy 0 qp]

> and the remaining yaw error, qz = [0 0 qz qw]>.

12

A thrust displacement and yaw error angles, represented in figures 2.5
and 2.4, respectively, are defined as

ϕ = 2 arccos(qp) , ϑ = 2 arccos(qw). (2.14)

The control objective is simply:{
q = [0 0 0 ± 1]> ⇔ qxy = qz = [0 0 0 1]> ⇔ ϕ = ϑ = 0

ω = [0 0 0]>
. (2.15)

The dynamics of the system are determined by (2.9), and after some
mathematical manipulation we can obtain the dynamics of the error angles,

ϕ̇ = −e>ϕω (2.16)

ϑ̇ = − qz√
1− q2

w

(√
1− q2

p

qp
e>⊥ + e>z

)
· ω. (2.17)

This means that a varying ϑ has components around the z axis and also in
the orthogonal direction to ϕ̇, with the basis vectors and extensive derivation
presented in [28].

Energy shaping of the closed loop system

The control law is derived from a specified desired close loop energy function.
This consists of the kinetic energy of the system summed to an artificial
potential energy, where the problem specific terms will appear. This energy
function will be used as the Lyapunov Function of the closed loop system:

V(x) = Erot(ω) + Epot(q) =
1

2
ω>Jω + Epot(q), (2.18)

where x = [q ω]> is the state vector representing the attitude error of the
quadcopter. The time derivative of (2.18) is

V̇(x) = ω>τ +
∂Epot(q)

∂q
q̇ = ω>τ −T(q)>ω, (2.19)

with

T(q) = −1

2

∂Epot(q)

∂q
WR(q). (2.20)

Both (2.19) and (2.20) come from (2.9). By defining the control law

τ = T(q)−D(x)ω, (2.21)

13

with D(x) ≥ 0 being called a damping matrix, (2.19) becomes

V̇(x) = −ω>D(x)ω ≤ 0. (2.22)

The term T(q) may be thought of as an artificial torque field that is directed
towards the desired attitude, with the matrix D(x) ensuring that asymptoti-
cal stability is achieved. The definition of these two quantities will determine
the closed loop system properties.

Artificial potential energy

The artificial potential energy, Epot(q) needs to be designed such that it is
definite positive with a minimum at the desired equilibrium. Furthermore,
its time derivative, −T(q)>ω, should be defined in a way that allows for a
good response to deviations from the equilibrium. The saturating controller
decomposes T(q) into four components that act on the two error angles along
the appropriate basis vectors:

T(q)ϑϕ = − cos3
(ϕ

2

)
sin
(ϕ

2

)
· cϑ
∫ ϑ

0

Λϑu
ϑl

(ξ) dξ · eϕ (2.23)

T(q)ϑ⊥ =
qz√

1− q2
w

cos3
(ϕ

2

)
sin
(ϕ

2

)
· cϑΛϑu

ϑl
(ϑ) · e⊥ (2.24)

T(q)ϑz =
qz√

1− q2
w

cos4
(ϕ

2

)
· cϑΛϑu

ϑl
(ϑ) · ez (2.25)

with the global artificial torques vector being given by the sum of the indi-
vidual ones,

T(q) = T(q)ϕϕ + T(q)ϑϕ + T(q)ϑ⊥ + T(q)ϑz . (2.26)

The function Λξu
ξl

(ξ) is a linear function of ξ until ξ = ξl, remains constant
for ξ ≤ ξu and vanishes to zero when ξ reaches π, see figure 2.6.

Damping matrix

To ensure the stability of the controlled system, a damping term is added
to the artificial torques and from that we obtain the control torques to be
sent to the quadcopter, (2.21). It suffices for the damping matrix D(x) to be
positive semi-definite for (2.22) to be fulfilled. It is noted in [7], though, that
this may not always be good for the performance of the closed loop system.

For instance, if we are far away from the equilibrium and the errors are
evolving in its direction, it is undesirable to damp the movement along the

14

Λ
ξu
ξl
(ξ)

ξ

Λ

ξ
l

ξ
u

0

ξ
l

Figure 2.6: The function Λξu
ξl

(ξ). It consists in a regular saturation, together
with a vanishing to zero behaviour that prevents singularities in the control.

axis that affect the control variables, since that would make for slower con-
vergence. Moreover, we would like to saturate the control torques in this
situation, to ensure faster convergence.

The damping matrix is given by

D(x) = κxy(x)
(
dϕ(x)eϕe

>
ϕ + d⊥e⊥e>⊥

)
+ κz(x)dz(x)eze

>
z , (2.27)

where κxy(x), κz(x), dϕ(x) and dz(x) are variable gains that ensure D(x) ≥ 0
and that this desirable behaviour is obtained.

2.3 Event-Triggered control

Implementing a control design is something that is easy to do nowadays,
with the large availability of inexpensive micro controllers. The possibilities
of discrete time control have been explored for a long time, and solid results
have been established for systems where the control is updated periodically
[1][2].

This classic framework implements what can be thought of as a time-
triggered control technique. The control signal is updated at fixed instants
ti separated by a period ∆t,

ti+1 = ti + ∆t. (2.28)

In between sampling instants, the control signal may be kept constant
(zero order hold), vary according to some polynomial (higher order holds) or
be set to zero (impulse hold)[18]. When implementing non-linear controllers
in a discrete setting, the most common approach is to try to have a sampling
period as small as possible, so that the continuous closed loop system is

15

Controller Process

Triggerer

Figure 2.7: An event-triggered feedback loop

emulated. The lower the sampling period, the closer the results are to the
desired ones.

The requirement of small sampling periods may not be possible to satisfy,
or it can be an undesirable request. The go to example when introducing
event-triggered control is a sensor network that measures certain properties
of the environment and actuate upon it [17] [19] [6]. If the sensors are period-
ically broadcasting their measurements over the network, and the controller
is updating its output value for every time instant, network bandwidth is
being consumed, together with CPU capacity, in what may be a wasteful
effort.

A possible solution to this problem has come in the form of event-triggered
control. With this technique, the system state is measured and plugged in
an evaluation function. This function has the task of indicating if the system
requires attention, triggering a sampling instant, or not (figure 2.7).

Event-triggered control assumes that the system is actuated discretely,

ẋ(t) = f(x(t), u(ti)), (2.29)

with the instants ti being given not as in (2.28), but as a result of a triggering
function output. A possible approach to the problem may be by defining
a region B inside which the control is not updated, resorting to periodic
sampling outside of it,

B = {x ∈ Rn : ‖x− xd‖ < δ}. (2.30)

A common approach to the problem is to define the state error [34] [25]
[30],

e(t) = x(t)− x(ti), (2.31)

and update the state every time the norm of this error grows above a certain
threshold,

|e(t)| > δe. (2.32)

16

This has the advantage of only allowing the system to function in open
loop over limited regions around the state during the last sampling time.
Furthermore, both approaches allow for a trade-off between performance of
the control task and number of sampling instants.

Lyapunov based approaches [17][23][21] are also very common. The meth-
ods used, as well as the results achieved, are varied, but one goal remains
constant: the events must be generated in a way that preserves V̇ (x) ≤ 0.
That way, stability of the system while controlled in an event-triggered man-
ner is ensured.

