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Abstract 
 
In this Master of Science thesis, I will discuss the construction of an Erbium-doped 
fibre ring-laser that emits in the spectral range of 1530 nm. Experimentally, two set-
ups have been investigated and are briefly compared, i.e., forward and backward 
propagation of the laser beam in the ring. Both theoretical and experimental work has 
been carried out in this project. In the thesis, I give an overview of fibre ring-lasers 
and their characteristics. The work has included measurements of the group-velocity 
dispersion and numerical calculations of the non-linear Schrödinger equation. Key 
parameters (i.e., gain coefficient, dispersion, etc.) were varied in order to observe the 
differences in the operation of such lasers. During the time of this relatively brief 
project, no stable pulse operation could be obtained from the present set-ups. 
However, from the experimental know-how obtained during the project period and the 
numerical calculations carried out, this negative result can be explained.    
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Introduction  
 
Passive mode locking is a powerful technique for ultrashort pulse generation in dye 
and solid-state lasers. One of the first techniques for passive mode locking was to use 
a dye saturable absorber, where the peak intensity and saturable absorber action 
increases as the pulse is shortened. In comparison, active mode locking is extremely 
sensitive to the imposed modulation frequency (that is usually driven with an 
externally electronic circuit) and the intermode frequency interval of the cavity 
(c/2Lcavity) and therefore makes it very difficult to establish subpicosecond regimes 
with just a single active locking procedure. The modulator response speed is limited 
by the driving electronics and is independent of the pulse duration. New techniques 
for passive mode locking have been developed, such as self-mode locking, discovered 
in 1991 by Sibbett et al. [1], also referred to as Kerr lens mode locking (KLM) and 
interferometric or additive pulse mode locking (APM). Mollenauer and Stolen first 
used the APM mechanism in a soliton laser in 1984, [2]. KLM and APM rely on the 
intensity dependent non-linear refractive index properties (n = n0 + n2|E|2) of the 
crystals or fibres used, to achieve a saturable-absorber-like action. These new 
techniques laid the ground for developing a versatile third generation femtosecond 
laser technology with broadly tunable solid-state laser materials.  
In contrast to mode locking with saturable absorbers based on dyes/semiconductors, 
APM and KLM do not rely on population excitation and thus can simulate an 
extremely fast and broadband saturable absorber action. Saturable absorber dyes have 
some drawbacks such as high insertion loss and a slow recovery time and, as a 
consequence their use has been limited for femtosecond generation.  
 
KLM achieves fast saturable absorber action using self-focusing; this is due to the 
non-linear refractive index n2. The Gaussian wave does not feel a homogeneous 
refractive index as it passes through the medium. The refraction is stronger on the axis 
of the beam than away from it, as a consequence the medium acts like a converging 
lens and focuses the beam just like a lens (Kerr lens). The Kerr lens effect has been 
known for a long time in non-linear optics, but was first used for mode locking in 
1991 by Sibbett et al. in a Ti:sapphire laser. By adjusting the position of the crystal 
and using the focusing mirrors in the cavity, the Kerr effect causes the most intense 
parts of the wave to experience lower losses, which manifests itself as a stable 
condition for the cavity. The lower intensities are suppressed because these are 
subject to higher losses than the more intense part. Thus, KLM plays a part similar to 
that of saturable absorber in the passive mode locking method and indeed self-mode 
locking of the modes arises after some initial perturbation, e.g. with some tapping on 
the table.  
 
The soliton laser made by Mollenauer and Stolen in 1984 was a coupled-cavity mode 
locked (CCM) laser. The main oscillator was an alkali halide cavity, synchronously 
pumped by an actively mode-locked krypton-ion laser. This main cavity was coupled 
through a 50% beam splitter to an external cavity that contained an optical fibre that 
had negative group velocity dispersion (GVD). The soliton laser achieved 
femtosecond pulse generation by using nonlinear optical feedback from the optical 
fibre in the external cavity. The non-linear phase shift of the fibre is an effect of self-
phase modulation (SPM) and when the fibre pulse is recombined with the pulse in the 
master cavity leads to constructive interference near the peak of the pulse, while the 
wings of the pulse experience destructive interference. SPM is also connected to the 
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non-linear refractive index n2 and is a phenomenon that leads to spectral broadening 
of optical pulses. Thus, APM can also be viewed as a fast saturable absorber. The 
CCM lasers are not very robust, the interference conditions must be continuously 
monitored and coupling into fibre is delicate.  
 
Development into all-fibre laser systems using polarization APM has been reported 
both for soliton and non-solition lasers, [3], [4], respectively. Interest in all-fibre laser 
systems has increased because of the development in optical communication. It is an 
inexpensive compact source for generating ultrashort pulses and relative easy to set 
up.The solition laser, at high power levels the pulses exhibit dramatic changes in their 
shape and develop multipeak structure. The sensitive nature of soliton pulses limits it 
use for high-energy applications. However, stretched pulse from polarization APM 
fibre ring lasers have caught the attention, because of their ability to generate high-
energy pulses comparable to color-center lasers. The stretched pulse laser is an all-
fibre ring laser with two parts; one has positive dispersion and the other negative 
dispersion. The net dispersion of the cavity is slightly positive and is therefore able to 
work in the non-soliton regime. Theoretical models have been developed for pulse 
evolution in lasers that uses the effects of APM and KLM, [5].  
 
The objective of this dissertation was to build a fibre ring laser as a part of my MSc. 
degree in Engineering Physics at the Royal Institute of Technology in Sweden. As the 
work started it grew to include a numerical model of the fibre ring laser and 
experimental measurements of the GVD. The built polarisation-rotation APM fibre 
ring laser will be used as a pump source for low threshold “chirped-crystal” optical 
parametric oscillation experiments to generate pulses with wavelengths in the 3 µm 
region. The parametric downconversion is possible with a highly positively chirped 
pump pulse (the fibre ring laser) incident on the crystal (which is aperiodically poled). 
It will also be used for two-photon microscopy of semiconductors.       
 
The outline for the dissertation is as follows: first a numerical model of stretched 
pulse in the polarization APM fibre ring laser will be described in the first chapter. I 
will explain the mathematics and approximations that have been made in the model. 
Numerical simulation is only a tool to gain physical insight of the laser system and 
will be used as comparison between theory and experiment. The second chapter 
contains measurement and theory on GVD experiment. GVD is critical parameter for 
stretched pulse generation in the fibre ring laser and will be explained under this 
section; Third chapter will illustrate the experimental set-up of the fibre ring laser and 
tricks of the trade down to experimental result. 
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1 Numerical calculation 
 
In telecommunications today, the silica glass fibre is the most used transmission 
medium for long- and short-distance communication. Propagation of optical fields 
within the fibres is governed by the Maxwell’s equations, given by, [13]: 
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where E and H are electric field and magnetic field vectors, respectively. D and B are 
the related electric and magnetic flux densities. In a fibre the current density vector, Jf, 
is zero and also the charge density, ρf. D and B are related to E and H through the 
relations: 
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The flux densities are a consequence of the response of the dielectric, in the case the 
fibre. Thus, there is no magnetic polarisation, M=0. From equations (1.1) (by taking 
the curl), (1.5), (1.6) and the mathematical relation: 
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we obtain the well known wave equation: 
 

),,,,(),,,(1
2

2

02

2

2
2 tzyxP

t
tzyxE

tc ∂
∂=








∂
∂−∇ µ    (1.8) 

 
If the electric field is only manifested as a perturbation of the ground state of the 
material we can expand the macroscopic polarisation vector of a medium in a Taylor 
series so that the distinction between linear and non-linear regimes can be clearly 
shown, [7]: 
 

