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Abstract 
The purpose of this thesis was to investigate the possibilities of enhancing the temporal and 
spatial coherence of parametric devices in the mid-infrared spectrum by exploiting inherent 
coherence selection of Bessel beams. Several optical parametric oscillators (OPO) were 
constructed and characterized for various types of resonators and pump lasers. 

In the first part of this work an OPO was constructed out of a periodically poled KTP 
(PPKTP) crystal within a stable resonator. It was pumped by a Q-switched Nd:YAG laser in 
transversal and longitudinal single mode operation. The OPO was pumped at 1064 nm and 
operated at signal wavelength of 1595.9 nm with a bandwidth at FWHM of 0.2 nm and idler 
wavelength 3192.9 nm and bandwidth of 0.5nm at FWHM. The stable resonator was 
constructed out of a curved input coupler and a planar output coupler to generate a spatially 
coherent beam. The beam quality factor of the OPO was measured to M2=1.3 and M2=1.7 in 
the horizontal and the vertical direction respectively.  

In the second part of this work conical beams, and hence noncollinear phase matching, was 
used. This was done to improve and study the temporal and spatial coherence of the generated 
beam if the OPO is pumped by a laser operating in multiple transversal and longitudinal 
modes. Using noncollinear phase matching provides a possibility of generating a highly 
coherent signal (or idler) wave when using a pump laser which operates in multiple 
transversal and longitudinal modes. Usually, such pump laser makes it difficult to generate 
highly coherent beams since the properties, such as bandwidth and beam quality factor, of the 
pump laser are transferred to the generated waves. So called multimode lasers, which operate 
in multiple modes, can be considered inexpensive and reliable while providing high pulse 
energies, and they are therefore attractive as pump sources for nonlinear processes. 
Throughout this second part a Q-switched Nd:YAG laser operating in multiple transversal and 
longitudinal modes at a wavelength 1064 nm was used. Optical parametric generation (OPG) 
was used to compare the effects between pumping with a Gaussian wave, and collinear phase 
matching, and pumping with a conical, a Bessel beam and hence noncollinear phase 
matching. Thereafter, optical parametric oscillation was studied with collinear and 
noncollinear phase matching using a Fabry-Perot cavity. The OPO pumped by a Q-switched 
Gaussian beam, and hence using collinear phase matching had a signal wave at 1596.3 nm 
and a bandwidth at FWHM of 4 nm. The OPO pumped by a conical beam, hence a Bessel 
beam and noncollinear phase matching, had a signal wave at 1596.5 nm and a bandwidth at 
FWHM of 0.2 nm. Both OPOs had a beam quality factor M2~2 in horizontal and vertical 
direction. 
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1 Introduction 
Background 

Today it is common to use lasers, and hence electromagnetic radiation, for various kinds of 
medical applications, including surgery. Lasers at various wavelengths are used in many 
medical fields from cornea reshaping to cancer treatment and brain surgery [1,2,3]. Initial 
studies at free electron lasers (FEL) in the USA have shown that radiation at a wavelength of 
6.45 μm is beneficial for surgical applications [4

This desired wavelength can be generated with quantum cascade lasers (QSL), but there are 
other demands on the radiation than the wavelength. To be suitable for surgery the radiation 
has to have rather high pulse energies in order to get efficient ablation of the cells while not 
damaging surrounding cells due to deposition of heat.  

] since both water and proteins absorb 
radiation at that wavelength. FELs, however, are usually large facilities coupled to expensive 
accelerators which are not suitable to be integrated into a hospital.  

Generating the desired wavelength can be done with the use of nonlinear optical technology, 
optical parametric oscillators, and novel laser sources. These technologies make it possible to 
generate pulsed radiation at and close to the desired wavelength at high enough energies. The 
repetition rate of the pulsed radiation cannot be too high since that would result in a high 
average power and thermal damage to surrounding tissue, but has to be high enough to have 
efficient ablation. The pulse energy has be high enough to reach ablation threshold and the 
pulse length has to be long enough to not have too high peak intensities and short enough to 
have efficient non-linear conversion. 

 

The objective of the work 

The purpose of this thesis is to generate a beam with a wavelength of 3193.2 nm that has good 
coherence both spatially and temporally. This beam is later on supposed to seed another 
parametric process, hence the demands on a good beam quality. This can be achieved by 
using a pump beam of high quality and using a stable cavity. By having a good overlap 
between the TEM00 mode of the resonator and the pump beam waist a nice spatial coherence 
can in principle be obtained. The temporal coherence is in this case inherited from the pump 
beam. High quality pump beams requires lasers that operates in single longitudinal and 
transversal mode. 