In a very recent work [27], an event-triggered attitude controller has been
introduced for the attitude stabilisation of a quadcopter. The technique used
for the design was introduced in [23]. It assumes an asymptotic stabilizing
feedback law and the corresponding Control Lyapunov Function (CLF). From
the CLF, using a formula derived in the cited work, a triggering function is
defined that ensures the stability of the controlled system. Practical work
was carried out and experimental results were presented.

While functional, the fact that the control rule is constructed so that
the event-triggering formula can be applied does not make problem specific
solutions, as presented in section 2.2.3 of this chapter, possible. However, it
was the first time that an event-triggered attitude controller got applied to
the problem of quadcopter attitude stabilisation.

17

Chapter 3

Event-Triggering Rule

One of the goals of this project is to implement the saturating controller
presented in chapter 2 in a real system, and to develop and implement an
event-triggering rule that works with it.

When introducing the event-triggering framework, an event-triggered at-
titude controller for a quadcopter [27] was briefly discussed. The main
novelty of the work presented there is that the control is designed with
event-triggering in mind. This is not the case, so a rule needs to be de-
rived specifically for the saturating controller. Ideally, the properties of the
controller, namely the thrust axis alignment priority and the saturating be-
haviour, should be preserved.

The approach taken for the rule derivation is that the Lyapunov Function
derivative (2.19) should be kept smaller than zero at all times. This ought
to be enough to preserve the stability properties of the controller.

Two rules were derived. The first completely ensures that V̇ (x) is never
positive. The second one is an approximation that, through a linearisation,
manages to depend only on the state error in between sampling times.

3.1 Problem statement

Given the Lyapunov Function (2.18), with time derivative (2.19), we want to
find a control update rule such that (2.19) does not become positive. Discrete
time is assumed, with a sequence of sampling instants

t1, t2, t3, t4, . . . (3.1)

where the control signal τ is updated:

τ (t) = τ (tk) , for t ∈ [tk, tk+1]. (3.2)

18

During this discussion, the time index will be dropped for continuous
variables, and the subscript k will be used to denote the value of some variable
at time t = tk.

Finally, the state error is given by

e = x− xk =

[
q− qk
ω − ωk

]
=

[
q̂
ω̂

]
. (3.3)

With the control (3.2), equation (2.22) becomes

V̇ (x) = ω>τ k −T(q)>ω, (3.4)

and, bearing in mind that by keeping the control constant,

τ k = T(qk)−D(xk)ωk, (3.5)

we get

V̇ (x) = ω>τ k −T(q)>ω =
= ω>[T(qk)−T(q)]− ω̂>D(xk)ωk − ω>k D(xk)ωk

. (3.6)

Notice that the last term is the Lyapunov Derivative of the system evaluated
at t = tk, and as such,

− ω>k D(xk)ωk = V̇ (xk) ≤ 0. (3.7)

We now want to find triggering rules for the system, using (3.6) as a
starting point.

3.2 Rule derivation

The main challenge when evaluating (3.6) is the term T(q). All the other
terms are either kept constant between sampling instants or direct measures
of the system state. Ideally, we would like to find an expression that is
related to (3.6) and is simpler to compute, since it is desirable that the
triggering function can be computed faster than the control law, in order to
free resources in between triggering instants.

The trivial solution is to compute (3.6) directly, and generate a triggering
instant everytime it gets positive. Since the state is not measured continu-
ously, it may be desirable to be more conservative than that. This can be
achieved by making

ω>[T(qk)−T(q)]− ω̂>D(xk)ωk ≤ αω>k D(xk)ωk, (3.8)

19

with α being a constant such that α ∈]0, 1[. The triggering rule then works
by monitoring the left-hand side of (3.8) and comparing it to the constant
positive semi-definite term on the right-hand side. The smaller the α, the
more conservative the rule becomes. This can be adjusted experimentally.

Another way to fulfil the inequality (3.8) would be to upper bound it by
a term that is simpler to compute. At the same time, this technique will be
necessarily more conservative than (3.8). We first note that, using (2.14),

sin
(
ϕ
2

)
=

√
1− q2

p

cos3
(
ϕ
2

)
= q3

p

cos4
(
ϕ
2

)
= q4

p

, (3.9)

and thus the artificial torques vector becomes

T(q) =

(
cϕΛϕu

ϕl
(ϕ)√

1− q2
p

− q3
pcϑ

∫ ϑ

0

Λϑu
ϑl

(ε)dε

)
qx +

qzq
3
pcϑΛϑu

ϑl
(ϑ)qy√

1− q2
w(

cϕΛϕu
ϕl

(ϕ)√
1− q2

p

− q3
pcϑ

∫ ϑ

0

Λϑu
ϑl

(ε)dε

)
qy −

qzq
3
pcϑΛϑu

ϑl
(ϑ)qx√

1− q2
w

qzq
4
pcϑΛϑu

ϑl
(ϑ)√

1− q2
w

. (3.10)

We can upper bound (3.6) as

ω> [T(qk)−T(q)]− ω̂>D(xk)ωk − ω>k D(xk)ωk ≤

≤ ω>T(qk) + ‖ω‖‖T(q)‖ − ω̂>D(xk)ωk − ω>k D(xk)ωk,
. (3.11)

and ‖T(q)‖ can be upper bounded as well, by a simpler term, ‖T?(q)‖, and
then the triggering rule becomes

ω>T(qk) + ‖ω‖ ‖T?(q)‖ − ω̂>D(xk)ωk − ω>k D(xk)ωk ≤ 0⇔

ω>T(qk) + ‖ω‖ ‖T?(q)‖ − ω̂>D(xk)ωk ≤ ω>k D(xk)ωk

. (3.12)

20

Corollary 1. Given the system ẋ = f(x) with

1. x =

[
q
ω

]

2. f(x) =

 −
1

2
WR(q)ω

ω × ω + J−1τ

3. Control law τ = T(q)−D(x)ω

The triggering rule ω>T(qk)+‖ω‖ ‖T?(q)‖−ω̂>D(xk)ωk ≤ ω>k D(xk)ωk
ensures almost global asymptotic stability of the closed loop system.

Proof. The inequality ω>[T(qk) − T(q)] − ω̂>D(xk)ωk − ω>k D(xk)ωk ≤
ω>T(qk) + ‖ω‖ ‖T?(q)‖− ω̂>D(xk)ωk−ω>k D(xk)ωk is true if −ω>T(q) ≤
‖ω‖ ‖T?(q)‖. Since, by construction, ‖T?(q)‖ ≥ ‖T(q)‖, the triggering rule
upper bounds the time derivative of the Lyapunov function of the system,
and the stability properties found in [28] are preserved.

Ideally, T?(q) should be as simple as possible, while remaining an upper
bound to T(q), but with the drawback that the simpler it becomes, the
chances of becoming an overly conservative bound increases. With

T?(q) =

‖qx‖cϕΛϕu
ϕl

(ϕ)√
1− q2

p

+ ‖qxq3
p‖cϑϑϑl +

‖qzq3
pqy‖cϑΛϑu

ϑl
(ϑ)√

1− q2
w

‖qy‖cϕΛϕu
ϕl

(ϕ)√
1− q2

p

+ ‖qyq3
p‖cϑϑϑl +

‖qzq3
pqx‖cϑΛϑu

ϑl
(ϑ)√

1− q2
w

‖qz‖q4
pcϑΛϑu

ϑl
(ϑ)√

1− q2
w

, (3.13)

we get a term that upper bounds T(q). This follows from having 0 ≤ ϕ ≤ π,
qx, qy, qz, qp and qw with absolute value smaller than one and Λξu

ξl
(ξ) ≤ ξ. A

major drawback of this approach is that it still requires extra computations
besides the measurement of the state to be carried out. Even considering
that there are a lot of repeated terms in (3.13), it is not clear that it offers
advantages over the direct computation of (3.10). Making T?(q) simpler
by removing the absolute values of the quaternion elements will make the
triggering rule to be extremely conservative, since their values will be less
than one for most of the time and thus will reduce ‖T?(q)‖ significantly.

