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Abstract

Planning the operational procedures in a railway marshalling yard is a complex problem.
When a train arrives at a marshalling yard, it is uncoupled on an arrival yard and then its cars
are rolled to a classification yard. All cars should eventually be rolled to the classification
track that has been assigned to the train they’re supposed to depart with. However, there is
normally not enough capacity to compound all trains at once. In Sweden, cars arriving before
a track has been assigned to their train can be stored on separate tracks called mixing tracks.
All cars on mixing tracks will be pulled back to the arrival yard, and then rolled to the
classification yard again to allow for reclassification. Today all procedures are planned by
experienced dispatchers, but there are no documented strategies or guidelines for efficient
manual planning. The aim of this thesis is to examine operational planning strategies that
could help dispatchers find a feasible marshalling schedule that minimizes unnecessary
mixing. In order to achieve this goal, two different online planning strategies have been tested
using deterministic and stochastic simulation. The Hallsberg marshalling yard was used as a
case study, and was simulated for the time period between December 2010 and May 2011.
The first tested strategy simply assigns tracks to trains on a first come-first served basis, while
the second strategy uses time limits to determine when tracks should be assigned to departing
trains. The online planning algorithms have been compared with an offline optimized track
allocation. The results from both the deterministic and the stochastic simulation show that the
optimized allocation is better than all online strategies and that the second strategy with a time
limit of 32 hours is the best online method.

Keywords: Railways, Marshalling, Marshalling yards, Simulation.
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1 Introduction

Railway freight plays a key role in the transportation chain for many companies, and has benefits
like, for instance, low cost and low environmental impact. To improve freight transportation
services, minimizing delays in the railway network is absolutely necessary. Different factors can
cause delays, however it is clear that marshalling is often a source of delay for freight in Sweden,
Fakhraei Roudsari [1]. Therefore one effective and fruitful approach to decrease freight train

delays would be to focus on optimizing marshalling yards procedures.

Planning the operational procedures in a railway marshalling yard is a complex problem.
Currently all the classification procedures in Swedish marshalling yards are planned manually by
highly experienced dispatchers. According to the author’s investigations, there are no documented
or systematic rules or guides to help operators with the planning tasks, and in this study it has

therefore been investigated how different planning strategies would affect the marshalling.

The Hallsberg marshalling yard, which is the largest freight yard in the Nordic countries, and
arguably the most important marshalling yard in Sweden, has heavy freight train traffic and
therefore the potential power to impose delays to the railway network. Hence it is selected as a

case study.

An optimization model to find the best operational solution for Hallsberg marshalling yard has
already been developed at Swedish Institute of Computer Science (SICS). Although the model
offers promising offline solutions to optimize the procedure, it is too complex to be used without a
computer implementation. Further, the robustness of the model in case of any stochastic arrivals
has not been evaluated yet; however this can be examined by the help of simulation methods.
Moreover, due to the complexity of the model, chances to make it widely used by the operators are
scarce. Another alternative would be developing some systematic online and straight forward rules
for the operational procedures which are more user-friendly to be applied by dispatchers. This has

been investigated in the current study.

In this study an online solution is defined as a simple and easy rule of thumb which can be
applied for track allocations at the classification yard at the same instant a car arrives at the yard
and it would not need initial analysis beforechand. On the contrary an offline solution for track
allocation is the one which can offer a track allocation solution by applying some initial analysis
and/or using mathematical models, before a car or train arrives at the yard; in this case some data
regarding arrival and departure times of trains and their car assignments are required in advance

before cars arrive at the yard.

1.1 Objective
The aim of this thesis is to apply discrete event simulation to evaluate different online planning

strategies in marshalling yards with respect to efficiency and robustness, to increase the

1



punctuality of freight transportation. Hallsberg marshalling yard is simulated in MATLAB as a
case study. In this study, optimizing the operational procedures with respect to efficiency is
defined as decreasing the number of unnecessary car movements. Further, a planning strategy is
considered robust if it generates feasible allocations with no or few missed cars, both in the

deterministic simulation and when stochastic delays are added to the arrival times.

1.2 Delimitations

The simulation is macroscopic and does not simulate the dynamic motion of cars or the
interlocking system and switches, instead average times for tasks durations have been used.
Moreover, in accordance with previous literature, it is assumed that any car arrangement within a
train is acceptable, Bohlin ef al. [2,3,4]. This thesis will cover a brief initial data analysis; however

a deep focus on data analysis is not the aim of this thesis.

1.3 Thesis structure

The remainder of the thesis is organized as follows. First, a brief overview of the problem and
previous works is outlined. Then the applied methods have been described in part 3. Part 3 also
contains details about the deterministic and stochastic simulation models. Part 4 demonstrate an
experimental evaluation and the analysis of the results. In conclusion, part 5, findings of this study
have been summarized including suggestions for further research. Part 6 covers the list of useful

and applied references.

The outputs of the models have been presented in more detail in Appendix A and Appendix B.



2 Background
2.1 What is marshalling

Marshalling /shunting is the process of combining certain cars from at least two different trains

into a new departure train. This process can be performed in a marshalling /shunting yard, Gatto et

al. [5].

In general, customers of rail freight transportation can be divided into two major categories.
The first category contains customers that need to transport such large amounts of freight that they
can buy or hire complete train sets for the transportation. These trains are called “unit trains”, and
all the cars in such a train will have the same origin and destination, Fréidh ef a/. [6]. Unit trains do
not require marshalling. The second category contains customers that have smaller amounts of
freight to be delivered, and they are interested in the transportation of individual cars rather than
complete trains. Trains transporting such freight will consist of cars from different origins and/or
different destinations. These trains do require marshalling, and will travel to and/or from

marshalling yards where the cars are sorted into new trains based on their destinations, Gatto et al.