Lasers operating in multiple longitudinal and transversal modes are however attractive pump 
sources since they can be considered cheap, compared to lasers operating in single mode, 
while providing high energies. These lasers, however, are characterized by broad spectral 
bandwidth and large beam quality factors, M2. In practical situations these beams are difficult 
to be focused to have a beam waist in the size of the fundamental mode of the resonator 
without substantial losses, even when working in the mid-infrared spectrum. This will make it 
difficult to generate a beam with high spatial coherence and also, the large bandwidth will be 
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transferred to the generated beams. Therefore other ways of generating highly coherent beams 
at the desired wavelengths are also investigated by using a multimode pump source. 

 A laser operating at multiple longitudinal and transversal modes can be converted into a 
conical beam, also called a Bessel beam, by using an axicon. These beams are attractive to be 
used as a pump sources for nonlinear processes since only the coherent part of the pump beam 
is exploited. Therefore, it is of interest to investigate how the coherence of a parametric 
device can be improved by the use of a conical pumping beam for nonlinear processes. 

 

Outline of the thesis 

The outline of this thesis is as follows: 

In chapter 2 some theory of laser beams and resonators relevant for the thesis is described. 

In chapter 3 the theory of nonlinear optical technology, optical parametric oscillators and 
various ways of phase matching is presented. 

In chapter 4 the experiments performed throughout this work are described and analysed 

Chapter 5 summarizes the work performed. Conclusions and discussion of the results and 
suggestions to further work are given. 

  



3 

 

2 Laser resonators and laser beams 
Lasers are today common and important, both in research and in everyday life. They exist in 
everything from DVD-players to barcode scanners in the supermarket. In research they play a 
central role in a lot of areas; either as a “tool” or as research subject itself. The main topic of 
this thesis is not laser, but rather optical parametric oscillation (OPO) and optical parametric 
generation (OPG), which will be described in Chap. 3.3. Still, lasers are used as pump sources 
in all experiments in this thesis, and knowledge of laser beams and laser resonators is crucial 
for this work. Hence, a short description of the basic principles of lasers, laser beams and laser 
resonators follows. 

A laser requires a resonator, an active medium (sometimes also called ‘gain’ or ‘laser’) and a 
source of energy. The energy source is generally called ‘pump’ and is used to create 
population inversion, i.e. excite the atoms to a higher energy level in the active medium. It is 
common to use flash lamps or lasers themselves as pump sources. 

The resonator is built from mirrors and other optical elements e.g. beam splitters and 
polarizers. In the simplest case the resonator consists of two mirrors, where usually at least 
one is curved. One of the mirrors (in the case of a two mirror resonator) will have a 
reflectivity close to 100% for the laser wavelength, and it is usually called the input coupler. 
The other mirror will have a slightly lower reflectivity for the lasing wavelength and is called 
the output coupler. 

The active medium in a laser can be a dye, gas, semiconductors, fluid or as all media used in 
this work, solid state materials, i.e. crystals. 

The laser action will start when the active medium spontaneously emits a photon. That photon 
will be reflected by the mirrors in the resonator and eventually pass through the active 
medium again. By interacting with the medium, the photon will induce stimulated emission, 
creating more photons that are, ideally, a copy of the first photon. These will in turn start 
resonating as well and repeat the process over and over again, building up an electric field of 
high intensity in the resonator. Some of the photons will be coupled out of the resonator by 
the output coupler and create the laser beam. A sketch of a basic laser is shown in Fig. 2.1. 
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Figure 2.1: A schematic sketch of a laser, consisting of two mirrors an active medium and a pump source. 

Lasers are attractive light sources since they are monochromatic and can propagate for a long 
distance and remain collimated. These features can be described more with the terms temporal 
and spatial coherence. Coherence is a property that is valid for all kinds of waves, not only 
light. Generally when talking about waves the term ‘wave front’ is introduced. A wave front 
can basically be described as an event, e.g. the wave has maximum amplitude, which occurs 
during every period as the wave propagates. 

Temporal coherence describes how monochromatic a light wave is, the higher temporal 
coherence the more monochromatic the light wave is. The temporal coherence is usually 
given physically by a coherence length. This length describes for how long it is possible to 
predict how the wave fronts will propagate. If the wave front of the light is known at one 
point in time is it possible to predict how far the wave front has propagated at a later time. 
The only requirement is that the distance the wave has traveled during the time elapsed is 
shorter than the coherence length.  

Spatial coherence is instead a measurement of how the light diverges as it propagates. Ideally 
the light would diverge as a perfectly spherical wave, emerging from a point source. For a 
highly spatially coherent wave is it possible to describe all points in space on a wave front by 
knowing only one point on the wave front.  