EP ⋅= )1(
0 (χε  Linear optics: refractive index, absorption 

EE⋅+ )2(χ  Nonlinear optics: 2nd-harmonic generation, parametric 
effects  

EEE⋅+ )3(χ  3rd-harmonic generation, non-linear index 
...)+         (1.9)  
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The second order susceptibility, χ(2), is only nonzero if the dielectric lacks inversion 
symmetry in their atomic/molecular crystal structure. Since silica, Si02, has an 
amorphous structure χ(2) vanishes. Thus, the lowest-order non-linear effect in a 
centrosymmetric medium is the third-order susceptibility, χ(3), which is responsible 
for self-phase modulation, self-focusing, saturable gain and saturable absorption. 
Higher-order effects will not be considered here. The most important effect in optical 
fibres is the intensity dependent complex dielectricity constant, [6]. 
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The second terms in equation (1.11) and (1.12) are a consequence of the third-order 
coefficient in the Taylor expansion of the polarisation vector, equation (1.9). Where 
n2 ∝  Re[χ(3)] is the non-linear refractive index and α2 ∝  Im[χ(3)] is the two-photon 
absorption coefficient. Since α2 is relatively small for silica fibre compared to α 
(absorption), it is taken to be zero. Further, n (refractive index) and α are the real and 
imaginary part of the first-order susceptibility, χ(1), which corresponds to the linear 
optics stated in equation (1.9). If only one pulse is incident on the sample the 
corresponding polarisation, assuming an instantaneous response, can be written, [8]: 
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where ωl is the centre frequency. The second term with 3ωl in the exponential 
describes third harmonic generation, but in many optical materials this process is not 
effective and will not be considered. From equation (1.11) it can be shown that: 
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The real part of equation (1.10) is then the linear and the non-linear refractive index, 
while the imaginary part is only the linear absorption. The intensity dependence of n~ 
implies refractive index varying in time and space. When an applied electric field is 
strong enough the electronic cloud of an atom or a molecule is strongly distorted. This 
happens when the mean electrostatic energy of the field 1/2ε0χ(3)<E⋅E>E⋅V (V being 
the interaction volume) becomes comparable to the energy of the electronic states. 
This leads to different effects, such as self-phase modulation (SPM), a phenomenal 
that leads to spectral broadening of optical pulses. SPM is the temporal analogue of 
the spatial self-focusing effect (Kerr lens), explained in the Introduction. 
The effect of non-linear propagation of a light pulse is a complex problem that needs 
numerical solutions. To get a feeling for SPM and the Kerr effect, a short simplified 
explanation will be given here. 
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Kerr lens Effect 
 
We start with the spatial dependence of the light intensity and by assuming a Gaussian 
laser beam in a χ(3) material. The Gaussian function describes the intensity 
distribution with its shape parameter w. In this case equation (11) becomes: 
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When this beam propagates through a χ(3) material, the index change follows the 
intensity along the Gaussian function I(r). The beam will feel a higher refractive index 
at r=0 than in its wings and while propagating the optical path lengths will differ from 
the centre of the beam and its wings. Assuming that n2>0 it will act as a positive lens 
and focus a collimated beam. When a pulse propagates through a thick material this 
process is intensified along the path because focusing of the beam increases the 
dynamic refractive index and therefore increases the focal power of the Kerr lens. 
This increase of the focusing lens stops when the diameter of the beam is small 
enough and the linear diffraction is large enough to balance the Kerr effect. This is the 
effect for self-mode locking or Kerr lens mode locking (KLM). 
 

Self-phase modulation 
 
Consider a plane wave propagating in a non-linear material: 
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The dynamic refractive index is now assumed to be time-dependent, where the light 
pulse envelope is assumed to be a Gaussian function of time.  
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SPM-induced spectral broadening is a consequence of the time dependence of the 
phase in equation (1.16). When the pulse passes, the phase will temporally vary which 
implies that the optical frequency changes across the pulse from its central value ω0.  
The time derivative of the phase gives the instantaneous frequency and can be written 
as: 
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where equation (1.19) gives the frequency variation over the pulse. It can be 
understood from equation (1.19) that the self-phase modulation creates, with n2>0, 
new low frequencies in the leading edge of the pulse envelope and new high 
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frequencies are created in the trailing edge. The time dependence of ∆ω(t) can be 
viewed as a frequency chirp. The chirp is induced by SPM and increases in magnitude 
with the propagated distance and has a form that is dependent on the pulse shape. 
 

Non-linear Schrödinger equation 
 
SPM and the Kerr effect are the basis of the polarisation additive pulse mode locking 
(P-APM) technique and are implemented in the wave equation (1.8). It is more 
convenient to work in the Fourier domain, i.e. by Fourier transforming equation (1.8) 
and treat the intensity dependent dynamic refraction index term (i.e. equation (1.11)) 
as a constant during the transform. This is feasible under the slowly varying envelope 
approximation (SVEA) for E(r,t), by separating the rapidly varying part of the electric 
field in equation (8), i.e. E(r,t)=1/2[U(r,t)exp(-iωot)+c.c.], (1.20). Where U(r,t) is a 
slowly varying function of time relative to the optical period. Fourier transforming 
equation (1.20) and using the method of variable separation. 
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where A~ is the slowly varying function of z, β0 is the wavenumber and F~(x,y) is the 
modal distribution function. With equation (1.21) in the Fourier transformed wave 
equation it gives two coupled solutions to the wave equation. With SVEA it reduces 
the wave equation to first-order derivatives with respect to the spatial propagation 
direction z. Further simplification are made by using first-order perturbation theory to 
the modal distribution function F(x,y) from where the eigenvalue is determined. The 
non-linear refractive index and the absorption term do not then affect the modal 
distribution function F(x,y). Inverse Fourier transforming A~ back in to the time-
domain, the non-linear Schrödinger equation can be written as follows (see reference 
[6] for details): 
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where β1 and β2 are the group velocity and the GVD, respectively. The non-linear 
coefficient γ is defined as: 
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where Aeff is the effective core area and is usually approximated to be Aeff= πw2, 
where w is the width parameter that dependent on the fibre parameters, [6]. As a 
consequence, the coupled wave equation F(x,y) is not needed in the calculations and 
the physical insight of pulse propagation in the fibre ring laser will not be lost. 
Equation (1.22) then describes the propagation of an optical pulse in single-mode 
fibre and is referred to as non-linear Schrödinger equation. A is the pulse amplitude 
and is assumed to be normalised so that |A|2 is the optical power. γ has the units of w-

1m-1. By making the transformation: 
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and using equation (1.22), we obtain: 
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and is called the retarded frame. The frame of reference is then moving with the pulse 
at its group velocity vg. It makes it easier to implement in a program for numerical 
solutions. Equation (1.25) is the standpoint from which the numerical model is based 
upon.  
The fibre ring laser has three different fibres: SMF28, 980/1550 WDM coupler and 
highly doped Erbium fibre. All these fibres have different GVD parameters, 
absorption coefficients, non-linear coefficients and, for the Erbium fibre also, a gain 
coefficient.   

Gain coefficient in the Erbium doped fibre 
 
The discovery of erbium is generally credited to Carl G. Mosander, he found it in 
Ytterby, Sweden, in mid 19-century. But it was not until 1934 it was isolated in a 
fairly pure form. In the late 1980s the development of rare earth dopands, such as Er 
and Nd, in fibre lasers really took off. This was due to the rapid evolution in 
telecommunication systems. Mode-locked Er-doped fibre lasers were of special 
interest, because it could produce pulses in the 1.55 µm region. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1.  
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Erbium is a three-level atomic system and acts as the gain medium in the P-APM 
fibre ring laser. Trying to explain the mechanism behind the amplifying medium one 
must make a few assumptions without losing the physical relevance.  
 
Theoretical models for calculating susceptibility for Erbium doped fibres have been 
done with a semiclassical approach described in [9]. We proceed by applying some of 
the results from [9] and starting from a classical viewpoint, so that the physics behind 
the gain medium doesn’t get lost. First, by looking at the simplified energy level 
diagram over Erbium, Figure 1.1, and writing the rate equation for the energy levels 
shown: 
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Where Ppump is the transition probability per unit time, which accounts for both the 
absorption cross-section of the material and the intensity of the incoming light. The 
P35 term is the excited state absorption and will not effect the overall amplifier 
performance and will be set to zero. From state 3, electrons can decay either to state 2 
with probability P32 or to the ground state with probability P31. We assume that the 
transition probability P32>>P31 and that state 2 has a large lifetime compared to state 3 
(P21<<P32). In Erbium state 2 has a lifetime about 10 ms. A steady state dynamical 
behaviour is a solution to equation (1.26) and corresponds to a constant state 
population with time, so the derivatives vanishes and gives: 
 

,1
32

31

211

2








−≈

P
P

P
P

N
N pump        (1.27) 

 
When N2>N1 occurs the population is inverted, which enables laser operation. This is 
reached when (i) the pumping rate is large enough, (ii) the electronic decay from the 
state 3 to state 2 is faster then to any other decay, (iii) the metastabel state, i.e. state 2, 
is substantially over occupied. Once a population inversion is established, the Erbium-
doped fibre can amplify light. However, there are some limits to how much the light 
can be amplified. Consider a low-intensity electromagnetic wave propagating along z 
with a gain proportional to the population inversion ∆N=N1-N2 and to the wave 
intensity. 
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where σ21(ω) is the emission cross-section of the transition between state 2 and 1.  
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From previously stated assumptions one can re-write equation (1.27) with ∆N=N1-N2 
and by replacing the probabilities by energies (because they are only involved in 
ratios) gives: 
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Introducing equation (1.29) into (1.28) with g(ω)=N2σ21(ω) we obtain: 
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where Esat is the energy saturation term and is calculated from the time integral of 
|A|2. A typical value of Esat is about 3 µJ, [6]. 
 