[5].

2.1.1 Marshalling process in brief

There are two types of marshalling yards: hump yards and flat yards. Most marshalling yards
consist of three major sub-yards; an arrival yard, a classification yard and a departure yard. Each
sub-yard has a set of tracks of different lengths. Further, hump yards have a hump between the
arrival and the classification yard, and rely on gravity and switching systems to transport the cars

from the top of the hump to the desired classification track (see Figure 1).

hump § /—\
track classification tracks -
hump 7

arrival departure
yard classification bowl yard

Figure 1: A typical layout of a marshalling yard with hump

When a train arrives to a hump yard it is parked on the arrival yard, and its cars are uncoupled and
the brakes released. The cars are then pushed over the hump and rolled to the classification tracks.
However, before pushing the cars over the hump, a decision has to be made about which
classification track each car should be rolled to. In the Hallsberg marshalling yard, when a train is
being compounded on a classification track, no cars belonging to other trains are allowed on that
track. As a consequence, the classification yard needs at least one classification track for each
departing train being compounded. Normally there is not enough capacity to compound all trains at

the same time, and therefore special tracks, called mixing tracks, are used for cars whose trains



have not yet been assigned to a classification track. For each departure train, a classification track
should be booked for specific time duration; cars arriving before the start of this booking period

should be rolled to a mixing track.

Cars on mixing tracks have to be reclassified. This is accomplished by pulling the mixed cars
back to the arrival yard and then pushing them over the hump again so that they may be directed to
their assigned classification tracks. Pulling a car back to the arrival yard and rolling it in again is an
unnecessary car movement that wears on the car and yard, and causes extra work. Therefore, the

number of cars being sent to mixing tracks should be kept low.

When all cars of a departing train have arrived to the assigned classification track, the cars are
coupled and the train is pulled out to the departure yard where it waits for its departure time. In the

Hallsberg marshalling yard, trains can also depart straight from the classification yard.

2.2 Developed models for marshalling yards in the world

According to Boysen ef al. [7] and Assad [8] the history of research work to improve marshalling
operational procedures began at 1955. In that first paper a Monte Carlo simulation was used to
simulate a classification yard, according to Assad [8]. Many efforts have been made afterwards,
mainly in US and China, to develop different algorithms and tools to help dispatchers at
marshalling yards. Boysen et al. [7] have summarized the important academic works in this field

and emphasizes robustness as a key subject for potential further research.

2.21 Europe

The simulation of marshalling yards in Europe started around 1996 in Czech Republic and Slovak
Republic [9,10,11]. Kavicka, et al. [12] at the university of Zinila have developed a tool, named
VirtuOS, for the railway simulation including marshalling yards. However, this tool cannot solve
the shunting problem but it provides an environment to practice different policies and evaluate
what would happen in case of any decision. This tool has been applied to simulate Zilina Teplicka
marshalling yard [12]. Kavicka, ef al. [13] have also worked on the simulation model of

marshalling yard Linz VBF in Austria applying the same method.

In Italy, Stefano ef al. [14] have applied a heuristic approach to find an optimal train order for
parking the departure trains on the departure tracks at nights, to have a smooth departing in the
morning. Although the corresponding problem is not similar to the one studied in this thesis, it
does emphasize the feasibility of using mathematical approaches to obtain an optimal solution in a

railway track allocation problem.

Later on in Switzerland, Marton et al. [15] have improved train classification procedure for the

hump yard Lausanne Triage by applying multistage mathematical methods.



In Sweden SICS has developed an integer programming model for optimized classification track

allocation, as well as a few heuristic methods [2,3,4]. This is further described in part2.3.3 .

2.2.2 United States

As mentioned previously US started working on marshalling yards development in 1955 at
Massachusetts Institute of Technology [8]. In 1989, Keaton [16] at Michigan Technological
University conducted a study for designing optimal railroad operating plans by applying

Lagrangian relaxation and heuristic approaches.

Furthermore a tool named YARDSIM has been developed by Lin et al. [17] for marshalling
yard simulation and it has been applied for a major yard at US. Lin et al. [18] have also applied
this method to evaluate hump yards in North America. YARDSIM presents a visual tool for the
simulation, although it cannot automatically solve the scheduling problem but it can be used for

“what-if” analysis.

Dalal ef al. [19] mentioned in 2001 that a new Computer Aided Dispatching system (CAD III)
is under development in the US and that it will incorporate an automated movement planning
component. They claim that this system will use an objective function based optimization and that
it will be a major advance in railroad technology. However, the author could not find any more

recent related documents.

Interestingly an innovative hump yard manager (IHYM) tool has been developed at Innovative
Scheduling Company at Florida [20]. This tool has the power to simulate different parts at
marshalling yard including arrival tracks, hump scheduling, classification track allocations,
departure tracks, locomotive and crew assignments and schedules. This tool has 4 different options

for track allocation at classification yards including [20]:

e Option 1: Use longest block to longest track rule

e Option 2: Blocks on same outbound train are on adjacent tracks
e Option 3: Pre-defined by user

e Option 4: Use optimization routines

However the power and evaluation of this tool and the algorithms behind the optimizations are not

clear.