 

2.1 Gaussian beams 
The light in a laser will, as previously stated, propagate within a resonator, and only parts of it 
will be coupled out and create the laser beam. This propagation within the resonator will 
impose conditions on how the light can propagate, both in longitudinal and transversal 
direction. The limitation on how the beam can propagate will determine the beams transversal 
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intensity distribution. What is called a Gaussian beam can build up within the resonator 
constructed of curved mirrors [5

The Gaussian beam is an eigensolution to the paraxial wave equation [

]. It is called a Gaussian beam due to the intensity profile of 
the electric field that is built up in the transversal direction. When coupled out of the resonator 
the light will keep its Gaussian intensity distribution. Other kinds of resonators will have other 
transversal intensity distributions, which sometimes are rather close to Gaussian. However 
Gaussian beams possess physical properties which are of interest when working with lasers, 
as will be shown later on in this chapter. 

5], or in a more 
physical description, it is the only way the light wave can build up in free space and reproduce 
itself during every round trip when being limited by mirrors as in a resonator. The electric 
field for the Gaussian beam propagating along the z-axis is given by 

 
E(r, z) = E0

ω0

ω(z) e—i�kz−φ(z)�e−i�
kr2

2q(z)�. (2.1) 

Here ω(z) is the spot size of the beam, ω0 is the spot size at the beam waist and q(z) is the 
complex beam parameter given by 

 1
q

=
1
R
− i

λ
πnω2, (2.2) 

where R is the radius of curvature of the wave fronts, n is the refractive index of the medium 
the wave is traveling in and ω the spot size of the beam. The real part of this equation 
resembles the description of a spherical wave front. That is because curvatures of the wave 
fronts of a Gaussian beam are very close to ideally spherical when propagating. 

There are higher order solutions to the paraxial wave Equation as well and they are due to 
symmetry reasons a product of Hermite polynomials with a Gaussian function 

 
En,m = E0Hm �√2

x
ω
�Hn �√2

y
ω
� e−

x2+y2

ω2 . (2.3) 

Here m and n describes the higher order in the horizontal and vertical direction. The notation 
TEMmn is used as notation for the various eigenmodes. The lowest order modes for 
m,n=0,1,2,3 are displayed in Fig. 2.2. All of these solutions are called transversal modes of 
the laser. 
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Figure 2.2: Transversal Gaussian mode patterns for m,n=0,1,2,3. 

Although the Gaussian distribution extends to infinity it is convenient to define a beam radius. 
The beam radius of a Gaussian beam is generally defined as the value where the intensity is 
reduced by a factor of 1/e2 in respect to the peak intensity. The minimum radius of the beam is 
called the spot size and the beam radius can then be described by 

 
ω(z) = ω0 �1 + �

λz
πω2�

2

�

1
2

. 
(2.4) 

 

An important parameter of Gaussian beams is the Rayleigh range. The Rayleigh range is the 
depth of focus of the Gaussian beam and the wave fronts can be approximated with plane 
waves within the Rayleigh range. One defines the Rayleigh range as the distance from the 
beam waist to where the beam area has doubled, i.e. where the beam radius has increased by a 
factor of  √2. It follows from Eq.(2.4) that it can be written as 

 
zR =

πω2

λ
. (2.5) 

Since it is possible to focus a Gaussian beam down to the diffraction limit, they are said to be 
diffraction limited. 

n 
= 

0

m = 0 m = 1 m = 2 m = 3

n 
= 

1
n 

= 
2

n 
= 

3
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In reality laser beams are seldom perfectly Gaussian. Instead, they are usually superpositions 
of the lowest order mode and higher order modes and the beam radius can then be described 
by the adjusted function 

 
W(z) = W0 �1 +  �M2 λz

W0π
�
2

�

1
2

, (2.6) 

where M2 is called the beam quality factor. It measures how close to a perfect Gaussian beam 
the laser beam is, and a good measure of the spatial coherence of the beam, since a perfect 
Gaussian beam is highly spatially coherent. 

A convenient way on measuring the beam radius of an arbitrary beam is to use the knife-edge 
technique [6,7

(2.6

]. A razor blade is used to cut the beam perpendicular to the direction of 
propagation. The position of the razor blade is recorded at the positions where the intensity is 
16% and 84% of the total intensity. The distance between those positions of the razor blade is 
the beam radius. By measuring the beam radius at several points along the optical axis of a 
focused laser beam and then fitting the data to Eq. ) the M2 of an arbitrary beam can be 
determined. However, this method is only valid for beams that are close to Gaussian beams, 
that is, with a not too high M2. 

 

2.2 Stable Resonators 
As previously stated a resonator, also called a cavity, is a requirement for a laser to operate. It 
is also used in some nonlinear processes in order to enhance gain and amplification [5]. The 
resonator also has an impact on the beam quality factor of the generated beam.  

It is common to have standing waves in the resonator although traveling wave cavities exist. 
After one round trip in the cavity is it desirable for the light to have a phase shift of 2π in 
order to have constructive interference and for the light of a certain wavelength to find 
resonance. That will impose a condition on which wavelengths, or frequencies, that will be 
able to resonate, i.e to impose a standing wave inside the cavity. These are given by 

 mλ = 2L. (2.7) 

Here L is the optical path length of the cavity, λ is the wavelength and m is an integer number. 
m is usually large, in the order of 105, since the cavity is often much longer than the 
wavelength. 