21

Remark 1. An alternative approach is to find a first-order approximation to
(3.10) and use this for the triggering rule. The linearisation of T(q) around
qk is given by

T(q) ' T(qk) +∇T(q̂), (3.14)

where

∇T(q̂) =
∂T

∂qx
· q̂x +

∂T

∂qy
· q̂y +

∂T

∂qz
· q̂z +

∂T

∂qp
· q̂p +

∂T

∂qw
· q̂w. (3.15)

Inserting (3.14) into (3.6), we get

V̇ (x) ' −ω>∇T(q̂)− ω̂(t)>D(xk)ωk − ω
>
k D(xk)ωk, (3.16)

where every ’difficult’ term is computed only during triggering instants.
∇T(q̂) is defined in appendix A

Using this approximation to V̇ (x), we can define a new triggering rule:

− ω>∇T(q̂)− ω̂(t)>D(xk)ωk ≤ αω>k D(xk)ωk, (3.17)

with α ∈]0, 1[taking a slightly different role than in (3.8). Make it closer
to 1 and the chances that the approximation done to T(q) is far away from
its true value are larger. Make it close to zero and the results may be too
conservative to be useful.

To benchmark these rules, a simple error based rule is proposed. Similar
to (2.32), we measure the state error (3.3) and update the control whenever
it changes more than a certain amount,

‖e‖ > δe. (3.18)

3.3 Simulation results

To be able to assert the performance of the proposed rules, we propose to
compare them to the simulation results presented in [28]. This allows to see if
the behaviour of the controlled system remains acceptable. The simulations
assume a quadcopter with inertia moments Jx = 8.5× 10−3 kg.m2 and Jz =
14× 10−3 kg.m2, maximum torques τ xy = 0.15 N.m and τ z = 0.03 N.m and
the controller parameters are the ones given in table 3.1.

The starting conditions are ϕ0 = 170 π
180

rad and ϑ0 = 10 pi
180

rad, with
zero angular velocities around x and y and ωz = 1.7 rad/s. Those allow to
see the various regions of operation in action, as well as the prioritization of
the thrust vector alignment at work.

22

Parameter Value
ϕl 10π/180 rad
ϑl 15π/180 rad
cϕ 0.817 Nm/rad
cϑ 0.109 Nm/rad
vϕmax 1.425 rad/s
vϑmax 0.624 rad/s
δϕ 0.1999 Nms/rad
δz 0.0961 Nms/rad

∆ϕ = ∆ϑ 5π/180 rad
ϕu = ϑu 175π/180 rad
rϕ = rϑ 0.75
vϕ = vϑ 0.1 rad/s

Table 3.1: Controller parameters used in [28]

The simulation results for the continuous case are depicted in figure 3.1.
In the first moments (t < 0.5s), the control torques are saturated, allowing
for a fast rate of convergence, followed by a switch in the torques signal to
make for the decelerating phase, finally ending with the proportional control
torques when close to the equilibrium, around t = 1s. Furthermore, the
compensation of the yaw error only happens once the thrust axis is aligned.
The time derivative of the Lyapunov function is, as expected, smaller or equal
to zero. A successful triggering strategy should not allow for this derivative
to be larger than zero, and ought to preserve the stability properties.

−0.2

−0.1

0

0.1

0.2

[N
.m

]

τx
τy
τz
‖τxy‖

−4

−2

0

2

4

6

[r
ad

/s
]

ωx
ωy

ωz

0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

Time [s]

[N
.m

.r
ad

/s
]

V̇ (x)

0 0.5 1 1.5 2 2.5
0

50

100

150

200

Time [s]

D
eg

re
es

ϕ

ϑ

Figure 3.1: Simulation results for the continuous case

23

3.3.1 Triggering results

To simulate the rules, two set of tests were done. One with a frequency
f = 100Hz, the other with f = 1000Hz. The motive for this is to allow
for some empirical understanding of how well do the rules scale with the
frequency of the state measurements. Besides the results using (3.8), all the
depicted results were run at f = 100Hz.

First of all, computing directly (3.8) and enforcing that inequality was
discarded completely, since it did not offer any kind of desirable robustness
properties. This is due to the fact that, even for extremely low α values,
the simulated behaviour showed severe overshooting of the system response
(figure 3.2). This simulation was run at f = 1000Hz, since it did not offer
results acceptable enough to be compared with the remaining ones. Clearly,
it is not enough for V̇ (x) to be kept non-positive, since it happens that
the switching strategy discussed previously on this report occurs precisely
when V̇ (x) has its smallest values (as noticed in figures 3.1, 3.3, 3.4 and,
by omission, in figure 3.2). For the controller to behave as well as intended,
more conservative Lyapunov based rules are needed, or an altogether different
approach.

−0.2

−0.1

0

0.1

0.2

[N
.m

]

−10

−5

0

5

10

[r
ad

/s
]

−2.5

−2

−1.5

−1

−0.5

0

[N
.m

.r
ad

/s
]

0

50

100

150

200

D
eg

re
es

0 0.5 1 1.5 2 2.5Time [s] 0 0.5 1 1.5 2 2.5Time [s]

Figure 3.2: Simulation results for the strategy (3.8), with α = 0

Rule (3.12) presented the most conservative results, as expected. During
great part of the transient the controller was being triggered, with only two
discrete sections where no triggering occurred. There were 204 triggering
instants for f = 100Hz, and 2019 for f = 1000Hz.

24

−0.2

−0.1

0

0.1

0.2

[N
.m

]

−4

−2

0

2

4

6

[r
ad

/s
]

−1.5

−1

−0.5

0

[N
.m

.r
ad

/s
]

0

50

100

150

200

D
eg

re
es

0 0.5 1 1.5 2 2.5Time [s] 0 0.5 1 1.5 2 2.5Time [s]

Figure 3.3: Simulation results for rule (3.12)

For the remaining rules, the approach taken when selecting the respec-
tive parameters was that the largest value that would not create unwanted
behaviour (oscillatory movement or V̇ (x) > 0, for instance) would be the one
chosen.

−0.2

−0.1

0

0.1

0.2

[N
.m

]

−5

0

5

10

[r
ad

/s
]

−2

−1.5

−1

−0.5

0

[N
.m

.r
ad

/s
]

0

50

100

150

200

D
eg

re
es

0 0.5 1 1.5 2 2.5Time [s] 0 0.5 1 1.5 2 2.5Time [s]

Figure 3.4: Simulation results for rule (3.17) with α = 0.1

Rule (3.17) performed as in figure (3.4). It is clearly less conservative
than (3.12), which was to be expected. With the chosen parameter α = 0.1,
V̇ (x) never became negative and the simulated results were similar to the
continuous case, particularly in settling time and transient behaviour of the
error angles. There were 103 triggering instants for f = 100Hz, and 152 for
f = 1000Hz.