2.2.3 China

China is one of the countries that have been studying the problem of optimization and simulation
of marshalling yards for several years. A study at Waterloo university in Canada was conducted
for Chinese national railway in 1983 to develop a model for finding the optimal sequence of cars

rolling over the hump, Yagar et al. [21]. Dahlhaus et al. [22] also conducted a study for China in



1999, working on the problem of rearranging cars in a train. Many different institutes in Germany,

Kuwait and Australia cooperated in that study, Dahlhaus ef al. [22].

He, et al. [23] have proposed and developed an integrated dispatching model for the optimal
operation at marshalling yards and they have examined the results for 3 different yards in China
applying a heuristic approach. Jing et al. [24] have worked on a model and algorithm for dynamic

wagon-flow allocation under uncertainty conditions.

2.2.4 Summary of literature review

Developing the improved operational procedures has been investigated through the
implementation of either optimization, heuristics or simulation models for many years and by
various people and institutes. As has been presented, many of the track allocation studies focus on
offline optimization solutions. Although different simulation models have been introduced, the
only document which has mentioned few online track allocation policies is the IHYM [20].

However, the results of implementing those policies for track allocations are not known.

2.3 Marshalling in Sweden

Sweden has several marshalling yards. Hallsberg is the biggest and arguably the most important
yard in Sweden. As mentioned previously some studies discussed that passing through a
marshalling yard is one of the sources of freight train delay in Sweden, Fakhraei [1].. It should be
noted that Sweden is one of the few countries that use a booking system for assigning cars to trains

before a car starts its journey, which poses extra constraints on the marshalling procedures.

2.3.1 Booking system

A car booking system is used in Sweden, Heydenreich et al. [25]. This means that it has already
been decided which departing train a car should join before it arrives at the marshalling yard.
Booking systems give the freight operators better control over their fleet. However, booking
systems also impose constraints on the planning and operational procedures at marshalling yards.
If no booking system is used, operators can classify a car by simply assigning it to the earliest
departing train that passes through the car destination. In contrast, when a booking system is used,
operators have to send each car to its predetermined departing train even if there is another suitable
train departing earlier. This drawback can be remedied by re-booking cars in situations where this
makes sense, but this option has to be exercised with care since re-booking might violate
agreements with the customers, and might also cause problems in other yards that are not
expecting the car until later. In Europe, there are currently railway freight booking systems in

Sweden, Belgium, the Netherlands and the Czech Republic.



2.3.2 Marshalling at Hallsberg marshalling yard

Hallsberg marshalling yard is arguably the biggest marshalling yard in the Nordic countries. It is
located in the center of the Swedish transportation network where all the main tracks coming from
Germany, Denmark, Norway and the northern parts of Sweden merge (see Figure 2). The strategic
location of Hallsberg has made the yard one of the crowded yards in Sweden, and optimized use of

capacity is therefore of interest.

Northern Europe
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Figure 2: Location of Hallsberg in Swedish railway network [26]

The arrival yard in Hallsberg consists of 8 tracks with different lengths from 590 m to 690 m. The
arrival yard is connected to the classification yard via a double hump (Figure 3), however only one
hump is used at a time due to layout design and safety constraints. The classification yard has 32
tracks with different lengths from 374 m to 760 m (Figure 3). Finally, the departure yard consists
of 12 tracks with lengths from 562 m to 886 m, Alzén [27]. A thorough description of the
operations and timings of various marshalling tasks can be found in Bohlin ef a/. [2] and Alzén

[27].

When a train arrives it should be prepared for rolling over the hump. The preparation process
will take about 48 min for a set of 32 cars and it includes several tasks which are described in
Table 1. Dedicated time to some operational tasks in more detail and also the preparation time

before a train departure, are presented in Table 2 and Table 3, [27].



Figure 3: Hallsberg view from tower, Left: Hump, Right: Classification yard

As presented in Table 1, when a train arrives, it waits for the appropriate signal, when the signal is
green then the train drives to an assigned track in the arrival yard. After parking in the arrival
track, the line locomotive is uncoupled from the cars and the cars are coupled to a shunting
locomotive. Then all the brakes are released and checked. When the time of rolling comes and the
signals show the appropriate sign, cars are pushed over the hump and roll either to an assigned

classification track or to the mixing tracks.

Table 1: Approximate time to prepare a train for shunting [27]

Tasks Time (s) Time (min)
Reserve time (based on braking before the signal) 14 0.23
Driving 157 2.63
Securing cars and uncoupling them from locomotive 30 0.50
Checking and preparation (1 min per car) 1920 32.00
Coupling to the shunting locomotive 5 0.08
Towing, releasing brakes, waiting for signals 60 1.00
Pushing cars over to the hump (230+40 m with 1.2 m/s) 225 3.75
Rolling over hump 465 7.75
Sum 2876 48.00

Several tasks should be performed on the cars before they can leave a track; this implies that when
a track is occupied, a minimum certain amount of time should be passed before the track can
become free again. Also some of the shunting tasks like releasing brakes consist of different

detailed sub-tasks. More detailed information has been presented in Table 2.



Table 2: Dedicated time to different detailed operational tasks [27]

Tasks Time (s) Time (min)
Coupling cars and brakes (100 m/min + 10 s/car) 750 12.50
Time for filling the brake system with air 900 15.00
Testing the brake system 60 1.00
Refilling the brake systems after the test 20 0.33
Brake test, hitting the brakes, controlling each car 180 3.00
Releasing brakes 120 2.00
Controlling that all brakes have been released 180 3.00
Release buffer stops 15 0.25
Activate brakes 5 0.08
Time for driving the locomotive to the cars and coupling it 10 0.17
Releasing brakes 120 2.00
Simple brake test 60 1.00
Time for departure including path reservation 150 2.50
Time for activating buffer stops, relays, reaction time 60 1.00
Sum 2630 44.00

When a train is ready and all the cars are joined together, then the train leaves the classification
yard and goes to an assigned track in the departure yard. In the departure yard several tasks are
performed to prepare a train for departure. These tasks include for instance uncoupling from the
shunting locomotive and coupling to the departure locomotive, checking and testing the brake

systems, etc. More details including the minimum time for each task have been presented in Table
3.