From Eq.(2.7) is it easy to calculate the frequency spacing between two longitudinal modes. 
The result shows that the mode separation is dependent on the length of the resonator. The 
frequency spacing between two modes is  

 Δυ =
c

2L
. (2.8) 
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A resonator generally consists of basic optical elements like mirrors, lenses and eventually 
other more complex components. Among them are beam splitters, volume Bragg gratings, 
Pockels cells and other elements that imposes various properties to the generated beam.  

These elements can in theory be described by a 2x2 matrix, in what is called the ABCD-
formalism [5].The ABCD formalism is used for ray tracing in optical systems and the 
matrices describes mathematically how the distance, r, and the angle , θ, to the optical axis are 
affected by a given optical element by 

 �
r2
θ2� = �AC

B
D� �

r1
θ1�.  

(2.9) 

An important property of these matrices is that they are unimodular, that is, AD-BC=1. From 
this follows that a product of several matrices will be unimodular as well. 

This formalism can be combined with the theory of Gaussian beams by 

 q2 =
Aq1 + B
Cq1 + D

. (2.10) 

The complex beam parameter is given by Eq(2.2). 

By multiplying the matrices of all the elements in the cavity for one round trip in the cavity a 
matrix for the entire system can be calculated. Combined with the requirement that the beam 
should regain its shape after one roundtrip, in order for the resonator to be considered stable, 
the following relation is obtained 

 q =
Aq + B
Cq + D

. (2.11) 

Because of the unimodular property of the ABCD is it then possible to write the complex 
beam parameter, q, as 

 
1
q

=
D − A

2B
± i

�1 − �D+A
2
�
2

B
. 

(2.12) 

Comparing this expression to Eq.(2.2), which relates the complex beam parameter, q, to the 
beam radius and the radius of curvature of the beam, makes it possible to formulate a 
condition for when the resonator is stable. Since the ω0

2 must be a real and positive, the 
relation in the square root in Eq.(2.12) must be positive as well, that is 

 
�
D + A

2 � ≤ 1. (2.13) 

This relation is known as the stability condition for a resonator. It also shows how sensitive 
the cavity is to misalignment of the components, depending on the value of the stability 
condition.  
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Since q is related to the radius of curvature, R, and the beam radius, ω, is it possible to relate 
these entities to the ABCD-matrix for the system. At the chosen plane of reference, where the 
round trip in the cavity starts and ends, is it possible to relate the beam radius and the radius 
of curvature as 

 
ω = �

λ
πn
�
1
2 |B|

1
2

�1 − �D+A
2
�
2
�
1
4

 . (2.14) 

Eq.(2.14) together with Eq.(2.11) makes it possible to trace the beam radius throughout the 
resonator. This is valid for any resonator, not only two mirror resonators. It is possible to 
simulate the evolution of the beam inside the cavity by using numerical calculations (the 
program used in this work is named Winlase). 

This formalism makes it possible to predict how the beam will look in the resonator but also 
how it will behave when coupled out of the resonator. In order for the beam that is created in 
the resonator to have the lowest order mode is it necessary for the active medium to be 
pumped in an area that has the same size, or smaller, than the area that is created by the mode 
supported by the resonator, too. If a bigger area is utilized in the active media higher order 
transversal modes be will supported. Higher order transversal modes can also be an effect of a 
misaligned cavity, and can be removed by proper alignment. 

 

2.3 Bessel beams 
Bessel beams are usually said to be free from diffraction [8

A Bessel beam is a coherent beam with a transverse intensity distribution of a Bessel function. 
The electric field of these beams can be described by [

], which is not entirely true. Bessel 
beams diffract, as all light does, but they diffract in such a way that their transversal shape 
remains unchanged. This is very convenient when the beam encounters a small obstacle since 
it will regain its original shape afterwards. 

9

 

] 

E(ρ,ϕ, z) = E0e−i(kzz−ωt) ∙ e±inϕ ∙ Jn�kρρ�, (2.15) 

where kz
2+kρ2=k2, k being the wave vector. The radial, azimuthal and longitudinal coordinates 

are ρ, ϕ and z, and n is the integer which indicated the order of the Bessel function, Jn. 
Higher order Bessel beams can be generated and will then have a central minimum instead of 
having a central maximum. In this work a zeroth order beam is used since the confined central 
peak is of interest for pumping the nonlinear process. 

A more physically intuitive description of a Bessel beam is to describe it a plane wave that are 
caused to interfere with itself, by propagating in a cone. The light is refracted towards the 
optical axis, and forming a cone and will ultimately interferes with itself, causing a transverse 
intensity pattern of a Bessel function. From this description is it intuitive to understand why 
these beams can be considered diffraction free. Every point along the focal line is created 
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when different parts of the beam interfere. Therefore, if the beam encounters a small obstacle, 
it will regain its transverse shape after the obstacle. 