25

Rule f = 100Hz f = 1000Hz
(3.12) 204 (82%) 2019 (81%)
(3.17) 103 (41%) 152 (6%)
(3.18) 99 (40%) 145 (6%)

Baseline 250 (100%) 2500 (100%)

Table 3.2: Number of triggering instants per rule

−0.2

−0.1

0

0.1

0.2

[N
.m

]

−4

−2

0

2

4

6

[r
ad

/s
]

−1.5

−1

−0.5

0

[N
.m

.r
ad

/s
]

0

50

100

150

200

D
eg

re
es

0 0.5 1 1.5 2 2.5Time [s] 0 0.5 1 1.5 2 2.5Time [s]

Figure 3.5: Simulation results for rule (3.18) with δe = 10%

Finally, the heuristic rule (3.18) (figure (3.5)) triggers almost every time
the state is changing rapidly, while the triggering instants become less fre-
quent as the system comes to the equilibrium. There were 99 triggering
instants for the lowest frequency, and 145 for the highest.

The results were summarized in table 3.2. It is clear that rules (3.17)
and (3.18) provide the best results, and none of them ensure the stability of
the closed loop system. Rule (3.17) was built by linearising T(q) around the
state at t = tk, which encodes some information about the way the system’s
Lyapunov function is changing, while rule (3.18) simply triggers when the
state norm changes more than a specified amount. This makes it much
simpler to implement, and provides good simulated results, but it is worth
noting that the way the triggering is occurring is fundamentally different for
the two rules, as can be seen in figures 3.4 and 3.5.

26

Chapter 4

Implementation

The saturating controller was implemented in the open-source APM:Copter
platform [33] . The main challenges faced were the computational limitations
of the on-board controller, together with the PWM-to-thrust relationships
that would change quickly as the battery dropped its charge. It was verified
that the controller is very sensitive to errors in this relationship, as should
be expected, since the definition of a maximum available torque is one of the
main features of the controller.

The original controller, together with the three triggering strategies dis-
cussed previously, was implemented. This chapter gives some details on the
experimental platform, and presents the experimental results.

4.1 The hardware

The controller was implemented in an adapted C++ language called Wiring,
since the embedded device that runs the controller is an Arduino-compatible
board. This board is based on the Arduino Mega version of the platform, and
uses the same ATmega1280 8-bit processor, with a clock running at 16MHz.

Figure 4.1: The controller board, with the inertial estimation board on top

27

On top of the controller board there is a second board.(figure 4.1) This
includes 3 gyroscopes and 3 accelerometers, which allow the estimation of
the attitude. There is also the option of adding a 3 axis magnetometer for
full 9-degree of freedom coverage.

The system is powered by a 3-cell 2200mAh battery, connected to the
board and to four electronic speed controllers (ESCs). These are responsible
for regulating the current that is sent to the brushless DC motors, one for
each arm. Connected to each DC motor is a 10x4.5cm propeller. The board,
following the control algorithm, provides the reference signals sent to the
ESCs, in the form of a PWM signal. Finally, communication is done via
a pair of Motes, that together with a conversion board emulates the radio
signal that the firmware is expecting to receive over the analog input port
from the board. This allows for reference signals to be sent from a computer
running a positioning control software, for instance.

4.2 Firmware

The APM project provides all the source code for the original firmware in a
GitHub repository. It includes many features that were not useful for this
project, such as waypoint navigation over GPS and sonar based altitude
control, as well as a PID attitude controller and a full Attitude and Heading
Reference System (AHRS), that implements a Direction Cosine Matrix algo-
rithm [20] to estimate the attitude from the gyroscopes, using the remaining
sensors for drift correction. The included AHRS performed well enough, so
it was kept for the practical work. The remaining features were disabled.

The main challenge in implementing the saturating controller was in
achieving a satisfactory sampling rate. The maximum frequency the AHRS
can run is slightly above 120Hz, which allowed for the original PID attitude
controller to run at 100Hz. The saturating controller requires a series of ex-
tensive computations, for obtaining both the artificial torques (2.20) or the
damping matrix (2.27). Furthermore, when applying the triggering strategy
(3.17), the triggering instants imply the computation of ∇T(q̂), that is also
computationally expensive. To ensure that every cycle fulfils the sampling
period, the highest frequency that could be achieved was 50Hz, which is not
enough to verify the results in table 3.2.

This frequency was enough, though, to verify that the controller is work-
ing and that the triggering rules maintain the stability of the system.

28

Figure 4.2: The communication mote

4.3 Motor thrust and inertia moments

The saturating controller makes use of the inertia moments of the system
when computing the switching instants between saturating and non satu-
rating behaviour, and as such it is required to have an estimate of those
values.

An analytical method was used for that purpose, using basic physical
concepts [35]. By abstracting the quadcopter components to be shaped as
uniformly dense cylinders, parallelepiped and discs (almost flat cylinders), a
basic estimate can be attained.

The quadcopter was assumed to be composed of four different elements,

1. Four motors, shaped as cylinders;

2. Four disc shaped propellers;

3. A cross section composed by four parallelepiped arms;

4. A central parallelepiped box, that includes the controller, battery and
electronics.

For uniformly densely figures, the inertia moments of each individual
element are simple to compute, and by assuming that the quadcopter is
symmetric, only the inertia moments around x, y and z need to be computed.

A parallelepiped with mass M , width W align with the y axis, height H
and length L along x has moments given by:

Jx = M

(
W 2

12
+
H2

12
+D2

)

Jy = M

(
L2

12
+
H2

12
+D2

)

Jz = M

(
L2

12
+
W

12

)
(4.1)

29

Figure 4.3: Simplified quadcopter model, with the considered geometric fig-
ures in different colours

A cylinder with its height H along z, radius R and mass M has the
following moments:

Jx = M

(
R2

4
+
H2

12

)
Jy = Jx

Jz = M
R2

2

(4.2)

Finally, offsets from the axis of rotation are dealt with by using the par-
allel axes theorem [35]. A displacement of D from an axis of rotation adds a
term to the previous formulas:

Jnew = Jcenter +MD2, (4.3)

for each axis of rotation.
The motors have the dimensions {M = 0.056Kg;R = 0.028m;H = 0.029m}

with displacement Dx = 0.31m for two of them and Dy = 0.31m
for the other pair, with Dz = 0.033m, the propellers have
{M = 0.008Kg;R = 0.125m;H = 0.01m} and the same displacement
along x and y as the motors, with Dz = 0.064m. The central
box has {M = 0.486Kg;L = W0.08m;H = 0.138m} and the arms
{M = 0.015Kg;W = L = 0.013m;H = 0.3m}, with no displacement with
respect to their axis of rotation (the arms making a cross centred with the
quadcopter frame of reference). The inertia moments are given by summing
the individual parts:

Jx = 2Jmotorx + Jcenterx + 2Jarmx + 2Jpropellerx

Jy = Jx
Jz = 4Jmotorz + Jcenterz + 2Jarmz + 4Jpropellerz

(4.4)

The obtained values were Jx ' 0.02 Kg.m2 and Jz ' 0.032 Kg.m2. This
is of course a very coarse estimation, that was not changed over the course
of the practical work, since the controller was verified to be robust against

30

Figure 4.4: Thrust measuring stand

errors in the inertia moments [28], and the obtained results compared well
to the simulations.

