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Outline

• Optical waveguides – integrated optics

• Nonlinear integrated optics

• Introduction to parametric devices

• Optical parametric oscillators
• Singly resonant OPOs vs. doubly resonant OPOs
• Practical examples

• Summary
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Planar Waveguides: Overview

• Similar function as optical fibers
• Easily fabricated on substrates with a mask

Image from NTT-AT (http://www.keytech.ntt-at.co.jp/optic2/prd_e0015.html)
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Uses for planar waveguides

• Routing Light
• Devices

Modulators
Splitters
Erbium Doped Planar Waveguide Amplifiers (EDWA) 
Resonators

http://www.ee.ic.ac.uk/optical/Optics.htmlhttp://www.netzartfedorov.com/clients/nanonics/newnanon/text-industry.html
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Couplers – grating devices - integration
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Maxwells Equations in Slab Waveguide

• Maxwell’s Equations

• Simplifications
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TE and TM modes

• Dispersion Curves
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Waveguide vs. Bulk for NLO

+ Waveguides provide high confinement and long interaction length – high efficiency 
+ Fibers can be connected to the waveguide to provide robust sources
- Additional fabrication steps to create a good waveguide
- Power handling issues

SHG conversion efficiency for 
confocal focusing in the bulk 

Conversion efficiency for 
SHG in waveguide

Normally 10 to 1000 X improvement in 
efficiency with waveguide vs. bulk
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Why optical parametric devices? 

• Very wide continuous tuning from a single device, 
via tuning of the phase-match condition

• High efficiency

• No heat input to the nonlinear medium

• No analogue of spatial-hole-burning as in a laser, 
hence simplified single-frequency operation

• Very high gain capability

• Very large bandwidth capability
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Oscillator
(OPO) (2)

Nonlinear processes –
optical parametric devices

Pump
Idler
Signal(2)

Generator
(OPG)

Seed

Amplifier
(OPA)

(2)
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Optical parametric oscillation (OPO)

Idler
Pump
Signal

Singel or double resonant OPO
(SRO or DRO)

Pump

Signal and/or idler
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The Optical Parametric Oscillator

Pump
kpks

ki

Rp,s,iRs,i

Add feedback to OPG OPO

Three basic types of OPO depending on feedback:
SRO - resonant signal or idler

DRO - resonant signal and idler

TRO - resonant signal, idler, and pump

pump power 
at threshold

stabilization 
requirements

practical 
interest

spectral 
quality
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Manley-Rowe relations
Integrals of the coupled equations 

n3|E3(z)|2/ω3 + n2|E2(z)|2/ω2 = const

n3|E3(z)|2/ω3 + n1|E1(z)|2/ω1 = const

n2|E2(z)|2/ω2 – n1|E1(z)|2/ω1 = const

Number of pump photons annihilated in the NL medium equals 
the number of signal photons created, 
which also equals the number of idler photons created

Imply

n3|E3(z)|2 + n2|E2(z)|2 + n1|E1(z)|2 = const
i.e. conservation of power flow in propagation direction



14

The resonance condition

DRO is an over-constrained system, 
where energy conservation, 
cavity resonance and phase matching
have to be satisfied at the same time.
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The OPO threshold      

If ∆k = 0 ,  threshold condition  
(assuming pump, signal & idler phases Φ3 – Φ2 – Φ1 = - /2 at input to crystal)
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reflectance  R1 (idler), R2 (signal)

Threshold → round-trip gain = round-trip loss
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OPO threshold:  SRO vs DRO
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Advantage of DRO is low threshold:

Example:

DRO with R1 = 98%

If 1- R1,2 << 1

SROthreshold
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g

g



17

Stability: 
comparison of SRO and DRO

SRO: No idler input.  Gain does not depend on pump/signal relative phase.
Signal frequency free to choose a cavity resonance;
Idler free to take up appropriate frequency and phase. Signal frequency 
stability depends on cavity stability and pump frequency stability.