The gain profile, g(ω), is in many textbooks, for example [6], is approximated with a 
Lorentzian profile, which is not observed in Erbium doped fibre, [9]. We will us the 
measured gain profile for the Erbium doped fibre, given by Fiber Core Ltd. In figure 
1.2 the gain and absorption profile is shown. Other interesting effects take place in the 
Erbium doped fibre. When including the effects of dopants to the induced polarisation 
vector in the right hand side of equation (1.8) they will contribute to the complex 
dielectricity term (1.10). Because of the finite gain bandwidth, all spectral 
components do not experience the same gain, which is referred to as gain dispersion. 
And also, if the carrier frequency of the incident field does not coincide with the gain 
peak located at 1530 nm, see Figure 1.2, it will undergo a refractive index change. 
The non-linear Schrödinger equation is valid for pulse-widths longer than the dipole 
relaxation time, T2 ≈ 0.1 ps, of the doped fibre. Since the stretched pulses that are 
generated in the fibre ring laser have durations about T ≈ 1 - 5 ps, one can relax the 
Maxwell-Bloch equations [6]. The additional term in for the gain dispersion and 
refractive index change in equation (1.10) is given by [10] in the Fourier domain. The 
interesting part is the second-order coefficient in the Taylor expansion of the 
susceptibility of a two level system given by 
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where δ=(ω0-ωa)T2 is the detuning parameter and ω0 is the carrier frequency, with the 
related linear refractive index n0. ωa is the frequency corresponding to the gain peak, 
(see Figure 1.2) and g is the frequency dependent gain constant. 
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Figure 1.2. (Courtesy of Fibre Core Ltd.) 
 
The real part of equation (1.31) is the refractive index change and the imaginary part 
is the gain dispersion. These results, though, do not coincide with experimental 
calculations made by [9], which assume a three level system. This implies that the 
approximation to a two level system in [10] doesn’t give the desired accuracy. The 
gain dispersion is accounted for in the gain spectrum seen in Figure 1.2 and so the 
imaginary part of equation (1.31) could be dropped. The refractive index change over 
the spectrum can be calculated from the Kramers-Kronig relations with the Erbium 
doped fibre spectral gain, [9]. But instead of calculating one could make a qualified 
guess and try to fit a curve to the results given by [9]. ∆n(ω) is dependent on the gain 
profile and the pump power and has a characteristic profile that can be viewed in 
Figure 1.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.3. 
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where ϖ=(ω0-ω)T2 is the normalised frequency to the dipole relaxation time, ω0 is the 
gain peak frequency and G’(ω) is the normalised gain spectrum, in Figure 1.3 set to  
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unity. The fibre ring laser is back-pumped, which means that the gain increase while 
propagating through the Erbium doped fibre. To simulate this, [11] applied an 
exponential function to the gain spectrum: 
 

,exp)('),( 
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
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zGzG ωω       (1.33) 

 
where za is a constant chosen so that the ratio between the length of the Erbium fibre 
and za is 4/3, [11]. Putting the results from equation (1.33) into (1.32) and replacing 
the real part of equation (1.31), we arrive at the following result: 
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where the Taylor expansion has been made around ω0. The coefficients in front of (ω 
- ω0)2 have the units of ps2/m, same as the GVD parameter.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.4. 
 
In Figure 1.4 equation (1.34) is shown over the spectral range and it coincides well 
with calculation in [9]. It is a qualitative graph where the index change is view over 
the spectrum and the impact of the backward pumped fibre. The pulse will encounter 
higher gain the further it propagates through the Erbium doped fibre, thus it affects 
the ∆n(ω) around the carrier frequency so that the amplitude becomes larger. This 
happens, as seen in Figure 1.4, mostly in the leading and trailing edge of the 
spectrum. However, the change over the spectrum is not very large compared to the 
GVD of Erbium. Reference [9] implies that it is negligible for one pass through the 
doped fibre. In our case, the fibre ring laser simulations will conduct about 300 - 700 
roundtrips and the refractive index change will have an impact on the solution.  
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Finally, the non-linear Schrödinger equation for the Erbium doped fibre can be 
written as, were equation (1.34) is written in the time domain: 
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Equation (1.35) describes pulse propagation in doped optical fibre. When A is in the 
CW regime the non-linearity becomes very small and (1.35) is relaxed to the regular 
wave equation with a gain term. So there is no need for two equations, i.e., one for 
pulse operation and one for CW operation. From here it is necessary to find a way to 
simulate the mode-locking mechanism of the P-APM. 
 

Passive Mode locking in the fibre ring laser 
 
The unidirectional laser has two polarisation controllers that provide the basis for 
mode locking. The first polarisation controller changes the polarisation to circular. 
The different polarisation states then propagate non-linearly through the fibre, due to 
the Kerr effect. The second polarisation controller sets the polarisation so that the 
most intense part of the light is transmitted into the cavity for another round trip. 
Which is the fast saturable absorber. This is the mechanism that needs to be 
simulated. Under the third section the mode locking mechanism will be thoroughly 
explained for the fibre ring laser. In [12] the following mathematical description of a 
fast saturable absorber was made: 
 

( ),)(tanh)( 22
Thresspeed PAFbaAS −+=     (1.36) 

 
where a and b are constants to be set in a proper way and usually a>b. Fspeed is the 
speed of the saturable absorber and Pthres is the power threshold for the laser. To give 
and example we chose a=0.8, b=0.1, PThres=5 and Fspeed=1,5,10. Higher Fspeed gives 
faster saturable absorber response. a and b is then adjusted so that desired output 
coupling is achieved and the threshold is chosen so that it gives mode locking at 
desired input pump power. Given in Figure 1.4. 
 
 
 
 
 
 
 
 
 
 

Figure 1.5. 
 
The square of equation (1.36) is then multiplied with the amplitude A to pass the most 
intense part of the light for another roundtrip in the laser. The residue of (1.36) is the 
output and is coupled out of the cavity. 
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Now when all the theory and approximation is done, we need a numerical method to 
solve this. In equation (1.25) and (1.35) there are some of the components that are 
given in the Fourier domain (gain and refractive index change) and some in the time 
domain (non-linear refractive index), and to take into account all this, a powerful 
method must be used. One suitable method is the split-step Fourier method, [6]. 
 

Split-step Fourier method 
 
What is basically done is separation of the non-linear part from the linear part in 
equation (25) and (35) so that we get two equations: 
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     (1.37,1.38) 

 
where (1.37) is the linear part of (1.35) and (1.38) is the non-linear part, respectively. 
For the SMF28 and 980/1550 WDM coupler, the gain, G, and χdopants is zero. GVD 
and non-linearity usually work together along the fibre length. In the split-step Fourier 
method the dispersive and non-linearity effects work independently over a small step 
size h and give an approximate solution. Propagation from z to z+h is done in two 
steps: (i) the non-linearity acts alone and right side of (1.37) is set to be zero. Equation 
(1.38) is then solved with a Runge-Kutta method with the boundary condition. (ii) the 
right side of (1.38) is set to zero and (1.37) can be Fourier transformed by replacing 
the differential operator ∂/∂t by iω and solving the expression analytically, resulting 
in: 
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where A~(z,0) is calculated in step (i). Where the step size h is added.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.6. 
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To put the split-step Fourier method into practice is quit straightforward. As shown in 
Figure 1.6, the fibre length is divided into a large number of segments that are equally 
spaced. Following the steps (i) and (ii) the optical pulse is propagating from segment 
to segment. Using the fast Fourier transform (FFT) algorithm in the software package 
MatLab, makes the numerical calculation of (1.39) relatively fast. The split-step 
Fourier method is accurate to second order in the step size h, [6], which is good 
enough for these calculations. When solving the non-linear part of the doped fibre two 
additional steps are required in the Runge-Kutta method, because of the fact that the 
gain parameter is given in the Fourier domain. These lead to a split of (1.38) in to 
additional two parts, where the gain parameter is solved first without the non-linear 
coefficient γ in the Fourier domain and then follows the step (ii). After this, the non-
linear coefficient is included and G(ω) is set to zero and solved again according to 
step (i). These approximations will affect the accuracy, but not appreciably. 
 

Numerical calculations 
 
To estimate the accuracy and validity of the numerical model and of its different 
components, such as SPM, GVD and gain, it was necessary to apply the model to 
known results. The results given by [6] on SPM and GVD is well accounted for in the 
model and also the results on pulse propagation in gain material coincide with results 
given by [11]. As mentioned before, the laser contains of two sections, one with 
negative GVD (SMF28 and 980/1530 WDM coupler) and one section with positive 
GVD, which is the gain section. The fast saturable absorber, given above, will also act 
as a rejection port for the laser, from where the output pulse will be calculated. A 
critical parameter is the dipole relaxation time, T2, which indicate when the Maxwell-
Bloch equation can be relaxed. The stretched pulses have a pulse length of about 1 - 5 
ps and hence the Maxwell-Bloch equations can be relaxed. T2 is the time it takes for 
the molecules in the silica fibre to align to the incoming polarisation state of the pulse. 
Under perfect conditions it is plausible to assume that only one polarisation state is 
present in the laser and there will be no need to include cross-phase modulation 
(XPM). In Figure 1.7 a sketch of the simulated ring laser is shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Figure 1.7. 