To get an estimate of the maximum thrust that could be provided by the
motors, as well as to get the relationship between PWM and thrust, a simple
test stand was built, that attaches a motor to a wooden arm, sitting on top
of a scale. When the motor spins, thrust is generated, and the scale shows a
difference in measured weight.

Several experiments were carried out, where the command signal was
made to vary between the minimum and maximum admissible values. This
turned out to produce considerably different results for repeated tests, which
can be traced back to changes in the battery level. Even by starting each test
with a fully-charged battery, going from the maximum admissible value to
the minimum produced significant changes, even with increasing step sizes.
In figure 4.5 are depicted the results from three experiments. In the red and
black traces, the command signal started at the maximum value and was
decreased over the experiment. The blue one depicts an experiment where
the command signal started at its minimum and was made to increase. It is
clear that there is a drop in maximum thrust in this last experiment. The

31

Measurement Regression
Blue cT = 6.665× 10−4 Kg/s
Red cT = 7.0657× 10−4 Kg/s

Black cT = 6.9953× 10−4 Kg/s

Table 4.1: Experimental values for the cT constant

100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

PWM [µs]

T
h
ru
st

[K
g
]

Figure 4.5: Sample of the obtained thrust measurements

battery output current decreased too much and the ESCs were not able to
regulate the current that was sent to the motors appropriately.

There is, though, a region that keeps a closer to linear PWM to thrust
relationship, and that was chosen to be the operating range of the output
command values from the controller. The speed controllers can receive a
PWM command signal with width from 1000µs to 2000µs. From the results
obtained, and after removing the 1000µs offset, the operating range was
defined to be in the [100, 600]µs range. The constants cT that were obtained
by linear regression on this region are presented in table 4.1. The used value
was the lowest one, cT = 6.665×10−4 Kg/s. This is due to the fact that over
an experiment, with the battery decreasing, the relationship between PWM
and thrust will approach this value. It was deemed more acceptable to risk
an underestimation of this constant (that will result in oscillations near the
steady state, due to the controller applying larger torques than the computed
ones) than an overestimation (that, as the battery decreases, takes control
authority from the controller, since the saturating limit prevents this effect
to be compensated, as it would with, say, a PID controller).

32

Figure 4.6: One degree of freedom test stand

4.4 Test stand

To properly test the controller, it is fundamental to be able to have a sys-
tematic way of experimenting with the different parameters, for repeatability
purposes. Clearly, it is not possible to test the attitude controller with the
quadcopter being in free space, since the lack of position control would make
it easy for the quadcopter to crash, and to explore the controller fully the
need to send aggressive reference values is present.

A test stand was built, that allows only one degree of freedom to be
available to the quadcopter. It consists of a wooden structure with two wood
pillars, see figure 4.6. A metal cable goes through the pillars and passes inside
one of the axis of the quadcopter. This allows, by using the two motors on
the orthogonal axis, to change the one of the roll or pitch angles. Due to the
symmetric nature of the frame, it is irrelevant which one.

33

Chapter 5

Results

The one degree of freedom stand makes it impossible to test the controller
with respect to the yaw. That, together with the absence of propeller drag
measurements, resulted in the option of testing the controller for its ability
to align the thrust axis, with the drag constant being set as a fifteen times
a lower value, based on measurements done in [27]. The maximum torques
that were given to the controller were the same as in [28], since that provided
good results and increasing this value would make the problems in the thrust
relationship estimation more evident. The experimental procedure involves
sending a−45 degree reference signal, followed by a 45 degree one, resulting in
a 90 degree step reference. The parameters used for the experiments are those
in table 5.1. Besides updating the inertia moments to match the real system,
the switch curve parameter for ϕ, rϕ, was changed to 0.5. This allows for
smoother transitions between saturated and non-saturated behaviour, which
resulted in a less aggressive behaviour of the system. The parameters related
to ϑ were omitted, since it is not possible to test for the yaw control on the
available stand.

Parameter Value
ϕl 10π/180 rad
cϕ 0.817 Nm/rad
vϕmax 1.425 rad/s
δϕ 0.1999 Nms/rad
∆ϕ 5π/180 rad
ϕu 175π/180 rad
rϕ 0.5
vϕ 0.1 rad/s

Table 5.1: Experimental parameters

34

Figure 5.1: Frames from a video depicting the quadcopter responding to a
90 degree step in the reference. All the results present in this report were
obtained from similar experiments1

5.1 Time-triggered results

The experimental results are depicted in appendix B. There are some im-
portant comments to be made, namely, the control torques that are indeed
applied to the system achieve the steady state with an offset, and there is
some oscillatory behaviour before stabilizing.

The offset can be explained by the fact that lower torques did not affect
the system as in the rigid body model, since non modelled effects disturb
it. The fact that the thrust constant is not exactly known and changes with
the battery level may also lead to sub or overcompensation. This last detail
explain the oscillation in the torques. The system ends up applying a larger
torque than the expected one, which leads to more abrupt changes in the
angular velocity, that needs to be compensated.

The smaller interpolation constant rϕ makes the transition between satu-
rated and non saturated behaviour of the controller more evident, and made
for smoother behaviour. Disturbances, non modelled dynamics and the low
sampling frequency do not allow for a very high value of this variable, as that
would result in abrupt switching, which adds to the errors in the torques es-
timation for creating an oscillating behaviour. Finally, it can be seen that
there is a variable delay in the system reaction for each experiment. This
can also be traced to the battery level influencing the thrust output.

1The full video can be seen at http://youtu.be/cMjN4u3IWhE.

35

http://youtu.be/cMjN4u3IWhE

5.2 Event-triggered results

The event-triggered results are affected by the low sampling rate that is
achievable in the real system. As seen in chapter 3, it is expected for the
linearised and heuristic rules to perform better when the triggering function
is monitoring the state at a higher frequency, and it was not possible to
verify that. The presented simulation results match the experiments that
were done, in the model parameters, initial conditions and reference values.
The α and δe parameters used for rules (3.17) and (3.18) are the ones that
in practise provided the best results, or made for important remarks.

For rule (3.12) (figure B.4), the same kind of triggering pattern seen
for the simulation results in figure 3.3 shows up, and a considerable delay is
noticeable, compared to the simulation, as well as some oscillatory behaviour.
This can be once again traced back to a non-reliable thrust output from the
motors.

The Lyapunov function derivative was computed only at triggering in-
stants, meaning that just V̇ (xk) is plotted for the experimental results. It
does not allow to see if V̇ (xk) ≤ 0 was violated, but offers some visual inter-
pretation of the effect the triggering is having on the rate of change of the
Lyapunov Function (2.18).

The linearised rule underperformed considerably on the experiments, re-
quiring a very conservative value of the constant α to ensure a good be-
haviour, as can be seen in figures B.6 and B.8. The main challenge resides in
stabilizing the angular velocity, task that is made difficult with the combi-
nation of errors in the thrust estimation and triggering instants that do not
occur at optimal time. This is due to the fact that both rule (3.12) and (3.17)
depend on the artificial torques and damping matrices from the saturating
controller to ensure stability, and those translate to control torques that are
not being applied to the system as supposed. The result is a limit cycle kind
of behaviour in the angular speed of the system, with the triggering occurring
at instants where the controller is unable to compensate for it.