Table 3: Dedicated time to different required tasks before the departure [27]

Tasks Time (s) Time (min)

Driving 96 1.6
Uncoupling from the shunting locomotive 60 1
Driving the shunting locomotive away 12 0.2
Driving the line locomotive to cars 12 0.2
Coupling to the line locomotive 10 0.17
Charging the brake pressure 300 5
Simple brake tests 60 1
Waiting for the signal 120 2
Departing 120 2
Sum 790 14.00

¢ Planning

Today’s planning procedure at Hallsberg is as follows. Experience planners and dispatchers, sitting
in the control tower; plan the arrangements of cars for the departure trains approximately one day
ahead of the departure. The operational tasks are usually planned in the morning when the

classification yard is not very crowded [28].

The composition of the trains changes as the operation date approaches. In fact, new orders

from customers might cause the composition of trains to change as late as two hours before the



departure time of a train [28]. This complicates planning as the preconditions are constantly

changing.

¢ Operational restrictions

A car group is a set of cars which have the same origin and destination and are treated as one unit
during the marshalling process. The maximum length of a car group which is going over the hump
is 86 m. It should not have more than 10 axles and it should not be heavier than 450 tons; only the

last car group in the train can be 125 m [28].

Although there are two humps in the yard, due to safety constraints and track layout, only one

hump can be used at a time [28].

e Fleet
There are three shunting locomotives at the yard; two of them work in the arrival yard and the
other one is assigned to the classification and departure yards. According to discussions with

dispatchers, insufficient number of shunting locomotives has rarely been a bottleneck [28].

¢ Brakes

There are two different types of brakes in the classification yard. Brake beams which reduce the
speed of rolling cars to 15 km/h and brake pistons which reduce the speed from 15 to 5 km/h [28].
After rolling over the hump, cars first pass over the brake beams and their speed is reduced to 15
km/h and then they pass over the brake pistons. These brakes help the cars stop smoothly in the

classification track.

2.3.3 Optimization approach for Hallsberg marshalling yard conducted at SICS

Several mathematical programming models for finding an optimal classification track allocation
have already been developed for the Hallsberg marshalling yard by SICS, Bohlin et al. [2,3,4].
SICS conducted the project in collaboration with RWTH Aachen and ETH Ziirich universities.
The goal of the optimization models is to minimize the number of cars being sent to mixing tracks
to reduce the number of car pull-backs. Applying the model described in Bohlin et al. [4] a
solution for an optimal track allocation, using train timetable data for five days ahead, is found

within 13 minutes.

SICS has tried different approaches to find an optimal solution, for instance column generation
approach, heuristics and mixed integer programming formulations [2,3,4]. However, the
optimizing models are complex and require a computer implementation to be used in practice. It is
therefore of interest to see if less powerful but simpler rules for classification track allocation could

be found, since such rules would be more easy to apply in practice.
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3 Method and model components
3.1 Applied method in brief

As explained in the previous parts, it is desirable to find online basic and simple rules for the track
allocation at classification yards. Simulations run with MATLAB has been selected since it
provides a flexible way for setting rules for track allocation, implementing stochastic arrival times

and extracting the desired outputs for evaluations and validations.

Two simulation models have been developed: one deterministic and one stochastic model. The
deterministic model uses the planned arrival and departure times, while the other one introduces
stochastic delays in the arrival times. Apart from the arrival times, the two models are exactly the

same. The different track allocation rules have been tested in both models.

The models are focused on the simulation of track allocation in the classification yard, therefore
in addition to train arrival and departure times, other information such as the schedule of cars
rolling over the hump, the time of pull-backs, the time when trains leave the classification yard and
the information from the car booking system have also been provided as input data. Note that
arrival and departure times have been provided from the planned arrival and departure time tables
and car bookings are also provided by the booking systems. However the hump schedule, used for

the simulation model, is the result from the heuristic pre-processing in [2,3.4].

Models were partially validated by checking that the sequence of events had followed the

implemented rules using a visualization tool. This is explained further in part 3.6 and 3.7.

The stochastic model was executed 100 times for each period (total number of 2100 iterations
for the whole 21 periods). A normal statistical test was applied to evaluate the difference between

deterministic and stochastic results.

3.2 Input data

The case study was based on the planned arrival and departure times of trains which pass through
the Hallsberg marshalling yard during the time period between December 11, 2010 and May 10,
2011, as well as car assignments for these trains. A planning horizon of seven days was used, and
Saturday was chosen to be the first day of each planning period. The data was pre-processed as
outlined in Bohlin et al. [3], and the heuristics approach (in Bohlin ez al. [3]) were used to
determine the hump schedule (including initial roll-in and pull-back times) as well as the times
when the newly formed trains should be rolled out to the departure yard. Having all the mentioned
information, only the simulation of the operations at the classification bowl had to be considered.
Therefore the allocation problem is reduced to determining which classification track the departing
trains should be assigned to, and when this booking period should start. In other words, for each

car that is rolled over the hump, a decision has to be made whether to send it to a mixing track or

11



to a normal classification track, and if it is decided to send it to a normal classification track then it

also has to be decided which one.