Erbium doped 
fibre 

980/1550 WDM 
coupler 

2nd SMF28 

1st SMF28 

Fast saturable 
absorber and 
output port 



 19 

 
The Erbium is assumed to be in steady state and have a well over populated 
metastable state and the pulse will propagated in the clockwise direction. A flow chart 
for the program when implemented in the software package MatLab can be viewed in 
Figure 1.8.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
     Figure 1.8. 
 
The input to the laser is CW noise that will propagate through the laser and generated 
a pulse when it reaches the threshold for the saturable absorber. The noise is randomly 
generated in MatLab and is set to an average power about 100 µW. All the parameters 
used in the program were either calculated experimentally or given from literature and 
articles, except the saturable absorber parameters. The important GVD parameter for 
the different fibres used in the simulation where measured with a technique called 
dispersive Fourier transforms spectroscopy (DFTS) and will be considered in the next 
section. The gain coefficient and spectrum were interpolated from the Figure 1.2 and 
implemented into the program. The different non-linear coefficients, γ, were given by 
[6] and [11], and the measured threshold for mode locking was ∼ 18 mW. Even though 
all these constants were given, a vast number of simulations were done before a 
satisfactory result was given. Usually about 200-400 roundtrips were conducted in 
order to get a mode locked pulse.  
 

Calculated results 
 
Running this program was very time consuming (300 roundtrips could take up to 2.5 
hours), and therefore I was forced to seek the knowledge of the fibre ring laser’s 
characteristics and not for the coincidence with former experimental results on similar 
lasers. The two parameters that are interesting here and can be easily adjusted in a 
laboratory are the net dispersion of the cavity and the launched pump power. These 
are the features that will be illustrated here. 

(1) CW noise 

(2) Erbium doped fibre 

(3) Solving the linear part, i.e. eq. (1.39) 

(4) Solving the non-linear part with 
gain in the Fourier domain, i.e. eq. 
(1.38) and γ=0.

(5) Solving the non-linear part without 
gain, i.e. eq. (1.38) with G=0. 

(6) WDM coupler (following steps (3) 
and (5)). 

(7) 1st SMF28 (following steps (3) and 
(5)). 

(8) Fast-saturable absorber. Saving the 
output vector. 

(9) 2nd SMF28 (following steps (3) and 
(5)).  

(10) Step (2) for another roundtrip. 
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Gain 
 
When varying the gain coefficient in the program, i.e., simulating the launched power 
in to the erbium-doped fibre, it was clearly seen that with higher gain the program 
reached mode locking faster than with lesser gain. Further, also an increase in the 
pulse energy was obtained. However, the pulse could not stay stable due to too high 
pulse energy and as a consequence, it developed multi-pulses, seen in Figure 1.9. The 
top plot has the highest gain, and then in decreasing order. 
 

 
Figure 1.9 

 
As can been seen, in Figure 1.9, the FWHM of the pulse decreases with higher gain. 
This is the consequence of the higher non-linearity’s present, which increases the 
spectrum and shortens the pulse. Even so, there is an increase in the pulse energy and 
as an affect the leading and trailing edge of the pulse becomes broader. This is can be 
explained by the refractive index change, see equation (1.34), that is proportional to 
the gain coefficient. The amplitude of equation (1.34) increases, and will contribute to 
also increase the GVD for these spectral components and as a consequent the pulse 
leading and trailing edge becomes larger. Further, this leads also to new frequencies 
generated by SPM. Figure 1.10 illustrates the spectrum of Figure 1.9, it is not as 
obvious but the spectrum is wider in the second top plot. 
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Figure 1.10. 
 
The top plot in Figure 1.9 is not a splitting of a pulse, instead it can be understood as 
three different modes has gained sufficiently high energy to penetrate the fast 
saturable absorber. In experiments usually a pulse splits up in two or more, so what 
we see here is a consequence of the program and not what will happen in reality. With 
a higher gain constant the program mode locked fast, but on the other hand it becomes 
unstable. 

 
Figure 1.11 

 
Figure 1.11 shows that relation between numbers of roundtrips conducted and pulse 
energy. The program starts from noise and amplifies so that a CW is reached (seen as 
a horizontal line), then when a CW spikes has accumulated sufficient energy it can 
penetrate the fast saturable absorber and becomes mode locked (seen as a rapid 
increase in energy).  
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The pulse saturates and becomes stable. For G=0.5 it goes from noise up to mode 
locking almost immediately and as a consequence multi-pulses develops.  
 

Dispersion 
 
This is the most important parameter and is the one that ultimately determine the 
pulse and spectrum. When calculating various net dispersions the gain was kept at 
G=0.45. With a net dispersion close to zero a very broad spectrum and low pulse 
energy is obtained. Increasing the net dispersion leads to faster mode locking and 
higher pulse energies. This can be seen in Figure 1.12.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.12 
 
With higher positive net dispersion the program needs lesser roundtrips to obtain 
mode locking, which implies that energy transfer from the gain medium to the 
propagating beam is more efficient and therefore reaches mode locking faster.   
When the net dispersion increase the pulse width becomes broader, hence more 
energy can be store in the pulse. Other effect is that the non-linear effects become 
smaller due to lower peak intensities and as a consequence the spectrum becomes 
smaller and the SPM does not generate new frequencies in the leading and trailing 
edge of the spectrum. 
In Figure 1.13 shows the pulses at the different net dispersions. A small decrease in 
the length of the single mode fibre results in a broadening of the pulse. In these 
simulations optimisation of the pulse energy can be calculated in order to extract the 
highest efficiency of the laser. At the top plot of Figure 1.13 the intra-cavity pulse 
width approaches the dipole relaxation time, T2, which implies that the Maxwell-
Bloch equations should be included, and this is maybe why the pulse profile is 
asymmetric in it appearance or that the step size in time and space is too large. Since 
running this program takes up to 3 hours there is no time to look into this matter at 
this point. 
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     Figure 1.13 
 
Figure 1.14 shows the corresponding spectrum. In the top view is the SPM clearly 
shown as a broadening of the spectrum. 

Figure 1.14 
 
With decreasing length of the negative single mode fibre, the spectrum becomes 
smaller and the non-linear effects become almost absent. However, it is possible to  
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increase the non-linear coefficient γ, so a broader spectrum can be obtained. But here 
I am more interested in the relative change and not to be exact in my calculations. 
This shows that with higher positive net dispersion more energy can be obtain per 
pulse and the physical insight is noted. 
 
Other interesting features is that it is possible to look at the pulse inside the cavity and 
thus, provide a opportunity to design the cavity in such way that maximum pulse 
energy and lower non-linearity’s can be obtained for same pump power and net 
dispersion. In Figure 1.15 shows the mode locked pulse for G=0.45 and DT=12.5e-4 
during 1 roundtrip in the cavity. 

     Figure 1.15. 
 
After the first SMF the pulse has become narrower and higher peak power is obtained, 
the pulse width is very close to the dipole relaxation time, T2, and this indicates that 
the Maxwell-Bloch equations should be calculated. The non-linearity’s is then very 
high when it propagates in to the erbium-doped fibre (which has higher γ than SMF) 
and new frequencies will be generated.  This is when usually pulses split up, because 
the dispersion cannot compensate the SPM. Further, when the narrow pulse 
propagates through the erbium-fibre it broadens because of the positive GVD and can 
therefore absorb more energy. The pulse broadens in an order of magnitude as can be 
seen in Figure 1.15 and when the pulse reaches the rejection port after a full roundtrip 
it has become narrower again because of the WDM coupler and the second SMF that 
has a negative GVD. 
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By “cutting” off some of the first SMF and place it in the second SMF, without 
changing the net dispersion of the cavity, it is feasible to lower the peak intensity’s 
within the cavity and as a consequence lowering the non-linearity.  
In Figure 1.16, 50 cm of the first SMF has been “cut” off and “spliced” onto the 
second SMF and as a result the peak intensity has decreased.   
 

     Figure 1.16. 
 