The heuristic rule (3.18) is model independent in the sense that it makes
no assumptions about the system, and does not rely on the saturating con-
troller to be applied. Hence, while the results still differ from the simulation
(the controller faces the same challenges as in the time-triggered case), the
performance either in terms of triggering instants and overall system be-
haviour was found to be significantly better, see figure B.10. Note that,
since the attitude estimation always carry some noise, the absence of trigger-
ing found for the steady state does not translate to the experimental results
(figure B.12). The results obtained in terms of triggering instants are sum-
marized in table 5.2, for the first 5 seconds of each experiment.

36

Rule Control updates
(3.12) 160 (64%)

(3.17), α = 0.1 163 (65%)
(3.17), α = 0.01 177 (71%)
(3.18), δe = 0.1 69 (28%)
(3.18), δe = 0.01 214 (86%)

Baseline 250 (100%)

Table 5.2: Triggering instants results

It is clear that with this experimental conditions, the heuristic rule (3.18)
provides the best results. With uncertainties in the applied torques and low
sampling frequency, the simulation results from table 3.2 can not be verified,
and since the heuristic rule is independent from the system and controller
models, it does not suffer from those facts the same way as rules (3.12) and
(3.17).

37

Chapter 6

Conclusions

During this project, the saturating controller proposed in [28] was studied
and implemented experimentally for the first time, as far as the author could
assert. An event-triggering rule to work with it was derived, and its sta-
bilizing properties were verified experimentally, with a linearised rule being
proposed to minimize inter-sampling computations.

Two major factors limited the obtained results, namely, the inability to
provide more than 50 Hz for the sampling frequency of the controller, due
to the embedded platform used for its implementation, and the fact that a
reliable application of the computed torques was not possible to attain.

Without a very good estimation of the fundamental values of the quad-
copter model, specially, in the case of this specific controller, the PWM to
thrust relationship for the motors, there are no practical advantages in using
the proposed controller over a simple PID application. This is due to the PID
being able to correct errors in the attitude by changing the torques without
bound, while the saturating controller has a specified limit.

Having a better identified system model, and a more powerful embedded
platform for the computations, it would be possible to perform a more sys-
tematic controller characterization and tuning, by specifying some measure
of performance to be achieved (settling time of the thrust vector displacement
angle, for instance), and select the parameters that minimize it.

6.1 Future work

The attitude control problem for a quadcopter has been extensively studied
before, as exposed in chapter 2. It is nevertheless an interesting proposition
to study, implement and benchmark several different controllers on the same,
well modelled, quadcopter.

38

Such comparison was not found, at least not in a systematic, repeatable
manner, and it could offer some useful insight on whether it is worthy to
keep developing new controllers, besides the obvious academic interest.

The event-triggering attitude control of a quadcopter may be of useful
application in a scenario where a multitude of agents are operating towards
a common goal. Distributed and autonomous control of a group of agents
has been subject of recent research [5] [11] [14] [19], just to name a few. In
this framework, there is no central planning of how the different agents will
behave to reach a certain objective, and they rely on communication between
themselves to coordinate. Having an on board attitude control system that
only needs attention on a small percentage of the sampling instants allows
for the remaining to be devoted to communication and planning tasks.

Algorithms like the one proposed in [24] allow for impressive group be-
haviour of quadcopters, but no autonomous group coordination is present.

One challenge to address would be the construction of a distributed algo-
rithm that would enable autonomous group formation of quadcopters, while
achieving some sort of performance criteria.

39

Appendix A

Linearised triggering rule
derivation

We need to compute the partial derivatives that composes ∇T(q̂) in order
to apply (3.17) With:

A =
√

1− q2
pk

B =
√

1− q2
wk

C = cϑ

∫ ϑk

0

Λϑu
ϑl

(ε)dε

D =
cϕ
A

E =
cϑ
B

F = arccos(qwk
)

G = arccos(qpk)

we have:

40

∂T

∂qx

∣∣∣∣
t=tk

=

DΛϕu

ϕl
(ϕk)− q3

pk
C

−qzkq3
pk
EΛϑu

ϑl
(ϑk)

0

∂T

∂qy

∣∣∣∣
t=tk

=

qzkq

3
pk
EΛϑu

ϑl
(ϑk)

DΛϕu
ϕl

(ϕk)− q3
pk
C

0

∂T

∂qz

∣∣∣∣
t=tk

=

qykq

3
pk
EΛϑu

ϑl
(ϑk)

−qxkq3
pk
EΛϑu

ϑl
(ϑk)

q4
pk
EΛϑu

ϑl
(ϑk)

 .

∂T

∂qp

∣∣∣∣
t=tk

and
∂T

∂qw

∣∣∣∣
t=tk

will depend on the value of ϕ and ϑ, respectively,

due to (2.14). Since
∂ϕ

∂qp
= − 2√

1− q2
p

, we have, for 0 ≤ ϕ ≤ ϕl:

∂T

∂qp

∣∣∣∣
t=tk

=

(
−2D

A
+

2qpkDG

A2
− 3q2

pk
C

)
qxk + 3qzkqykq

2
pk
EΛϑu

ϑl
(ϑk)

(
−2D

A
+

2qpkDG

A2
− 3q2

pk
C

)
qyk − 3qzkqxkq

2
pk
EΛϑu

ϑl
(ϑk)

4qzkq
3
pk
EΛϑu

ϑl
(ϑk)

for ϕl < ϕ ≤ ϕu:

∂T

∂qp

∣∣∣∣
t=tk

=

(
ϕlDqpk
A2

− 3q2
pk
C

)
qxk + 3qzkqykq

2
pk
EΛϑu

ϑl
(ϑk)

(
ϕlDqpk
A2

− 3q2
pk
C

)
qyk − 3qzkqxkq

2
pk
EΛϑu

ϑl
(ϑk)

4qzkq
3
pk
EΛϑu

ϑl
(ϑk)

41

and, for ϕu < ϕ ≤ π:

∂T

∂qp

∣∣∣∣
t=tk

=

(
− 2Dϕl
A (ϕu − π)

+
Dϕlqpk (2G− π)

A2 (ϕu − π)
− 3q2

pk
C

)
qxk + 3qzkqykq

2
pk
EΛϑu

ϑl
(ϑk)

(
− 2Dϕl
A (ϕu − π)

+
Dϕlqpk (2G− π)

A2 (ϕu − π)
− 3q2

pk
C

)
qyk − 3qzkqxkq

2
pk
EΛϑu

ϑl
(ϑk)

4qzkq
3
pk
EΛϑu

ϑl
(ϑk)

For ϑ = 2 arccos(qw) we get

∂ϑ

∂qw
= − 2√

1− q2
w

and
∂(ϑ)2

∂qw
=

−8 arccos(qw)√
1− q2

w

. When 0 ≤ ϑ ≤ ϑl,
∫ ϑ(t)

0
Λϑu
ϑl

(ε)dε =
ϑ2

2
and, as such:

∂T

∂qw

∣∣∣∣
t=tk

=

4q3
pk
qxkEF +

2qwk
qzkq

3
pk
qykEF

B2
−

2qzkq
3
pk
qykE

B

4q3
pk
qykEF −

2qwk
qzkq

3
pk
qxkEF

B2
+

2qzkq
3
pk
qxkE

B

2qzkq
4
pk
qwk

EF

B2
−

2qzkq
4
pk
E

B

When ϑl < ϑ ≤ ϑu,

∫ ϑ(t)