2.3.1 Axicons 
One way to generate laser beams with a transverse intensity distribution of a Bessel function 
is to use an axicon. An axicon is a lenslike element which instead of creating a point focus, 
creates a focal line along the optical axis. There are different kinds of axicons, such as 
refractive, diffractive and reflective axicons [10

2.3
]. In this work a refractive axicon is used. The 

axicon has a shape of a cone, as can be seen in Fig. . The first refractive axicon was 
suggested in 1954 by McLeod [11

 

]. 

Figure 2.3: Sketch of an axicon. The axicon is defined by its top angle, or more commonly, the angle α 

The axicon will introduce a phase shift in the beam and cause it to refract towards the optical 
axis and interfere with itself, and by that create a transverse intensity profile of a Bessel 
function, and longitudinally create what can be called a focal line. The phase shift that is 
introduced is related to the prism angle, α, (Fig. 2.3). The phase shift introduced by an axicon 
with refractive index n on an incoming beam of light is  

 φ(ρ) = (n − 1)ρ cosα. (2.16) 

Generating a perfect Bessel beam with an infinitely long focal line is impossible. It would 
require an axicon, as well as an incident beam, of infinite extent, which is highly unphysical. 
The finite extent of the axicon and the incident beam will cause a finite extent of the Bessel 
distribution and a finite extent of the focal line. This can be understood from Fig. 2.4.  
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Figure 2.4: Illustration of how the axicon refracts a beam consisting of planar wave fronts, creating a focal line. 

From Fig.2.4 the finite extent of the focal line, zmax, can be approximated. The length of the 
focal line can be related to the angle at with which the axicon refracts the light, θ, and the 
radius of the incident beam, R, as 

 𝑧𝑚𝑎𝑥 =
𝑅

tan(𝜃). (2.17) 

The angle θ can be related to the top angle of the axicon by 

 𝜃 = (𝑛 − 1)𝛼, (2.18) 

The radial part of the wave vector, kρ can hence be written 

 
𝑘𝜌 = 𝑘

tan (𝜃)

�1 + tan2(𝜃)
. (2.19) 

The 1/e2 radius of the central maximum can be approximated for a zeroth order beam and can 
be calculated as 

 
𝜔0 =

1.3258
𝑘𝜌

, (2.20) 

where 1.3258 is the argument for when a zeroth order Bessel function intensity is reduced by 
1/e2 and kρ is the radial component of the wave vector for the refracted beam. 

Both the extent and the radius of the central maximum are related to which angle, θ, the beam 
is refracted towards the optical axis. A long extent of the focal line requires a small angle of 
refraction, which a small central maximum requires a large angle of refraction. It is therefore 
a tradeoff between a long extent of the focal line and a focus with small radius. And for every 
application this tradeoff needs to be considered. 

In order to calculate the electric field and the intensity after the axicon, scalar diffraction 
theory can be used [12]. There are several integrals, based on the Fresnel-Kirchhoff 
diffraction theory [13

(2.21

], which can be used for calculating the electric field at any point in 
space after a diffracting aperture. They, however, require knowledge about the electric field at 
the diffracting aperture. The Rayleigh-Sommerfeld integral, Eq. ), is convenient to use 
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since it only requires knowledge of the electric field at the aperture, but not of the space 
derivative of the electric field at the aperture. 

 
𝐸(𝑃0) = −

𝑘
2𝜋

� E0e−i(kzz−ωt) ∙ e±inϕ ∙ Jn�kρρ� ∙
exp(𝑖𝑘𝑟01)

𝑟01𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒

∙ �𝑖 −
1

𝑘𝑟01
� ∙ cos(Θ)𝑑𝑠, 

 

𝑟01 = ��𝑥𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒 − 𝑥𝑜𝑏𝑠�
2 + 𝑦𝑜𝑏𝑠2 + 𝑧2, 

 
cos(Θ) =

𝑧
𝑟01

 .  

(2.21) 

Here r01 is the distance between a point in the aperture and the point, P0.  

By evaluating the Rayleigh-Sommerfeld integral the intensity after the axicon can be 
evaluated, as shown in Figs. 2.5. 

  

(a) (b) 
Figure 2.5: Simulation of a Bessel beam assuming incoming plane waves with a wavelength of 1064 nm and an aperture 
size of 1 cm. a) Longitudinal intensity distribution. b) Radial intensity distribution. 