Unfortunately these simulations were conducted after the real fibre ring laser was 
built and could not been used for the set-up. Perhaps these results can be used in the 
future considering the development in this area (all-fibre lasers). The program can be 
used for similar fibre-laser with some small changes and give a rough idea how a fibre 
laser will work. I think that the programs accuracy would have had improved if the 
Maxwell-Bloch equation were implemented into the program. As mentioned before, 
the limiting factor for this program is the factor T2, dipole relaxation time, and when 
calculating the intra-cavity pulse width it is too close to its value. But that is outside 
the scoop of this dissertation. The results given will anyway serve as a foundation to 
stand on when designing a fibre ring laser. 
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2 Measurement of Group Velocity Dispersion 
 

Introduction to Group Velocity Dispersion 
 
For the fibre ring laser to generate stretched pulses the net dispersion of the cavity 
should be slightly positive, DT ≈ 0.013 ps2. In order to know the correct fibre lengths 
it was necessary to measure the GVD of the fibres. Three different fibres are used in 
the laser, namely erbium doped fibre, Corning single mode fibre (SMF28) and a 
980/1550 nm WDM fibre. 
 
If an electromagnetic wave is incident on an optical medium it will interact with the 
bound electrons in the dielectric in different ways depended on the frequency of the 
wave and thus will travel a wavelength-dependent velocity. This effect is known as 
chromatic dispersion and is described by the refractive index, n(ω). As long as the 
electromagnetic frequency is far from any resonance frequency of the dielectric, the 
refractive index can be approximated by the Sellmeier equation: 
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where ωj is the resonance frequency and Bj is the strength of the j th resonance. A 
higher frequency gives larger refractive index. It should be noted also that the spatial 
confinement, in a fibre, affects the refractive index and in turn contributes to the 
group velocity dispersion (GVD).    
When a short optical pulse propagates through a fibre the different spectral 
components travel at different phase velocity given by c/n(ω) and group velocities 
given by ∂ω/∂k. Consequently the pulse increases its duration, because of its wide 
spectral width and of group velocity dispersion. This happens in any optical medium 
and needs to be taken into account when executing experiments.  
The group velocity and GVD can be described in mathematical terms. Assuming that 
the frequency-dependent propagation factor β(ω) varies little within the bandwidth of 
the pulse, it can then be expanded in a Taylor series about the centre frequency ω0 and 
is given by: 
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where the 1st derivative is the group velocity and defines the velocity of the pulse 
movement. The 2nd derivative is the group velocity dispersion (GVD) parameter. It 
shows that the pulse is broadened in time. The broadening arises because the 
individual spectral components travel with their own different group velocities. There 
are also higher order terms that can be included, but these are in general very small 
compared with the 1st and 2nd order terms. 
When measuring group velocity, GVD and also 3rd order dispersion of short fibre 
lengths experimentally, equation (2.2) is used to calculate them. The only difference 
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is that it is done in the phase domain where phase is directly related to β(ω) because 
ϕ(ω)=β(ω)⋅Lfibre. This relation will be derived bellow.  

Experimental Configuration 
 
One way of measuring GVD is to have kilometre long fibres and measure the pulse 
broadening in the time domain. Here, by using dispersive Fourier transform 
spectroscopy (DFTS) we can use shorter lengths, around 8 cm, to measure the GVD.  
A Michelson interferometer is used to obtain the interferograms at the output port. To 
be able to recover the interferograms it is necessary to have a low-coherence source. 
The coherence length for the source should be much shorter than the fibre used in the 
experiment. The interferogram is sensitive to the dispersion of each of the 
interferometer arms. By taking the Fourier transform of a single interferogram it’s 
possible to extract the interferometric phase difference between the two arms of the 
interferometer across the spectral range of the source used.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Figure 2.1. 
 
The Erbium broadband source, from AMS Electronic GmbH with a bandwidth of 
1527-1568 nm, is launched into the Michelson interferometer through a single mode 
fibre and a collimating microscope objective lens. The beamsplitter splits the beam in 
two parts, one of which continues into the measurement arm where the sample fibre is 
placed. Focusing into the fibre is also done with a microscope objective lens. Because 
of the shortness of the fibre there can appear cladding modes that will affect the 
interferograms, but by applying index matching gel on top of the fibre one can couple 
out the cladding modes and ensure single mode operation. A silica fibre of any sort 
has a facet reflectivity about 4%, which can be difficult to detect when using a low 
power source, so the end faces of the fibres were coated with a silver mirror, in a 
vacuum chamber by a thermal evaporation technique. The mirror thickness is around 
30 nm and should correspond to 90% reflectivity. The enhanced reflectivity, from 4% 
to 90%, ensures ease of alignment from the back face of the fibre and good visibility 
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of the interferograms. The reference arm contains two mirrors and a corner cube that 
is mounted on top of a tilted granite rod. By launching compressed nitrogen into the 
corner cube mount, it can be floated and moves smoothly over the granite rod and can 
scan over a length of 1.5 metres. The total optical path length scanned is twice the 
fibre length times the refractive index. When scanning the reference arm over the 
required length a pair of interferograms is generated, due to reflections at the front 
and back faces of the fibre.  
To assure accurate calibration of the scan when obtaining the generated 
interferograms a HeNe laser beam is launched parallel to the Erbium source. The 
wavelength of the HeNe laser is well known and has a well-defined coherence length, 
which makes it suitable for calibration. The HeNe used had a low coherence length of 
about 35 cm. The fibre length was chosen so that one scan could be done within the 
coherence length of the HeNe. Longer fibre lengths could be used but meant re-
calibration of the HeNe and re-adjusting the length of the HeNe’s measurement arm, 
to get the desired interferograms of both back and front faces. The HeNe fringes at the 
output port of the interferometer are detected with a high-speed silicon photo detector, 
with a 1mm2 active area, and converted by an electronic circuit to TTL pulses. The 
TTL pulses are then used as a trigger at even intervals of group delay and are not 
affected by fluctuations in the scan speed. The output arm of the Erbium source is 
detected with an InGaAs photo detector, with a diameter of 80 µm from Hamamatsu, 
and sampled each time a “1” is given by a HeNe fringe, so that each sample 
corresponds to one wavelength of the HeNe, i.e. a resolution of 632.82 nm. The 
received data was collected through a data acquisition card in a PC with the software 
package LabView. The Fibre Group at Heriot-Watt University developed the 
program.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 

Figure 2.2.      Figure 2.3. 
 
The generated interferograms obtained from the front and back faces of the Er-doped 
fibre are shown in Figures 2.2 and 2.3. The front face data is relative symmetric 
around it’s centre and contains the information about the dispersive phase of the 
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Michelson interferometer while the back face data is broader and is asymmetric 
around its centre. This is due to the dispersive nature of the fibre. Each window, i.e. 
Figure 2.2 and 2.3, has 7000 data points each spaced at 632.82 nm.  
To understand how the group velocity, GVD and 3rd order dispersion is obtained from 
the interferograms a theoretical explanation will be given followed by a presentation 
of the measured data. 
 

Theory 
 
Considering that two electromagnetic fields interfere with each other at the output arm 
of the Michelson interferometer, the fields have low coherence so the interference is 
momentarily. The total intensity of the interference term is, I(τ)=<|E1(t+τ)+E2(t)|2> 
and contains: two intensity terms related to the two fields in the arms, which when 
time averaged become a DC component (constants); and an oscillatory interference 
component that is a product of the two fields. τ denotes the relative time delay 
between the arms and brackets denotes time average: 
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The measured sample, in this case an optical fibre, is placed in the measurement arm 
in the Michelson interferometer, and acts as the dispersive element in that arm. The 
intensity at the interferometer output arm can be written as a function of τ, [14]: 
 

,(Ι+ Ι = ))I( 0 ττ os        (2.4) 
 
where I0 denotes the sum of the DC components and Ios(τ) is the oscillatory 
component, which contains the phase information. Ios(τ) is proportional to the real 
part of the mutual coherence function Γ12(τ), which can be seen from equation (2.3), 
given by: 
 

,)(),()( 2112 tEtE ττ +=Γ       (2.5)  
 
where Em(t) is defined at a distance z from the beam splitter in arm m as: 
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where Em(z,ω) is the Fourier transform of the field Em(z,t) and φm(ω) is the dispersive 
phase function. Normalising equation (2.5) and using equation (2.6) in the same, the 
exp(-iωt) term in Em(t) respectively cancels out because of the complex conjugate in 
equation (2.5). 
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The “new” mutual coherence function can be written as: 
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is the normalised spectral distribution function of the source. Using the previously 
mentioned relations one can conclude the following: 
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and 
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Taking advantage of the linearity of Fourier transform and expanding the real part of 
γ12 and assuming that complex spectrum, S(ω),  is zero for negative values of ω it 
gives S(ω)=F{2Re[γ12(τ)]}, combining it with equation (9) gives: 
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and 
 

{ } ,)(arg)( τωϕ osIF=        (2.13) 
 
where equation (2.13) gives the dispersive phase of the system, which is only the 
argument of the Fourier transform of the oscillating intensity component, i.e. the 
interferogram. Equation (2.12) gives the normalised amplitude spectrum. To measure 
the group velocity and the GVD parameters of a fibre, two measurements need to be 
done. First of all, we measure the dispersive phase for the Michelson interferometer, 
which is recovered from the front face data. Then we measure the dispersive phase 
recovered from the back face data, which now contains the dispersive phase of the 
interferometer and the fibre. To extract the dispersive phase for the fibre we simply 
subtract the two measured dispersive phases from each other, i.e. ϕfibre(ω)=ϕback(ω)-
ϕfront(ω). 
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While expanding ϕ(ω) in a Taylor series around a centre frequency ω0: 
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The easiest way would be to numerically differentiate the phase curve ϕfibre, but the 
noisy character of the curve would not allow this, so a polynomial fit to ϕfibre was 
done. From there the group velocity, GVD and even 3rd order dispersion can be 
extracted, according to equation (2.14). 
 