DRO: Cavity resonance for both signal & idler generally not achieved; 
Overconstrained
Signal/idler pair seeks compromise between cavity resonance and 
phase-mismatch;
large frequency fluctuations
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Parametric gain
Plane-wave, phase-matched

If gain is small, (gL << 1) ,  gain increment is

Note:   incremental gain proportional to pump intensity

~ proportional to ω3
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Optical parametric amplification (OPA)

Assume: high signal gain g >>k/2
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Typical OPO conversion efficiencies

Normally high conversion efficiency 
(>50%) obtained at 2-3x threshold

Initial slope efficiency >100% typical

Pumping appr. 3-4 x threshold
results in reduced efficiency 
back-conversion of signal/idler to pump

Unlike lasers, OPOs do not have competing
pathways for loss of pump energy

(ps is normalised pump threshold intensity)

Rosencher & Fabre, JOSA B, 19, 1107, 2002
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Quasi-phase matching for OPOs

+ Noncritical interaction
+ Longer interaction length
+ Engineerable spectral output
+ Accessing the highest (2) over the 

entire transparency region
− Additional processing step (= cost)
− deff =2/d33
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OPO configurations

Advantages with 
nanosecond QPM-OPOs

Low threshold

Increased interaction 
length

Spatial filtering => 
better M2 than the 
pump.

Easy tunability
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Quasi-Phase-Matching
OPO Tuning Techniques  

Temperature tuning

Multigrating structures

Fanned grating

Non-collinear configuration 
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Pump laser: (Mitsubishi Electric Corporation)
Diode pumped, Q-switched, Nd:YAG laser
frep. rate = 15 kpps, 60 kHz,  = 40 ns (FWHM), M2 = 1.1

60 mm

20 mm

w0 = 0.25 mm

R = 35 %, signal+idler
R = 100 %, pump
ROC = -2 m

R = 99 %, signal+idler
AR for pump
Flat
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R = 64 %, signal, 10 kHz
R = 64 %, signal, 20 kHz
Conversion efficiency
20kHz = 28 %
10kHz = 28 %
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Intracavity CW-SRO

• 50 mm PPLN, w=70 µm
• M2 – HR for pump
• M2 - M3 – Hi-Q cavity for signal

[D.J.M. Stothard etal Opt. Lett 23, 1895 (1998) ]
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Tuning singly-resonant OPOs

Noncollinear interaction
+ Wider tuning range
+ Fast tuning
+ Separable signal, idler 

and pump beams
+ Truly singly resonant
+ Reduces back-conversion
+ Single period grating
– Shorter interaction length

Manipulating the QPM-crystal

• Temperature

• Multigrating structures

• Fanned gratings

• Rotation

• Noncollinear interaction
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The pump laser
Nd:YAG,   6 ns, 10 Hz, M2 = 1.1

The PPKTP sample 2.1 mm diameter,  = 35.0 m
poled area 10 by 10 mm2, thickness 0.5 mm, 

= 17.3%, 
at  = 26°. 
Etot =  74 J
Epump =  430 J

Widely tunable OPO with circular PPKTP 
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Volume Bragg gratings

Optical
•

•

•

Material
• Period, 
• Thickness, d
• Strength, n1

• Narrowband reflection peak
• Performance can be tailored to suit needs
• Made in durable and cheap glass
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Cavity element – volume Bragg grating
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 = 0.16 nm (50 GHz) @ 975nm

 = 3.0 nm (950 GHz) @ 975nm

conventional mirror 150 nm 
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Narrowband OPO at 975 nm

spectrum

0.4 mJ signal 
limited by pump
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Angle tuning 

tuning spectra
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Angle tuning improved 

tuning spectra
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OPO with transversely chirped 
Bragg grating

tuning spectra
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Linewidth narrowing - OPO 

• Conventional techniques1

• Folded cavity with grating 
• Inserting etalon 
– Increased cavity length
– Higher thresholds

1. S. Brosnan and R.L. Byer, IEEE J. Quantum Electron. 15, 415 (1979)
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Tools for NLO 

SNLO . Public Domain Software for non-linear optics
http://www.sandia.gov/imrl/XWEB1128/xxtal.htm

SNLO – a public domain software
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OPO with focussed Gaussian beam.

• Seminal paper:

‘Parametric interaction of focussed Gaussian light beams’
Boyd and Kleinman, J. Appl. Phys. 39, 3597, (1968)

• Extension to non-degenerate OPO. 
Relates treatments for plane-wave, collimated Gaussian and  
focussed Gaussian:
‘Focussing dependence of the efficiency of a singly resonant OPO’

Guha, Appl. Phys. B, 66, 663, (1998)
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Summary: Attractions of OPOs

• Very wide continuous tuning from a single device, 
via tuning the phase-match condition

• High efficiency

• No heat input to the nonlinear medium

• No analogue of spatial-hole-burning as in a laser, 
hence simplified single-frequency operation

• Very high gain capability

• Very large bandwidth capability