As the beam propagates beyond the extent of the focal line it will diffract into a ring. This can 
be shown from an evaluation of Eq.(2.21) at a position further away than the calculated extent 
of the focal line. The beam will diffract into a ring in the far field with radius and thickness 
related to the prism angle, α, of the axicon. This can be used when aligning the axicon as seen 
in Figs. 2.6. 
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(a) (b) 
Figure 2.6: Far field diffraction pattern of a Bessel beam (a) simulated with same conditions as Figs. 2.5 and (b) recorded 
with a CCD camera from the actual setups in Chap 4.2. 

 

The simulations shown above are done assuming a perfectly coherent beam. When using a 
partially coherent beam the transversal Bessel distribution will be distorted and the visibility 
of the interference pattern will decrease [8], that is, energy will be located also in the minima 
of the interference pattern. For a partially coherent beam operating in multiple transversal 
modes, a coherence radius can be introduced. This is the radius of the beam for which the 
beam can interfere with itself due to its partial coherence. The extent of the focal line can then 
be calculated by using the coherence radius instead of the beam radius in Eq.(2.17).     
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3 Nonlinear Optics 
Nonlinear optics is the field of optics that describes the phenomena arising when light is 
interacting in a nonlinear manner with matter. Nonlinear optics makes it possible to generate 
wavelengths that are usually not usually available or difficult to reach with regular lasers by 
exploiting nonlinear interactions. Moreover it also describes how it is possible to create ultra 
short laser pulses and laser pulses with very high energy and optical-to-optical processing 
signals. The first demonstration of nonlinear optics was done in 1961 [14], only a one year 
after the first laser was demonstrated [15

Generation of new wavelengths not available from regular lasers through nonlinear optics is 
convenient and rather efficient. For the process of wavelength conversion to take place a 
material with a nonlinear polarization, induced by an applied electric field, is required. The 
polarization of materials that can be described by [

]. 

16

 

] 

P =  ε0� χ(n) ∙ En
∞

n=1

. (3.1) 

Here χ(n) is the nth order susceptibility of the material induced by the electric field E 
propagating into the material. χ(n) is a tensor of rank n+1. The first order term χ(1) accounts for 
the refractive index(real part) and the linear absorption(imaginary part) of the material. The 
second order term, χ(2) describes tree-wave mixing processes and is responsible for nonlinear 
processes, like second harmonic generation (SHG), optical parametric generation (OPG) and 
optical parametric oscillation (OPO). This component of the susceptibility only exists for 
materials with a lack of inversion symmetry, most commonly the non-centrosymmetric 
crystals. Of interest is also the third order term χ(3), which is responsible for third order 
nonlinear effects and it exists in all materials, also the symmetric ones, at high enough 
intensities of the stimulating electric field, E. Higher order terms are generally not of interest 
since they are too small. For this work only the second order processes are of interest. It 
means the term to take into account in Eq.(3.1) is then 

 Pi
(2) =  ε0�χijk2 ∙ Ej ∙ Ek

jk

, (3.2) 

where i,j,k are the three different directions of polarization. 

In experimental results it is common to express χ(2) as a new susceptibility tensor d by 

 dijk =
1
2
χijk. (3.3) 

Because of symmetry reasons is it possible to compress the components down to the 
following matrix [17] 
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dij =  �

d11 d12 d13 d14 d15 d16
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36

�.   (3.4) 

 

For KTiOPO4, KTP, which is used in this work, this matrix is [18

 

] 

dij =  �
0 0 0 0 d31 0
0 0 0 d32 0 0

d31 d32 d33 0 0 0
� .  (3.5) 

The values of these coefficients can be found in [19

When working with narrow bandwidths, as in lasers, is it convenient to work in the Fourier 
domain. This will make it possible to describe the induced polarization in the material as 

] 

 Pi
(2)(ωα) =  ε0��χijk2 �−ωα;ωβωγ� ∙ Ej�ωβ� ∙ Ek

βγjk

�ωγ�. (3.6) 

Here ωα is the generated angular frequency from the electric fields with angular frequencies 
ωβ and ωγ. 

Nonlinear interactions in a medium must respect the conservation of energy and momentum. 
The conservation of energy describes how the energy of a photon will be transferred into 
other photons in the nonlinear process. The condition of energy conservation is given by 

 hω1 =  hω2 + hω3, (3.7) 

where the interacting electric fields has the angular frequencies ω1, ω2 and ω3.  

In the case of second order processes the following are the most common ones: 

Second Harmonic Generation (SHG): ω1+ ω1=ω 2 

Sum Frequency Generation (SFG): ω1+ ω2=ω 3 

Difference Frequency Generation (DFG):  ω1- ω2=ω 3 

Optical Parametric Generation (OPG):  ω1 =ω 2+ ω3 

Optical Parametric Amplification (OPA):  ω1 =ω 2+ ω3 

Optical Parametric Oscillation (OPO):  ω1 =ω 2+ ω3 

 

When working with OPG, OPO, and OPA one usually denotes the first frequency, which is 
the frequency providing the parametric process with energy, as the pump frequency, ωp. The 
generated frequencies are called signal, ωs, and idler, ωi, where the lower frequency (and 



16 

 

hence longer wavelength) is called the idler. Over all is the relation ωp≥ωs≥ωi valid for all 
parametric processes. 