The output from the heuristic pre-processing in Bohlin et al. [3] is an ordered list of time-

stamped events. The events are the following:

1. Roll-in: A car group (i.e. cars that arrived with the same train, and that will also depart with the
same train) is pushed over the hump from the arrival yard to the classification yard. The car

group needs to be directed either to its train’s classification track, or to a mixing track.

2. Roll-out: A train in the classification yard undergoes departure preparations and is rolled out to
the departure yard. All car groups belonging to the train must be at the classification track by
this time. If a car group has not arrived to the track by this time it is missed, i.e. it will not
depart with its assigned train. When a car group was missed, its identity was recorded and it
was removed from the simulation. That is, reassignment of cars to new trains was not part of

the simulation.

3. Pull-back: All car groups on mixing tracks are pulled back to the arrival yard and rolled over

the hump again to allow for reclassification.

The mixing tracks can be one or several tracks. In the experimental setup, two tracks with a
total length of 1423 meters were reserved for this purpose. It was also assumed that the cars on

both mixing tracks were pulled back at every pull-back event.

It must be noted that the original data contains only the arrival time, departure time and arrival
and departure trains’ compositions. However, Bohlin, et al. [4] have processed the data and
determined the time points of roll-ins to the hump and pull-backs from mixed tracks. These time

points have been given as input to the current simulation model.

3.2.1 Data pre-processing

Input data comprises the time period between December 11, 2010 and May 10, 2011, as well as car
assignments for the included trains. This period covers both peak and off-peak traffic periods at the
yard. In the data pre-processing, cars with a local source or destination were omitted from the data

set. Further, cars being sent to maintenance tracks have not been considered.

In the data analysis it was revealed that there were some inconsistencies in the data such as for
example some cars not being assigned to a departure train, several arrival and departure times for
the same train ID in one day, repetition of the car ID, etc. Note that the initial data pre-processing
have already been done for the development of the optimization model at SICS and more details
can be found in Bohlin, ef al. [3]. In total, 3594 arrivals, 3654 departures and 17684 car groups
were handled. Arrival trains vary in length between 12.8 and 929 meters, departure trains between

12 and 1252 meters.
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There are some cars which spend only few hours at the yard and the difference between their
arrival and departure times is small. The histogram and probability density function of cars for the
whole data according to various time differences between roll-in and roll-out time has been

presented in Figure 4.
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Figure 4: C.d.f of cars according to the difference between their arrival and departure times in
hours.

Figure 4 shows that almost 40 % of all cars after rolling over the hump should leave the

classification yard in only 4 hours. It also demonstrates that 90 % of all the cars leave the yard in

24 hours. The maximum stay at the classification yard for the input data is 46 hours and has the

least frequency.

3.3 Time constraints

There are some operation constraints which should also be considered during the simulation. These
constraints have been applied in the model as time limitations before starting some special tasks.
For instance after a roll out event a new car cannot enter the track straight away and there should
be a minimum time of 1.58 min before a roll in event. All these time limitations between different

tasks are presented in Table 4.
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Table 4: Minimum time between different operations [2,3,4,28]

Events order Seconds Minutes
Roll out- pull back - roll out  4553.5 75.89
Roll out- roll in 95 1.58
Pull back - roll out 4458 74.30
Pull back - pull back 2730 45.50
Pull back- roll in 1832 30.53
Roll in - roll out 3093 51.55
Roll in - pull back 1365 22.75
Roll in- pull back - roll out 5823.5 97.06
Roll in - roll out 467 7.78

3.4 Planning strategies
This section outlines the two online planning strategies that were tested. The results of the online
methods were compared with the results from an optimized allocation for 7 days which had been

constructed using the method described in Bohlin ef al. [4].

3.41 First come-first served strategy

The first strategy is a very simple first come-first served rule (FCFS). Every time a car group is
rolled over the hump (a roll-in or a pull-back event) it is checked if that car group’s train has been
assigned to a track. If the train already has an assigned track, the car group is sent there; else an
attempt is made to assign a track to the car group’s train. If no feasible track is available for the
train, the car group is rolled to a mixing track. If more than one feasible track is available, the

shortest one is chosen. A track is considered available if it is not occupied.

3.4.2 Time limit strategy

The time limit strategy works in the same way as FCFS in many ways, but it also takes the trains’
departure times into consideration. When a car group is rolled in, its designated train’s departure
time is checked. If the departure time is more than a certain number of hours away, the car group is
sent to the mixing tracks. But if the departure time is within the time limit, it is tried to assign a
track to the car group’s train using the same rules as in FCFS. Once again, if a track has already

been assigned to a car group’s train, it will be sent to that track straight away.

3.5 Implementing stochastic arrival times
To evaluate how well the strategies cope with delays, random arrival times based on empirical data
were generated. Although both early and late arrival times were sampled, only delays were

propagated to the roll-in times used by the simulation.
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3.5.1 Arrival time distributions

The variations in arrival times were sampled from an empirical distribution. The data consisted of
measurements for two months, September and October 2008 and was taken from the Swedish train
delay statistics database, TFOR, Lindfeldt [29]. Extreme data points where trains had been more
than 1000 minutes early or late were omitted. The cleaned data can be seen in Figure 5 where it
has been mapped as a discrete cumulative probability density function. Positive values present
delays while negative values show early arrivals. The variations were sampled from this density

function.
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Figure 5: The number of trains and C.D.F for the variation in arrival times, Lindfeldt [29]. A
negative value means the train was early and a positive value that it was late.