Dispersion Measurements on SMF28, Er-doped and WDM Fibres 
 
Four different fibres were dispersion characterised, the lengths of the fibres were: 
SMF28 lsmf28 = 76.1±0.1 mm, Er-doped (highly doped) DF1500L from Fiber Core ltd. 
lEr1 = 86.0±0.05, Er-doped DF1500L from Fiber Core ltd. lEr2 = 81.8±0.05 mm and a 
WDM fibre lWDM = 84.2±0.05 mm. The length could also be calculated from the 
spacing between the front and back interferograms, but the only known refractive 
index was for the single mode fibre, n = 1.46, the calculated length became then 76.2 
mm for the SMF28, which corresponded well to the measured length.  
After recovering the interferograms from the Michelson interferometer on the 
computer and saving them as binary data they were processed and analysed with the 
software package MatLab. The program used was mainly written by the fibre group 
but modified for this analysis. The steps in analysing the interferograms are 
straightforward. The interferograms are windowed so that the top peak is centred, see 
Figure 2.2 and 2.3, and the window chosen to be as large as possible. Here η = 7000 
sampled data points were chosen, but for processing with fast Fourier transforms in 
MatLab numbers of point should be chosen to a power of 2, i.e. 2n. But the 
interferograms of the front face of the fibre and the focusing lens were too close to 
achieve this while maintaining a sufficient large window. This does not affect the 
analysis but just slows it down.  
 
  
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4. 
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Knowing the spacing within the interferogram, ∆η = 632.82 nm, it is easily converted 
into a time base by dividing HeNe wavelength with the speed of light. See Figure 2.4. 
The peak of the interferogram corresponds to the point where zero optical path 
difference occurs between the arms of the Michelson interferometer. 
The step size in time becomes then ∆τ = 2.11 fs, which corresponds to one HeNe 
fringe, and the whole window size is T = η*∆τ = 15 ps. Applying the discrete Fourier 
transform to the interferogram, this gives in the Fourier domain the inverse relation, 
i.e. ∆f = 1/T and F = 1/∆τ. And by stepping up with ∆f in the frequency plan from 0 
up to F gives the real calibrated spectrum.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.5. 
 
As seen in Figure 2.5, with equation (2.12) the amplitude spectrum of the Erbium 
broadband source can be shown and is plotted vs. wavelengths. It corresponds to the 
specifications given by the manufacturer of the Erbium source. The argument of the 
Fourier transform of the normalised mutual coherence function, S(ω), were phase-
unwrapped, which removes the 2π discontinuities, to obtain a phase curve ϕ(ω), i.e. 
equation (2.13). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6 
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Figure 2.7. 

 
Figure 2.6 and 2.7 shows the dispersive phase of the Michelson interferometer (front 
faces) and interferometer with fibre (back faces), respectively. In Figure 2.6, the 
difference in phase is mainly due to the microscope lens in the measurement arm and 
beamsplitter. Other effects such as air currents and temperature fluctuations over the 
arms in the interferometer are negligible. The noisy character of the front face, Figure 
2.6, is because only 4% is reflected and thus gives a lower signal-to-noise ratio than 
the back face which has a reflectivity of ~90%. Extracting the dispersive phase for the 
fibre is done with the relation, ϕfibre(ω)=ϕback(ω)-ϕfront(ω). See Figure 2.8. 
 
 
 
 
 
 
 
 
 
 
      

 
 
 
 
 
 
 

 
Figure 2.8. 

 
Finally, over the given frequency range, pictured here in wavelength, a MatLab 
command that produce a 2nd order polynomial fit to the unwrapped phase and the 
program calculates the coefficients to the Taylor series shown in equation (2.14). As 
evidenced by the fit residuals of Figure 2.9, a 3rd order fit would give a significant 
improvement in the accuracy of phase estimation, indicating that 2nd order dispersion 
was present. 
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Figure 2.9 & 2.10. 
 
The fit residuals of the 3rd order, Figure 2.10, are mainly due to noise in the 
interferograms and higher order polynomial fits gave no further measurable reduction 
in the fit residual. Thus higher order dispersion was negligible and a 3rd order fit was 
applied in all cases. 
 
 
 
 
 
 
 
      
 
 
 
 
      
 

Figure 2.11. 
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With a 3rd order fit the discrepancy from the measured data is small, shown here with 
error bars in Figure 2.11. Twenty measurements were done on each fibre, ten with 
index matching gel and ten without; one measurement contains two interferograms, 
front and back faces. The dispersive phase for the fibres was calculated as mentioned 
above. After the polynomial fit was done for each individual measurement, an average 
was taken over the second-order coefficients and divided by the length of the 
measured fibre in order to give the GVD coefficients.  
 

Results 
 
To check the accuracy of the measurement technique, a SMF28 was measured, which 
has a well-known GVD (-23ps2/km @ 1550 nm) parameter.  
The measured GVD became with index matching gel: 
 

-(22.75 ± 0.91) ps2/km @ 1545 nm 
 
without index matching gel: 
 

-(21.63 ± 1.16) ps2/km @1545 nm. 
 
The presence of cladding modes is the probable cause of the difference in the 
measured GVD parameters. The measured dispersion agreed well with the known 
dispersion for the SMF28. Further calculations should be accurate as well.  The 
standard deviation in the final GVD measurements is calculated as follows, [15]: 
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β2 is the GVD, ϕ(2) is second-order polynomial coefficient, Lfibre is the fibre length and 
the ∆s is the standard deviations, respectively.  
The standard deviation for the fibre lengths is due to the resolution of the ruler used 
and for ϕ(2) it is calculated from the ten different measurements.   
The following calculated results were obtained: 
 
Fibre   Length (mm)  @ wavelength (nm) GVD (ps2/km) 
 
Er-doped fibre 
Highly doped:  86.0±0.10   1547   +23.51±0.21 
 
Er-doped fibre  81.8±0.10   1547  +20.28±0.46 
 
WDM fibre  84.2±0.10   1548    -9.94±0.18 
 
SMF28 fibre  76.1±0.10   1545  -22.75±0.91 
 
     Table 2.1. 
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The length of the fibres in the ring laser was cut according to these calculated GVD 
parameters, to achieve a positive net dispersion of the cavity of ~0.013 ps2. The 
results depicted in Table 2.1 are for the fibres measured with index matching gel. 
Other sources of error can be that the dispersion of air is not taken into account in the 
calculations, other limitations, such as the detector response when detecting the 
fringes and fluctuations in nitrogen pressure that would give vibrations in the 
reference arm and could degrade the interferograms. These errors are not included in 
the standard deviation in Table 2.1. 
To increase the signal-to-noise ratio for the front face interferogram, a filter in front of 
detector would do and thereby would be able to increase the launch power of the 
Erbium broadband source into the system. The added dispersion from the filter would 
not effect the measurements, because only the relative difference is calculated. 
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3 Experimental Set Up 
 

Splicing of the Fibres 
 
Before any laser operation is conducted, the different fibres must be spliced together. 
Prior to splicing you need to strip off the coating, clean and cleave the fibres. This 
was performed with a “stripper” and a mechanical cleaver.  
The fibres used in the ring laser have different core radii, which means when splicing, 
it is crucial that the cores are well centred and aligned with each other. This was 
accomplished with an automatic fusion splicer. The fusion splicer discharges an arc of 
high voltage over the fibre to burn away residue dust so that the cleaved fibre ends are 
perfectly cleaned. On a screen connected to the fusion splicer it was possible to 
confirm that the cleave and splice was adequately done. The splicer then aligns the 
individual fibre cores and voltage is applied over the fibres so that they “melt” 
together. Even though this procedure is very precise there will be losses, because of 
core-radius mismatch and differences in refractive index. The fusion splicer measures 
the loss perpendicular to the splicing direction and gives a rough idea of the losses. 
Losses less than 0.03 dB were sufficient. The equipment used for cleaving, 
“stripping” and splicing the fibres was borrowed from the Fibre Group at Heriot Watt 
University. 
There are different ways to protect the spliced fibres, one way is to deposit a 
protecting jacket over it or place it on cardboard and hold it down with tape. If the 
probability of re-splicing is high, then cardboard protection is preferred, because the 
loss of fibre length is a minimum. In configuring the laser for mode locked operation 
the role of the different fibres is important and the measurement of their dispersion 
has already been described in the previous section. 
 

