- 1.3. If levels 1 and 2 in Fig. 1.1 are separated by an energy $E_2 E_1$ such that the corresponding transition frequency falls in the middle of the visible range, calculate the ratio of the populations of the two levels in thermal equilibrium at room temperature.
- 1.4. In thermal equilibrium at T = 300 K, the ratio of level populations N₂/N₁ for some particular pair of levels is given by 1/e. Calculate the frequency ν for this transition. In what region of the em spectrum does this frequency fall?
- **1.5.** A laser cavity consists of two mirrors with reflectivities $R_1 = 1$ and $R_2 = 0.5$, while the internal loss per pass is $L_i = 1\%$. Calculate total logarithmic losses per pass. If the length of the active material is l = 7.5 cm and the transition cross section is $\sigma = 2.8 \times 10^{-19}$ cm², calculate the threshold inversion.
- 1.6. The beam from a ruby laser ($\lambda \cong 694$ nm) is sent to the moon after passing through a telescope of 1-m diameter. Calculate the approximate value of beam diameter on the moon assuming that the beam has perfect spatial coherence. (The distance between earth and moon is approximately 384,000 km.)
- 1.7. The brightness of probably the brightest lamp so far available (PEK Labs type $107/109^{TM}$, excited by 100 W of electrical power) is about 95 W/cm²sr in its most intense green line ($\lambda = 546$ nm). Compare this brightness with that of a 1-W argon laser ($\lambda = 514.5$ nm), which can be assumed to be diffraction-limited.
- **2.3.** For blackbody radiation find the maximum of ρ_{λ} versus λ . Show in this way that the wavelength λ_M at which the maximum occurs satisfies the relationship $\lambda_M T = hc/ky$ (Wien's law), where the quantity y satisfies the equation $5[1 \exp(-y)] = y$. From this equation find an approximate value of y.
- 2.7. The neon laser transition at $\lambda = 1.15 \, \mu \text{m}$ is predominantly Doppler broadened to $\Delta v_0^* = 9 \times 10^8 \, \text{Hz}$. The upper state lifetime is $\approx 10^{-7} \, \text{s}$. Calculate the peak cross section assuming that the laser transition lifetime is equal to the upper state lifetime.

Example 2.1. Estimate of τ_{sp} and A for electric-dipoleallowed-and-forbidden transitions. For an electric-dipoleallowed transition at a frequency corresponding to the middle of the visible range, an estimate on the order of magnitude of A is obtained from Eq. (2.3.19) by substituting the values $\lambda = c/v = 500$ nm and $|\mu| \approx ea$, where a is the atomic radius ($a \approx 0.1 \text{ nm}$). We therefore obtain $A \cong 10^8 \text{ s}^{-1}$ (i.e., $\tau_{sp} \cong 10 \text{ ns}$). For magnetic dipole transitions A is approximately 105 times smaller, and therefore $\tau_{sp} \approx 1$ ms. Note: According to Eq. (2.3.19), A increases as the cube of the frequency, so that the importance of spontaneous emmission increases rapidly with frequency. In fact spontaneous emission is often negligible in the middle- to far-infrared where nonradiative decay usually dominates. On the other hand when we consider the x-ray region (say, $\lambda \le 5$ nm), τ_{sp} becomes exceedingly short (10-100 fs), which constitutes a major problem for achieving a population inversion in x-ray

Example 2.4. Natural linewidth of an allowed transition. As a representative example, we can find an order of magnitude estimate for Δv_{nat} for an electric-dipole-allowed transition. Assuming |v| = ea with $a \cong 0.1$ nm and $\lambda = 500$ nm (green light), we found in Example 2.1 that $\tau_{sp} \cong 10$ ns. From Eq. (2.5.13) we then obtain $\Delta v_{nat} \cong 16$ MHz. Note that Δv_{nat} , just as $A = 1/\tau_{sp}$, is expected to increase with frequency as v_0^3 . Therefore natural linewidth increases very rapidly for transitions at shorter wavelengths (to the uv or x-ray region).