3.5.2 Random delay generation

In stochastic simulations, for each single arrival train a random number between 0 and 1 was
generated. This random number represents the probability of the occurrence of a specific arrival
delay; considering the cumulative density function (Figure 5) the corresponded delay was then
extracted from the distribution. Note that delays from the empirical distribution are discrete data
with 1 minute interval; therefore the interpolated delays have been rounded down to the nearest
integer number. This implies that if a train suffered less than 1 minute delay, then no delays has

been assigned to it.

3.5.3 Stochastic roll-in times
As the roll-in times are different from the arrival times further processing was needed to deduce

the effect the delays had on the roll-in events. Most arriving trains had some buffer time on the
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arrival yard, i.e. they were parked on the arrival yard longer than what was needed for all
necessary preparation work. If the sampled delay was shorter than this buffer time, no delay was
added to the roll-in time. However, if the delay was longer than the buffer time, the excess delay
was added to the roll-in time. Once all roll-in times had been updated to take the sampled delays
into consideration, the event list was resorted such that the events were once again in time order.
Finally, a sweep algorithm was used to make sure there was enough time between roll-in and pull-
back events for all necessary engine movements. When there were events with too little time in-
between, the later event was simply moved back to make space for the earlier event. If needed the
delay was further propagated to even later events. Note that this method does not guarantee that
there is enough capacity on the arrival yard for the trains to spend a prolonged period of time there,

and that therefore the delays might cause capacity shortage on the arrival yard.

Early arrivals have not been considered. The simulation focuses on the track allocation in the
classification yard, and therefore does not model the tracks in the arrival yard. Rather, it relies on
the roll-in schedule to be given as an input. An early arrival will only affect the roll-in times if
there is not enough capacity on the arrival yard for the early train to be parked there longer. As the
simulation ignores the arrival yard it is not clear if there is a lack of capacity in the arrival yard,

and hence it cannot tell how early arrivals affect the roll-in times.

3.5.4 Stochasticity implementation in the optimization model
The deterministic results from the optimization model include a specific reservation time for each
classification track [2,3,4]. This means that a specific track is reserved for a specific train; and the

times of the start and end of the reservation period have been determined.

To evaluate the solution of the optimization in case of stochastic arrivals, these reservation
periods are given to the simulation model. When a car group rolls over the hump, if the time of the
roll-in is within the reservation time for the assigned classification track then the car group is
rolled to the assigned classification track; otherwise it is rolled to the mixing track. The former can

happen in case of delays.

3.6 Outputs

Several output variables were selected to evaluate the different planning strategies. As mentioned
before, cars can miss their assigned trains. This is a planning failure, and therefore the number of
missed cars is a reasonable measure of a strategy’s aptness. A desired planning strategy should
have no or few missed cars. A car that has missed its departure train can be considered as late, so
the number of missed cars can also be used as a measure of transportation delay. Further, the
mixing tracks have a predefined capacity, and planning strategies that use more mixing capacity

than available are clearly not feasible. Finally, the number of cars being pulled back (car pull-
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backs) was counted as an efficiency measure. Lin ef al. [18] also considered the percentage of

missed cars and pull-back process time as typical performance measures.

The generated schedule will be visualized in a Gantt chart, by the help of an existing
visualization code provided by SICS. A snapshot of the output is shown in Figure 6 . The x-axis
represents time and the y-axis shows the tracks of the arrival, classification and departure yards. If
the user clicks on a train, all events relevant to that train will be shown by lines. For example, in
Figure 6, the blue train with number 17030 on track 12 has been chosen. The blue lines represent
roll-ins of car groups going straight to train 17030, while red lines represent car groups that require
mixing. The black line shows the roll-out of train 17030. The numbers written in the textboxes on

the arrows show the number of cars.

Focusing on the mixing track in Figure 6, the x-axis represents time and the y-axis shows the
length of the car groups. The dotted red line shows the maximum capacity of the mixing tracks. If
the total length of the cars in mixing exceeds the red line then the marshalling solution is infeasible

and more mixing track capacity is required.

3.7 Validation

The model has been validated by following the simulation, step by step and controlling whether
the implemented rules have been followed. Further, the feasibility of the results and solutions has
been considered. Track allocation has been demonstrated using a Gantt chart as described in the

previous section.
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4 Findings and discussions

4.1 Deterministic results
The allocation generated by the optimizing method in Bohlin ez al. [4] will always be feasible and

never miss any cars in the deterministic simulation. Therefore these results are omitted in this section.

First of all it is important to realize that car groups with a departure time that is earlier than the
next pull-back time will miss their assigned trains if they are sent to mixing (as they will be stuck on
the mixing track until the next pull-back event). Here such cars are called urgent cars. In the time
limit strategy a time limit is introduced to prevent early arriving cars from occupying a classification
track during the long wait for their trains’ departure times. The aim was to free up space for trains that
have prompt departure times, and thereby minimize the risk of sending urgent cars to mixing tracks.
However, if the time limit is too restrictive urgent cars might be forced to the mixing tracks by the
time limit. Therefore finding a suitable time limit is important. Further, as more and more of a train’s
cars ought to be rolled in as we get closer to its departure time, prioritizing trains with prompt

departure times should limit the mixing track usage.

In Figure 7 the effects of the different time limits are clearly visible; a time limit of 28 hours is too
restrictive while a time limit of 40 hours is not restrictive enough. 32 hours seems to be one of the best
limits as it produces an infeasible allocation in only one period, and has a low percentage of missed
cars. Due to the reasons stated above, it is not surprising that the first come-first served strategy
misses a lot of car groups compared to the time limit strategies. However, it is worth noticing that for
generating feasible allocations, i.e. schedules that use less than the available mixing capacity, a too

restrictive time limit is worse than having no time limit at all.
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Figure 7: Left: The average percentage of missed car groups in the deterministic simulation for the
FCFS strategy and the time limit strategy with time limits from 26 to 40 hours. Error bars
show the standard deviation. Right: The number of periods (out of 21) for the deterministic
simulation where the strategies generated infeasible allocations.