0
Λϑu
ϑl

(ε)dε =
ϑ2
l

2
+ ϑl (ϑ− ϑl):

∂T

∂qw

∣∣∣∣
t=tk

=

2ϑlq
3
pk
qxkE +

ϑlqwk
qzkq

3
pk
qykE

B2

2ϑlq
3
pk
qykE −

ϑlqwk
qzkq

3
pk
qxkE

B2

ϑlqzkq
4
pk
qwk

E

B2

Finally, for ϑu ≤ ϑ ≤ π, the integral becomes

ϑ2
l

2
+ ϑl (ϑu − ϑl) +

ϑl (ϑ
2 − ϑ2

u)

2 (ϑu − π)
+
ϑlπ (ϑu − ϑ)

ϑu − π
and the last partial derivative is

42

∂T

∂qw

∣∣∣∣
t=tk

=

−2q3
pk
qxkϑlE

(
π − 2F

ϑu − π

)
−

2qzkq
3
pk
qykϑlE

B (ϑu − π)
+
qzkq

3
pk
qwk

qykϑl (2F − π)E

B2 (ϑu − π)

−2q3
pk
qykϑlE

(
π − 2F

ϑu − π

)
+

2qzkq
3
pk
qxkϑlE

B (ϑu − π)
−
qzkq

3
pk
qwk

qxkϑl (2F − π)E

B2 (ϑu − π)

−
2qzkq

4
pk
Eϑl

B (ϑu − π)
−
qzkq

4
pk
qwk

Eϑl (π − 2F)

B2 (ϑu − π)

43

Appendix B

Experimental results

−0.2

−0.1

0

0.1

0.2

[N
.m

]

−1

0

1

2

3

[r
ad

/s
]

0 0.5 1 1.5 2 2.5
−0.8

−0.6

−0.4

−0.2

0

Time [s]

[N
.m

.r
ad

/s
]

0 0.5 1 1.5 2 2.5
0

20

40

60

80

100

Time [s]

D
eg

re
es

Figure B.1: Simulated results for the single axis experience

−0.2

−0.1

0

0.1

0.2

[N
.m

]

−1

0

1

2

3

[r
ad

/s
]

0 0.5 1 1.5 2 2.5
−0.8

−0.6

−0.4

−0.2

0

[N
.m

.r
ad

/s
]

0 0.5 1 1.5 2 2.5
0

20

40

60

80

100

D
eg

re
es

Figure B.2: Experimental results for the single axis experience

44

−0.2

−0.1

0

0.1

0.2

[N
.m

]

−1

0

1

2

3

[r
ad

/s
]

−0.8

−0.6

−0.4

−0.2

0

[N
.m

.r
ad

/s
]

0

20

40

60

80

100

D
eg

re
es

0 0.5 1 1.5 2 2.5Time [s] 0 0.5 1 1.5 2 2.5Time [s]

Figure B.3: Simulated results for the experimental setup with rule (3.12)

−0.2

−0.1

0

0.1

0.2

[N
.m

]

−1

0

1

2

3

[r
ad

/s
]

−0.8

−0.6

−0.4

−0.2

0

[N
.m

.r
ad

/s
]

0

20

40

60

80

100

D
eg

re
es

0 0.5 1 1.5 2 2.5Time [s] 0 0.5 1 1.5 2 2.5Time [s]

Figure B.4: Experimental results for rule (3.12)

45

−0.2

−0.1

0

0.1

0.2

[N
.m

]

−2

0

2

4

[r
ad

/s
]

−1

−0.5

0

0.5

[N
.m

.r
ad

/s
]

0

20

40

60

80

100

D
eg

re
es

0 0.5 1 1.5 2 2.5Time [s] 0 0.5 1 1.5 2 2.5Time [s]

Figure B.5: Simulated results for the linearised rule (3.17). α = 0.1

−0.2

−0.1

0

0.1

0.2

[N
.m

]

−1

0

1

2

3

[r
ad

/s
]

−1

−0.8

−0.6

−0.4

−0.2

0

[N
.m

.r
ad

/s
]

0

20

40

60

80

100

D
eg

re
es

0 0.5 1 1.5 2 2.5Time [s] 0 0.5 1 1.5 2 2.5Time [s]

Figure B.6: Experimental results for the linearised rule, α = 0.1

46

−0.2

−0.1

0

0.1

0.2

[N
.m

]

−1

0

1

2

3

4

[r
ad

/s
]

−1

−0.8

−0.6

−0.4

−0.2

0

[N
.m

.r
ad

/s
]

0

20

40

60

80

100

D
eg

re
es

0 0.5 1 1.5 2 2.5Time [s] 0 0.5 1 1.5 2 2.5Time [s]

Figure B.7: Simulated results for rule (3.17), α = 0.01

−0.2

−0.1

0

0.1

0.2

[N
.m

]

−1

0

1

2

3

[r
ad

/s
]

−0.8

−0.6

−0.4

−0.2

0

[N
.m

.r
ad

/s
]

0

20

40

60

80

100

D
eg

re
es

0 0.5 1 1.5 2 2.5Time [s] 0 0.5 1 1.5 2 2.5Time [s]

Figure B.8: Experimental results for rule (3.17), α = 0.01

47

−0.2

−0.1

0

0.1

0.2

[N
.m

]

−1

0

1

2

3

[r
ad

/s
]

−0.6

−0.4

−0.2

0

0.2

[N
.m

.r
ad

/s
]

0

20

40

60

80

100

D
eg

re
es

0 0.5 1 1.5 2 2.5Time [s] 0 0.5 1 1.5 2 2.5Time [s]

Figure B.9: Simulated results for the heuristic rule (3.18), δe = 0.1

−0.2

−0.1

0

0.1

0.2

[N
.m

]

−1

0

1

2

3

[r
ad

/s
]

−0.8

−0.6

−0.4

−0.2

0

[N
.m

.r
ad

/s
]

0

20

40

60

80

100

D
eg

re
es

0 0.5 1 1.5 2 2.5Time [s] 0 0.5 1 1.5 2 2.5Time [s]

Figure B.10: Experimental results for rule (3.18), δe = 0.1

48

−0.2

−0.1

0

0.1

0.2

[N
.m

]

−1

0

1

2

3

[r
ad

/s
]

−0.6

−0.4

−0.2

0

0.2

[N
.m

.r
ad

/s
]

0

20

40

60

80

100

D
eg

re
es

0 0.5 1 1.5 2 2.5Time [s] 0 0.5 1 1.5 2 2.5Time [s]

Figure B.11: Simulated results for rule (3.18), δe = 0.01

−0.2

−0.1

0

0.1

0.2

[N
.m

]

−1

0

1

2

3

[r
ad

/s
]

−0.8

−0.6

−0.4

−0.2

0

[N
.m

.r
ad

/s
]

0

20

40

60

80

100

D
eg

re
es

0 0.5 1 1.5 2 2.5Time [s] 0 0.5 1 1.5 2 2.5Time [s]

Figure B.12: Experimental results for rule (3.18), δe = 0.01

49

Bibliography

[1] J.R. Ragazzini and G.F. Franklin. Sampled-data control systems.
McGraw-Hill series in control systems engineering. McGraw-Hill, 1958.