It can be observed that the same energy transfer is involved in DFG, OPG, OPA and OPO. 
What mainly differs in the parametric processes is the amount of energy that is transferred 
between the different frequencies involved. For DFG the energies of the pump and signal of 
the same order are of magnitude. In OPG the process is provided by energy only from the 
pump beam and both the signal and the idler are generated in the process. The OPA is 
provided with energy from the pump but also seeded with a weaker beam of the signal 
frequency in order to promote the desired frequencies. OPO is OPG (or sometimes OPA) 
where a resonator, which is resonating for the signal or idler, or sometimes both, is used to 
increase the efficiency of the energy conversion. 

From the theory of nonlinear optics the energy transfer between the different frequencies can 
be calculated from the wave equation combined with Maxwell’s equations and the nonlinear 
polarization of the material [16] as 

 ∇2Ez(ωn) + knEz(ωn) = −
ωn

c2
Pznl(ωn),  (3.8) 

where is  Ez is the electric field in chosen direction (z-direction) with an angular frequency ωn 
and a wavevector kn, and pz

nl is the the nonlinear polarization of the material in which the 
electric field is propagating. Here n is an interger which has the value of the number of 
interacting frequencies. 

Using the slowly varying envelope approximation, SVEA, and evaluating Eq.(3.8) and 
collecting terms depending on the different frequencies will give the following equations for 
the energy transfer 

 dE(ω1)
dz

= −i
ω1deff

cn1
E(ω3)E(ω2)ei∆kz, 

dE(ω2)
dz

= −i
ω2deff

cn2
E(ω1)E∗(ω3)e−i∆kz, 

dE(ω3)
dz

= −i
ω3deff

cn3
E(ω1)E∗(ω2)e−i∆kz. 

(3.9) 

 

3.1 Phase matching 
From Eq.(3.9) the coefficient Δk can be observed in all of the three equations. Δk is the 
difference in momentum, or wave vectors, between the different waves and can be written 

 ∆k = k1 − (k2 + k3). (3.10) 

This can be considered the phase mismatch in the process, where k is the wave vector of a 
light wave. In the case of perfect phase matching, that is when Δk=0, all the momentum of the 



17 

 

pumping photons will be transferred to the photons created in the process. This is, however, 
seldom the case. Since all materials are dispersive, the interacting waves will have different 
phase velocities and hence get out of phase after propagating for some distance, called the 
coherence length, in the medium. This can be seen from looking at the wave vector which is 
dependent on the refractive index, ki=2πni/λi. These usually have different value for all 
wavelengths propagating in the same material. A result of this phase mismatch is back 
conversion, where the desired waves are converted back to the original wave until the waves 
get in phase with each other again, after another coherence length. Full phase matching is 
desired in order to have a highly efficient of the process, but it is hard to achieve. 

One common way of achieving phase matching is Birefringent Phase Matching, BPM. Here 
the nonlinear crystal is oriented so that the ordinary refractive index of one wavelength 
matches the extraordinary index of refraction for the other generated wavelength. When 
several wavelengths are involved, such as in a nonlinear process, this is hard to achieve. Also, 
walk off, where one of the beams changes direction of propagation in the crystal, and 
distortion of the beam profile of the generated beam, are effects that occur in BPM as well. 
Another negative aspect of this kind of phase matching is that it does not permit to exploit the 
highest nonlinear coefficients, which will lower the efficiency of the process. 

The phase matching technique employed this work is called Quasi Phase Matching, QPM. 
Quasi phase matching was first suggested in 1962 [20

QPM also makes it possible to use the largest nonlinear coefficient of the crystal. Since the 
group phase velocity is controlled by the domain grating the crystal can be orientated in such 
a way that the largest nonlinear coefficients are used. This will further increase the 
efficiencies of the nonlinear process.  

]. By using ferroelectric crystals and 
inverting the intrinsic polarization every time the original beam and the generated beams get 
out of phase by π, the phase matching can be periodically achieved to have gain throughout 
the entire crystal.  

 In this work the switching of the polarization is done by applying an electric field, higher 
than the coercive field, and by that periodically reverting the polarization of the crystal with a 
certain period. If this switching of the intrinsic polarization is done properly it is possible to 
let the interacting waves propagate in phase throughout the entire length of the crystal, and 
therefore get a gain of the nonlinear process and avoid destructive interference and back 
conversion. This can be described as adding a wave vector to Eq.(3.10) with the size 

 kQPM =
2πm
Λ

, (3.11) 

where Λ is the period of the domain grating, and m is the order of the spatial harmonic. For 
first order phase matching the highest efficiency is obtained for a duty cycle of 50%. It is 
therefore desirable to have a duty cycle of 50%, meaning the intrinsic polarization is switched 
every time the pump beam and generated beams get π out of phase.  