Set Up 
 
The ring cavity contains of 2.02 m highly Er-doped fibre from Fibre Core Ltd., 1.36 
m of SMF-28 (single mode Corning fibre), 0.42 m of 980/1550 nm WDM coupler, a 
bulk isolator, a birefringent plate (BFP) and polarising beam splitter (PBS). Instead of 
using bulk waveplates like in [17], we use polarisation controllers (P-controllers) that 
are made out of SMF28 around circular holders; one or two revolutions are equal to a 
quarter and half wave plate, respectively. The bulk isolator is a Faraday-Rotator with 
two polarising sheets. The sheets are tiled of an angle of 45o degrees to each other, 
which then assures unidirectional lasing. 
A pump laser diode from Marconi Caswell Ltd was used that had a maximum average 
output power of 430 mW @ 980 nm when a drive current of 500 mA was applied. 
The pump was mounted on a translation stage with x-, y- and z-actuators. The pump 
light was then collimated with an aspherical lens, f = 2.93 mm; NA = 0.4, and then 
focused into the WDM coupler with a focusing lens (aspherical), f = 2.8; NA = 0.4, 
thus a demagnification occurs. The WDM fibre was also mounted on a 3-D translation 
stage for “easy” focusing. The measured NA for the WDM fibre coupler was ∼ 0.15. 
Coupling to free space is achieved using fibre pigtailed lenses, which were mounted 
on specifically designed fibre lens holders. The PBS, isolator and BFP were mounted 
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on posts for ease of alignment (see Figure 3.1.). Usually the BFP is used at Brewster’s 
angle, but the fibre pigtailed lenses did not give a well collimated beam over a large 
distance, keeping the free space region as short as possible was necessary. However, 
with the beam incident perpendicular to the BFP, the laser did not lose much of it 
output powers. At first it actually increased because the polarising 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1. 
 
sheet in the isolator wasn’t aligned with the polarisation direction of the PBS. By 
rotating the BFP it was possible to set the polarisation direction of the light beam so 
that it coincided with the polarisation sheet of the isolator. As can be seen in Figure 
3.1, the laser was backward pumped, which meant that the 980 nm pump light 
propagated in the opposite direction to the lasing 1530 nm. In physical terms, the fibre 
amplifies a signal as erbium atoms absorb the pump radiation and transfer their 
energy to the signal, and the intensity of the pump radiation decreases over the length 
of the fibre. As the clockwise propagating signal (1530 nm) travels through the 
erbium fibre, its intensity increases and encounters higher gain further down the fibre. 
To get effective amplification it is necessary to have sufficient pump power so that the 
signal does not get absorbed in the beginning of the Erbium-doped fibre. By looking 
at the excited state absorption of the Erbium, that emits green light, it was feasible to 
empirically determine whether or not sufficient pump power was launched. 
 

Coupling Efficiency 
 
The pump laser diode from Marconi Caswell Ltd. were kept on a Peltier cooler at 14o 
Celsius for effective performance, the temperature dependence of the emitting 
spectrum is unknown. Two diode designs were used and the emitting surface has two 
different widths, 6 µm and 9 µm. The 980 nm single mode fibre connected to the 
WDM coupler had a modal field diameter of 6.6 µm, so the 6 µm devices were 
chosen for the best coupling efficiency. The difference in NA between the WDM fibre 
and the focusing lens makes the coupling from the laser diode into the fibre poor. 
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Another major contributing factor for the low coupling efficiency was that the beam 
quality of the laser diode worsened when increased drive current was applied. The 
beam changed its spatial mode remarkably, which in turn meant a lot of effort going 
into refocusing the launched pump light into the WDM fibre. A maximum coupling 
efficiency of 45 % was reached at a drive current of 250 mA and kept there until the 
drive current reached 450 mA. This was understood as 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          Figure 3.2. 
 
an increase in the spatial mode size which was not confined within the 6 µm width, 
hence, the coupling efficiency dropped. The performance of the different devices 
(pump lasers) varied a lot, and measurement of the coupling efficiency was made on 
one device that broke. The currently used pump laser had better over all performance 
and the results are shown in Figure 3.2. It should be noted that we measured the 
output at the rejection port of the laser and were interpolated with previously made 
measurements at the output of the WDM coupler. The changes in spatial modes were 
random and highly dependent on the temperature and applied drive current. Even 
though these difficulties and low coupling efficiency, the launched power into the Er-
doped fibre for maximum drive current (500 mA) had an average value of 180 mW, 
which should be sufficient for mode locking.  
 

980 nm Absorption 
 
When looking at the operational wavelength of the pump laser diode it was noted that 
not only the spatial mode shifted but also the spectrum varied over a range of 15 nm. 
Figures 3.3a and 3.3b show the spectrum for the pump laser, they are shown for 
different drive currents, 200mA and 450 mA, respectively. The spectrum was 
measured with an ist-rees Laser Spectrum Analyzer and viewed on a Tektronix 
TDS3032 real-time digital oscilloscope. The temperature for the both measurements 
was kept the same. The broadening in the spectrum can have its origin from over 
population of electrons in the well-defined energy levels in the quantum well structure 
of the pump laser. Thus, when higher drive current is applied, for example, the first 
energy level becomes full and a broadening of the state take place, so when electrons 
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fall down to the ground state a broadening of the spectrum occurs. Even higher energy 
levels will be populated and emit photons 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       Figure 3.3a.     Figure 3.3b. 

Figure 3.4. (Courtesy of Fibre Core Ltd.) 
 
according to their defined energy level. However, the broadening of the pump laser 
spectrum doesn’t affect the excitation of Erbium ions noticeable. This Erbium-doped 
fibre has it maximum peak absorption around 11.8 dB/m @ 978 nm and has a broad 
absorption spectrum around it, seen in Figure 3.4. The broadness can be explained as 
follows. In a glass host (here silica fibre), erbium ions are subjected to electric fields, 
known as crystal fields due to the surrounding atoms in the host lattice. This causes 
Stark splitting of the erbium ion orbitals, and dependent where the erbium ions are 
located in the glass host the ions encounter variations of the field due to the 
amorphous structure of the glass. Resulting in an inhomogeneous broadening of the 
transition. Other effects are phonon broadening (homogeneous broadening) that is 
temperature-dependent [18]. 
 

Short Theory 
 
In this part a short presentation of mode locking in general and mode locking in the 
fibre ring laser will be conducted. The more extensive theory of the physical 
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mechanism behind the fibre ring laser has been given in the first section where the 
numerical modelling is also described. 

General Mode Locking Theory 
 
Without mode locking, all the modes oscillate independently of one another with 
random phases, thus giving continuous wave (CW) operation. To explain mode 
locking in a simple way, consider the frequency spacing among modes in a CW laser, 
which is given by: 
 

,
opticalL
c=∆ν        (3.1) 

 
where LOptical is the optical path length of one round trip inside the cavity. For the FRL 
used in this report LOptical = neffLfibre+Lspace, where neff is the effective mode index, 
Lfibre is the fibre length and Lspace is the free space length and optical isolator path 
length. Within the gain profile of the Er-doped fibre thousands of modes can be 
sustained and closely spaced modes can reach threshold simultaneously and encounter 
the same gain. The summation of all the modes can be written mathematically as: 
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where Em, ϕm and ωm are the amplitude, the phase and the frequency of mth mode, 
respectively. When the phases of different frequency modes of a laser are 
independent, the summation term becomes time independent and the laser is CW with 
multiple modes. However, with the mode locked laser, all the cavity modes are forced 
to be in phase at one point within the cavity. The phase difference between two 
adjacent longitudinal modes is locked to a constant value ϕ i.e. 
 