In Figure 8 the average number of car pull-backs in the deterministic simulation is presented for the

different planning methods. As can be seen the optimized schedule out-performs the other strategies
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when it comes to minimizing the number of car pull-backs. Further, although the maximum mixing
track usage seems to be limited by setting an appropriate time limit (see Figure 7), the average
number of car pull-backs decreases as the time limit is increased. This is expected as the less
restrictive time limits should send fewer cars to mixing on a general basis. The corresponding data in

more detail is presented in Table 5.
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Figure 8: The average number of car pull-backs for the different planning methods in the deterministic
simulation.

Table 5: Averages of deterministic results over all periods for all alternatives with the corresponding
standard deviations

. . Avg No. Ave NO' No. infeasible  S.D %missed 5.D No.
Strategies % missed  car pull- Infeasible . car pull

backs schedules periods cars backs

Opt 0.00 66 0.00 0 0.00 64.68
FCFS 0.55 201 0.14 3 0.44 150.00
TL 26 0.47 571 0.29 6 0.60 236.04
TL 28 0.47 481 0.33 7 0.50 207.77
TL 30 0.32 406 0.14 3 0.37 184.39
TL 32 0.29 346 0.05 1 0.31 169.49
TL 34 0.33 310 0.05 1 0.38 165.26
TL 36 0.30 270 0.10 2 0.26 166.00
TL 38 0.34 251 0.10 2 0.27 157.18
TL 40 0.38 235 0.14 3 0.34 154.16

Table 6 shows more detailed information of the results from each strategy. Deterministic results from
FCFS strategy have been presented for instance; the similar output table for each of the other

mentioned strategies has been generated presented in Appendix A.
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4.2 Stochastic results

When the arrival times are varied it is harder to produce a schedule with no missed cars. In fact, due
to delays some cars were rolled in later than their departure times, making it impossible not to miss
them. In Figure 9 these results are clearly visible. However, it is worth noticing that when it comes to
cars that did not arrive after their departure time, all methods missed approximately the same
percentage of cars in the deterministic and stochastic runs. Most notably, the optimized allocation

does not miss any cars that arrive early enough to catch their assigned trains.

As can be seen in Figure 9 the stochastic simulations resulted in an increased number of periods
where at least one infeasible allocation was generated for the online strategies, while the optimized
allocations are still always feasible. Further, the stochastic arrival times seem to have decreased the
average number of car pull-backs slightly (see Figure 8 and Figure 10). This might be due to the cars
spending less time in the classification yard, but is probably also an effect of missed car groups being
removed from the simulation. If we were to keep missed cars on the mixing tracks, the average

number of car pull-backs would increase for the stochastic simulation.
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Figure 9: Left: The average percentage of missed cars for the stochastic simulation for all planning
methods. Error bars show the standard deviation. Right: The number of periods (out of 21)
for the stochastic simulation where at least one of the simulation runs resulted in an
infeasible allocation being generated.

900
800
700
600
500
400 -
300 -
200 -
100

0 -

Averave number of car pull-
backs

TL | TL | TL | TL | TL | TL | TL | TL

Opt |FCES 26 [ 28 | 30 | 32 | 34 | 36 | 38 | 40

|Avg 65 | 193 | 568 | 475 | 400 | 342 | 304 | 264 | 247 | 226

Figure 10: The average number of car pull-backs for the different planning methods in the stochastic
simulation.
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The corresponding data is presented in more detail in Table 7. As presented, the percentage of missed
cars that arrived later than the departure time is the same for all the alternatives; this is due to applying
the same random seed in the simulations of the different alternatives so that the results can easily be

compared.

Table 7: Averages of stochastic results over all periods for all alternatives with the corresponding
standard deviations

Strategie % .% Avg No. Infeasible . NOI S.D % S.D No. car
s missed missed car pull- schedules 1nfegs1ble TOTAL pull-backs
late backs periods missed cars
Opt 0.00 0.74 65 0.00 0 0.47 62.71
FCFS 0.50 0.74 193 15.00 8 0.64 145.28
TL 26 0.47 0.74 568 28.19 21 0.72 227.73
TL 28 0.46 0.74 475 28.52 9 0.66 197.69
TL 30 0.31 0.74 400 14.05 8 0.57 178.20
TL 32 0.28 0.74 342 6.14 6 0.54 163.88
TL 34 0.29 0.74 304 6.67 8 0.59 157.91
TL 36 0.30 0.74 264 10.10 7 0.55 156.50
TL 38 0.35 0.74 247 10.33 8 0.56 153.67
TL 40 0.39 0.74 226 12.71 8 0.59 148.85

Table 8 shows more detailed information of the results from each alternative. Stochastic results from
FCFS strategy have been presented for instance; the similar output table for each of the other

mentioned strategies has been generated and presented in Appendix B.
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4.3 Statistical evaluations

In a long run of stochastic simulation, the percentage of the number of missed cars would have a
distribution. The parameters of this distributions are not known; hence for sufficiently large sample
size (more than 30 samples is considered large), it is assumed that the distribution is normal and the
standard deviation of the sample represents the standard deviation of the population. A sample from

results also confirms that the distribution can be assumed as normal, Figure 11.
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Figure 11: Distribution of the percentage of the missed cars, from the stochastic simulation for TL 40

Therefore normal statistical test (Z- test) can be applied to determine the confidence intervals.