[2] K.J. Åström and B. Wittenmark. Computer controlled systems: the-
ory and design. Prentice-Hall information and system sciences series.
Prentice-Hall, 1984.

[3] M. D. Shuster. “Survey of attitude representations”. In: Journal of the
Astronautical Sciences 41 (Oct. 1993), pp. 439–517.

[4] Panagiotis T. “New control laws for the attitude stabilization of rigid
bodies”. In: 13th IFAC Symposium on Automatic Control in Aerospace.
1994, pp. 316–321.

[5] T. Vicsek et al. “Novel type of phase transition in a system of self-
driven particles”. In: Physical review letters 75.6 (1995), p. 1226.

[6] K. J. Åström and B. Bernhardsson. “Comparison of periodic and event
based sampling for firstorder stochastic systems”. In: Proceedings of the
14th IFAC World Congress. 1999.

[7] R. Ortega et al. “Putting energy back in control”. In: IEEE Control
Systems Magazine (Apr. 2001), pp. 18–33.

[8] T. Hamel et al. Dynamic Modelling And Configuration Stabilization
For An X4-Flyer. 2002.

[9] H.K. Khalil. Nonlinear Systems. Prentice Hall PTR, 2002. isbn:
9780130673893.

[10] P. Pounds et al. “Design of a Four-Rotor Aerial Robot”. In: Aus-
tralasian Conference on Robotics and Automation. 2002, pp. 145–150.

[11] A. Jadbabaie, J. Lin, and A. S. Morse. “Coordination of groups of mo-
bile autonomous agents using nearest neighbor rules”. In: IEEE Trans-
actions on Automatic Control 48.6 (2003), pp. 988–1001.

50

[12] S. Bouabdallah, P. Murrieri, and R. Siegwart. “2004-b, “Design and
Control of an Indoor Micro Quadrotor”. In: Proc. of Int. Conf. on
Robotics and Automation. 2004.

[13] S. Bouabdallah, A. Noth, and R. Siegwart. “PID vs LQ control tech-
niques applied to an indoor micro quadrotor”. In: IEEE International
conference on intelligent robots and systems. 2004, pp. 2451–2456.

[14] W. Ren and R. W. Beard. “Consensus Seeking in Multiagent Systems
Under Dynamically Changing Interaction Topologies”. In: IEEE Trans-
actions on Automatic Control 50.5 (2005), p. 655.

[15] A. Tayebi and S. McGilvray. “Attitude stabilization of a VTOL quadro-
tor aircraft”. In: Control Systems Technology, IEEE Transactions on 3
(Apr. 2006), pp. 562–571.

[16] P. Adigbli et al. “Nonlinear Attitude and Position Control of a Mi-
cro Quadrotor using Sliding Mode and Backstepping Techniques”. In:
European Micro Air VehicleConference and Flight Competition (2007).

[17] P. Tabuada. “Event-Triggered Real-Time Scheduling of Stabilizing
Control Tasks”. In: IEEE Transactions on Automatic Control (2007).

[18] Karl J. Aström. “Event Based Control”. In: Analysis and Design of
Nonlinear Control Systems. Ed. by A. Astolfi and L. Marconi. Springer
Berlin Heidelberg, 2008, pp. 127–147.

[19] D. Dimarogonas and E. Frazzoli. “Distributed event-triggered control
strategies for multi-agent systems”. In: Communication, Control, and
Computing, 2009. Allerton 2009. 47th Annual Allerton Conference on.
IEEE. 2009, pp. 906–910.

[20] W. Premerlani and P. Bizard. Direction Cosine Matrix IMU: Theory.
2009.

[21] A. Eqtami, D. Dimarogonas, and K. Kyriakopoulos. “Event-triggered
control for discrete-time systems”. In: American Control Conference
(ACC), 2010. IEEE. 2010, pp. 4719–4724.

[22] N.A. Chaturvedi, A.K. Sanyal, and N.H. McClamroch. “Rigid-Body
Attitude Control”. In: Control Systems, IEEE 31.3 (June 2011),
pp. 30–51.

[23] N. Marchand, S. Durand, and F. Guerrero-Castellanos. A general for-
mula for the stabilization of event-based controlled systems. 2011.

[24] A. Kushleyev, V. Kumar, and D. Mellinger. “Towards A Swarm of Agile
Micro Quadrotors”. In: Proceedings of Robotics: Science and Systems.
Sydney, Australia, July 2012.

51

[25] D. Lehmann and K. H. Johansson. Event-triggered PI control subject
to actuator saturation. 2012.

[26] Robert E. Mahony, V. Kumar, and P. Corke. “Multirotor Aerial Ve-
hicles: Modeling, Estimation, and Control of Quadrotor.” In: IEEE
Robot. Automat. Mag. (2012), pp. 20–32.

[27] F. Castellanos et al. “Event-triggered nonlinear control for attitude
stabilization of a quadrotor”. In: Journal of Intelligent and Robotic
Systems (2013).

[28] O. Fritsch, B. Henze, and B. Lohmann. “Fast and Saturating Attitude
Control for a Quadrotor Helicopter”. In: Control Conference (ECC),
2013 European (Sept. 2013), pp. 3851 –3857.

[29] Oliver Fritsch, Bernd Henze, Boris Lohmann, et al. “Fast and Saturat-
ing Thrust Direction Control for a Quadrotor Helicopter.” In: Automa-
tisierungstechnik, vol. 61, no. 3 (Mar. 2013), 172–182.

[30] WPMH Heemels, MCF Donkers, and Andrew R Teel. “Periodic event-
triggered control for linear systems”. In: Automatic Control, IEEE
Transactions on 58.4 (2013), pp. 847–861.

[31] A. Honglei et al. “Backstepping-Based Inverse Optimal Attitude Con-
trol of Quadrotor”. In: International Journal of Advanced Robotic Sys-
tems (2013).

[32] C. R. Paiva. Os Quaterniões de Hamilton. 2013.

[33] APM:Copter website. url: http://copter.ardupilot.com/.

[34] K. E. Årzén. A simple event-based PID controller.

[35] T. Bresciani. Modelling, Identification and Control of a Quadrotor He-
licopter.

[36] G.P. Cyril. The Bréguet-Richet Quad-Rotor Helicopter of 1907.

[37] Oemichen 1922. url: http://www.aviastar.org/helicopters_eng/
oemichen.php.

52

http://copter.ardupilot.com/
http://www.aviastar.org/helicopters_eng/oemichen.php
http://www.aviastar.org/helicopters_eng/oemichen.php

	Introduction
	Rigid-body attitude control
	Quadcopters

	Event-Triggering Framework
	Objectives
	Thesis Outline

	Background
	The quaternions
	Operations with quaternions
	Quaternion of rotation

	Quadcopter attitude control
	Attitude dynamics
	Control approaches
	Proposed controller

	Event-Triggered control

	Event-Triggering Rule
	Problem statement
	Rule derivation
	Simulation results
	Triggering results

	Implementation
	The hardware
	Firmware
	Motor thrust and inertia moments
	Test stand

	Results
	Time-triggered results
	Event-triggered results

	Conclusions
	Future work

	Linearised triggering rule derivation
	Experimental results