,1 ϕϕϕ =− −mm        (3.3) 
 
From equation (3.3) it is easily seen that ϕm = mϕ + ϕ0 and that mode frequency can 
be written as ωm = ω0 + 2mπ∆ν.  
Using the new parameters in equation (3.2) and execute the summation, with the 
assumption that all modes have same amplitude E0, the intensity then becomes: 
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The result is a laser output with regularly spaced pulses and such “mode locked” 
lasers usually produce trains of pulses with durations of a few ns to fs (true for passive 
mode locking) resulting in high peak powers. The pulse repetition rate is the 
frequency mode spacing ∆ν, thus the spacing among pulses are τr = 1/∆ν. 
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Mode Locking Mechanism in the Fibre Ring Laser 
 
The optical isolator plays a double role in the sense that as an isolator it gives 
unidirectional laser oscillation, and also linearly polarises the light leaving it. This 
FRL is back-pumped, so when launching the 980 nm light into the WDM coupler the 
isolator absorbs the residual 980 nm that leaves the Er-doped fibre. 
Before the light reaches free space it goes through the P-controllers, the first of which 
changes the polarisation to circular. The different polarisation states then propagate 
non-linearly through the fibre, mostly due to the Kerr effect. The Kerr effect is 
intensity dependent, thus, higher intensity leads to a greater induced phase shift 
between the orthogonal polarised states. To get the intense part of the light through 
the polarisation sensitive isolator the second polarisation controller needs to be set in 
a proper way. The most intense part of the light is then transmitted into the cavity for 
another round trip and the low intensity field is coupled out through the rejection port. 
By suitably adjusting the P-controllers in the fibre ring laser it will work as a fast 
saturable absorber. Another non-linear effect is self-phase modulation (SPM), which 
causes spectral broadening. SPM is dominant under pulse operation but it also affects 
the oscillation under CW regime. In the CW regime, partially coherent light exhibits 
both intensity and phase fluctuations. SPM converts intensity fluctuations into 
additional phase fluctuations and broadens the optical spectrum. These perturbations 
(spikes) in the intensity and in the spectrum generate new frequencies and leads to the 
“signature” for mode locking. This is the mechanism for the polarisation additive-
pulse mode locking (P-APM). The other two polarisation controllers are to give 
stability and the right polarisation state to the output arm, [6]. The fibres used are very 
sensitive to bending, which changes the polarisation states of the propagating light. 
This can be used to help the fibre ring laser to mode lock, even a light touch changes 
the polarisation. 
 

Dispersion 
 
At the rejection port “stretched” pulses will be generated. To stretch the pulse 
temporally the net dispersion in the cavity needs to be positive. The fibre ring laser 
consists of two sections, one with positive group velocity dispersion (GVD) (the Er-
doped fibre) and one with negative GVD (the SMF28 and the WDM fibre). The net 
dispersion of the two sections is almost balanced and close to zero, but positive. The 
mode locked pulse stretches and compresses as it propagates around the cavity, see 
Figure 1.15 and 1.16. The target net dispersion for our configuration is about + 0.013 
ps2 and would ensure a positive chirp. The well-known GVD parameter for SMF28 is 
– 23 ps2/km and the measured GVD parameter for the Erbium doped fibre was + 23.5 
ps2/km and for the WDM fibre it was – 9.4 ps2/km. The measurement technique and 
the theory on GVD were discussed in the previous section. The reason for having a 
positive net dispersion is to lower the peak power resonant in the fibre, so that non-
linear effects decrease which in turn avoids saturation of the APM action. Because of 
this, it is possible to generate high-energy, broad bandwidth pulses, [4]. 
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Laser Operation 
 
As mentioned before it was critical to have as short free space region as possible, and 
this meant constructing mounts to hold the bulk components in an efficient way. 
Different kinds of set-ups were conducted, and the lengths of fibres and the free space 
region were continuously changed before settling for the configuration shown in 
Figure 3.1. Pumping the erbium with 980 nm we first recorded the fluorescence 
spectrum of the erbium shown in Figure 3.4, it corresponds well with the gain 
spectrum given by Fiber Core Ltd. Finally everything was in place and after aligning 
the free space section the laser oscillated. The threshold for laser oscillation was 11 
mW of launched pump power giving a maximum output power at the rejection port of 
4 mW. In Figure 3.5 the spectrum of the fibre ring laser at a launched pump power of 
~100 mW is shown.  
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.4. 

 
 
 
 
 
 
 
 
 
 
 
      
 

 
Figure 3.5. 

 
The corresponding maximum output power was 30 mW. Tuning of the spectrum was 
achieved with the BFP and the polarisation controllers and could be easily tuned over 
the whole gain spectrum of the Erbium-doped fibre. However, not without mode 
hops. When changing the settings of the BFP and the P-controllers the output power 
at the rejection port changed by up to an order of magnitude. The slope efficiency 
curve of the laser output vs. pump power is shown in Figure 3.6 for the setting with 
the highest output powers. The CW output power at maximum pump power is 
relatively high compared with other reports on all-fibre laser systems seen in [16] and 
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[17]. Even though the set-ups differ a little bit the overall performance looks 
promising for mode-locked operation.  
 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6. 
 
Trying to achieve mode locking in the APM laser, one must first of all maximise the 
output power at the rejection port in the CW regime. Then by looking at the frequency 
spectrum in real time one maximises the numbers of CW-spikes by adjusting the P-
controllers. These spikes should appear on either side of the gain spectrum of the 
erbium-doped fibre, and should indicate that it is feasible to achieve mode locking. 
The P-controllers are extremely sensitive to movement and need to be moved 
carefully. Even so, it is very hard to detect these mode-spikes on the oscilloscope, 
probably because the sampling rate of oscilloscope is not fast enough and these mode-
spikes are super-narrow corresponding to maybe one pixel. Another way of detecting 
mode locking is to look at the two-photon absorption in a silicon detector. The 
probability for two-photon absorption is very low for CW operation but increases 
once the laser is showing a tendency to mode lock and becomes very high for a mode 
locked laser. Unfortunately, we didn’t get any closer to mode locking with this 
measurement technique. 
 
The final call was to use a high-speed InGaAs detector and try to mode-lock the laser 
in the time domain instead. The detector has a rise time of 70 ps which is sufficient 
enough to detect mode locking in our configuration, considering that the duration 
between the pulses should be about τr  = 19 ns, calculated with equation (3.1). Setting 
up the InGaAs detector, focusing the output and then by adjusting the P-controllers to 
increase the amplitude of the noise showing on the oscilloscope we momentarily 
mode locked the laser. The InGaAs detector was calibrate by using a Ti:Sapphire laser 
with well known pulse spacing. In Figure 3.7 the pulse train is shown with a 
separation of ~18.97 ns which corresponds well with the calculated τr = 19 ns.  
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Figure 3.7. 

 
The laser jumps in and out off mode locking randomly, the longest period of time the 
laser maintained mode locked was for about 1 second. The reason for this might be 
that the enhanced spectrum that has its origin from SPM becomes too broad in order 
for the dispersion to balance it. Hence, the spectrum might become too broad to 
maintain a stable pulse. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.8. 
 
The mode locked spectrum in [17] ranges from 1500 nm to 1600 nm and had a 
FWHM of ∼  50 nm, which indicates that we are not far from a stable mode locking. 
Detecting the pulse train with the InGaAs detector in this set up we found that it was 
similar to what has been shown in Figure 3.7 When trying to find this regime, where 
the mode locking is momentarily created, it was easier to find it without the BFP. 
Perhaps the reason for this is that the BFP acts as a filter and when the pulse is 
generated the newly created frequencies in the wings of the spectrum is coupled out of 
the cavity. Which in turn means that a lot of power is coupled out of the cavity as well 
and the induced Kerr effect in the P-controllers has lost its effect. Figure 3.8 is 
recorded without the BFP. What is usually done when obtaining these mode-spikes in 
a solid-state laser is to change the dispersion of the cavity to balance the SPM. One 
way of accomplish this in an all-fibre system is to splice on fibre connectors and use a 
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patch cord with different lengths of SMF28. SMF28 has negative GVD and can 
compress a linearly chirped spectrum and in this way get a stable pulse operation of 
the fibre ring laser. From the first section I can conclude that this is the approach that 
will give a stable mode-locked pulse. Because of lack of time this could not be done, 
but the Ultra Fast Optics Group will at a later point conduct further work on this laser. 
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4 Conclusions 
 
It has been shown that the numerical calculations of the non-linear Schrödinger 
equation can be used for designing similar all-fibre ring lasers. In order to achieve 
higher accuracy the Maxwell-Bloch equations must be included, this can be done in 
the program. Also, the physics behind the laser with its important characteristics has 
been depicted, i.e., launched pump power and dispersion. 
 
The measurements on the GVD for the different fibres were straightforward and the 
results could be used in a sufficient way for the construction of the fibre ring laser. 
The dispersive Fourier transform spectroscopy is a well-known method and has a 
good accuracy for the measurements done here.  
 
Although the laser did not achieve a stable mode locking during this relative brief 
project, a compact and an effective laser source was constructed. The maximum CW 
output from the laser was among the highest reported, 47 mW, and once the ability to 
change the net dispersion in situ with patch cords, this laser will have a stable mode 
locked pulse. 
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