According to the Z-test the sample mean should be within the confidence interval.

— o —
s —<u<X+7Z

n

*

B

NI

Where:
u: is the mean of the population
a : Error interval, here a = 0.05

Za : for 0.025 equals to 1.96
2

o : Standard deviation of the population
X : Point estimate of the population mean
n : Number of samples

The schematic confidence interval for 95 % has been illustrated in Figure 12. The upper and lower

values for the confidence interval have been calculated for all strategies and as can be interpreted
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from Table 9, the averages of the percentage of missed cars over 2100 stochastic results (100 results

for each period) are not significantly different from the deterministic results.

95%

-1.96 5D mean +1.96 50D

Figure 12: Illustration of confidence interval in normal distribution

Table 9: Normal statistical test for average percentage of missed cars

s Standard Acceptable Acceptable .
Deterministic . . upper range  Stochastic
. o Deviation lower range in . o o
Strategies  average % o in 95% average %
. from 95% confidence .
missed cars . . confidence  missed cars
stochastic interval .
interval
Opt 0.000 0.474 -0.093 0.093 0.000
FCFS 0.554 0.643 0.428 0.681 0.503
TL 26 0.471 0.723 0.329 0.612 0.468
TL 28 0.472 0.658 0.343 0.601 0.457
TL 30 0.323 0.573 0.210 0.435 0314
TL 32 0.292 0.543 0.186 0.399 0.284
TL 34 0.329 0.585 0.214 0.443 0.290
TL 36 0.297 0.545 0.190 0.404 0.296
TL 38 0.338 0.562 0.228 0.448 0.349
TL 40 0.378 0.593 0.262 0.494 0.386

4.4 Final comments

More investigations of the input data and the results show that if the total number of arrival cars is
higher than that in a normal week, it does not necessarily mean that the yard planning becomes harder.
This can be clarified more by considering an example. In the deterministic results for FCFS strategy,
week 18 with total 1100 cars has only 0.36% of missed cars while week 16 with fewer number of cars
(940) has more percentage of missed cars 1.28%, see Table 6. This implies that there are other
variables other than the total number of cars, for example the duration of cars stay at yard, which also
can affect the capacity; Cars that their departure and arrival times are too close (less than two hours)

and cars that their departure and arrival times are relatively far and they have to stay at yard for long
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hours will also affect the capacity at yard. In brief, the mixture of cars that need classification and the

time table of arrivals and departures can define the hardness of the planning problem.

In the time limit strategy as the limit is more restrictive it keeps sending most of the cars to the
mixing track which makes the capacity of the mixing tracks often insufficient. On the other hand if
the time-limit is too free, more than 40 hours, there would be no or only few cars that their departure
time is more than the time-limit and therefore only few cars will be sent to mixing tracks. In this
situation the time-limit strategy will work as FCFS strategy and gives the priority to the cars which
roll in first and in free time-limits the capacity of mixing tracks cannot be utilized optimally.
Considering all the discussions here, it is expected that the optimal time-limit would be between 24
and 40 hours and further analysis also proved that. Considering the input data, a time limit of 32 hours
is the best. More investigations of the input data could not reveal any systematic pattern or

dependence between train’s departure/arrival times and time-limit of 32 hours, also see Figure 4.

Simulation model in this study has been developed and evaluated specifically for Hallsberg
marshalling yard but it can easily be applied on any other hump yard that uses booking systems. It
should be noted that yard information and the duration of each task at each yard should be updated

accordingly.

The model is highly sensitive to the number and time of the pull-back events. Therefore in the
interpretations of the results, the number of pull backs should be considered. As explained in Method
and model components section, in this study the time and the number of pull-backs have been given to

the model as inputs from the heuristics described in [2,3,4].
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5 Conclusion and further suggestions

In this study two simple online planning strategies were compared with an offline optimized
classification track allocation. The Hallsberg marshalling yard in Sweden was used as a case study,
and two simulations, one deterministic and one stochastic, were applied to compare different
strategies. The deterministic simulation showed that the time limit strategy with 32 hours was the best
online method with only one infeasible allocation and 0.29% missed cars on average. However, the

optimized schedule never missed any cars nor produced infeasible allocations. Further, the optimized
allocation minimized the number of extra car roll-ins, and used approximately S of the car roll-ins

needed by the 32 hour time limit strategy. During the stochastic simulation runs, all methods missed
more cars compared to the deterministic results. However, the majority of these cars were so late that
they were rolled into the classification yard after their assigned trains had departed. Notably, the
optimized allocation missed no cars but from the ones that were rolled in later than their departure
time. Further, the number of periods resulting in infeasible allocations increased for the online
methods, while the optimized allocations remained feasible in all runs. The average number of car
pull-backs was reduced when stochastic arrival times were used. However, this might change if the
missed cars were to remain on the mixing tracks rather than being removed from the simulation when

their trains depart.

This study presented some of the most basic planning strategies for allocating tracks in a
classification yard. One of the draw-backs of the time limit strategy is that when short time limits are
implemented cars are sometimes sent to mixing tracks even though there is no pull-back event before
their departure time. Including pull-backs in the strategy would hence be an interesting further
development. In addition, some initial offline analysis of train lengths and expected arrival times
might further improve the strategies. Comparing the results with real planning data, and making more
in-depth interviews with the planning staff, would also allow us to develop and adapt the online

strategies.

Finally, looking at simple rules for planning the hump schedule and arrival and departure yards

would be a good complement to this thesis.
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