The effective nonlinear coefficient, with a duty cycle of 50%, is then given by  
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 deff =
2

mπ
dij. (3.12) 

Eq.(3.10) then becomes 

 ∆k = k3 − (k1 + k2) + kQPM. (3.13) 

For perfect phase matching it is desirable to have Δk=0, which will then give an expression 
for the desired size of the wave vector introduced by the domain grating 

 kQPM = k3 − k1 − k2. (3.14) 

From Eq.(3.12) and Eq.(3.14) can then the desired grating period for first order QPM (m=1) 
be calculated as 

 Λ =
2π

k3 − k1 − k2
. (3.15) 

The technique of creating the domain grating when obtained by periodically applying a strong 
electric field is it called periodic poling and is usually abbreviated PP in front of the crystal 
name, i.e. PPKTP for the crystals used in this work. 

 

3.2 Phase matching with Bessel beams 
The derivation in the previous section is done for plane waves, with all waves propagating in 
the same direction. That is not the case when working with beams having a transverse 
intensity distribution of a Bessel function. These beams are considered to be conical beams, 
with their wave vectors forming a cone. The derivation of the phase matching conditions must 
therefore be changed to consider the direction of the interacting beams. The interacting beams 
will now propagate in different directions. This is illustrated in Fig. 3.1. 

 
Figure 3.1: Illustration of the phase matching with conical beams in the longitudinal and transversal plane [21]. 
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The interacting waves have to be phase matched, not only in the longitudinal direction but 
also transversally. The derivation of the phase matching with conical beams has been made by 
Piskarskas et al. [21,22], Pasiskevicius [23] and Tewari [24

Since the interacting waves are no longer propagating in the same direction, it is important to 
do not only take into account the longitudinal direction of the phases, but also the transversal 
direction. The phase matching conditions for an OPO in the three Cartesian coordinates can 
be written 

] and will not be performed in 
detail here.  

 𝑘𝑠𝑥 + 𝑘𝑖𝑥 = 𝑘𝑝𝑥 , 
𝑘𝑠𝑦 + 𝑘𝑖𝑦 = 𝑘𝑝𝑦, 
𝑘𝑠𝑧 + 𝑘𝑖𝑧 = 𝑘𝑝𝑧. 

(3.16) 

Here k is the wavevector, the subscripts x,y and z denotes the Cartesian space coordinates with 
the optical axis (i.e. the direction of propagation) along the z-axis, and subscripts s,i and p 
denotes the signal, idler and pump waves respectively. 

When using a crystal which is periodically poled the QPM period of the ferroelectric grating 
must be accounted for. The grating period will introduce and extra wave vector into Eq.(3.16) 
and the phase matching condition will now be 

 𝑘𝑠𝑥 + 𝑘𝑖𝑥 = 𝑘𝑝𝑥 , 
𝑘𝑠𝑦 + 𝑘𝑖𝑦 = 𝑘𝑝𝑦, 
𝑘𝑠𝑧 + 𝑘𝑖𝑧 + 𝑘𝑄𝑃𝑀 = 𝑘𝑝𝑧. 

(3.17) 

The first two expressions in Eq.(3.17) account for the transverse phase matching. It is the 
coupling, and hence the phase matching, between the interacting waves in the transverse plane 
that determines the parametric gain of the process. As Piskarskas et al. have shown in [21] 
only certain combinations of the azimuthal angles result in a high parametric gain. The 
maximum parametric gain is obtained when the following conditions are fulfilled: 

 

 (𝑖)𝜓𝑠 = 𝜓𝑖 = 𝜓𝑝, 
(𝑖𝑖)𝜓𝑠 = 𝜓𝑝,   𝜓𝑖 = 𝜓𝑝 + 𝜋, 
(𝑖𝑖𝑖)𝜓𝑖 = 𝜓𝑝,   𝜓𝑠 = 𝜓𝑝 + 𝜋, 

(3.18) 

where ψ is the angle from the x-axis in the transversal xy-plane as seen in Fig. 3.1. 

The first condition is collinear phase matching, with all beams propagating in the same 
direction. That would however result in both signal and idler being divergent, propagating in a 
cone, which is not desired here. Conditions (ii) and (iii) are noncollinear phase matching, 
which makes it possible to create beams propagating in different directions. This makes it 
possible to generate a signal (or idler) that will propagate along the optical axis, and create a 
highly coherent beam. Using condition (ii) in the momentum conservation Eq.(3.17) becomes  
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 𝑘𝑠 cos𝛼𝑠 + 𝑘𝑖 cos𝛼𝑖 + 𝑘𝑄𝑃𝑀 = 𝑘𝑝 cos𝛼𝑝 , 
𝑘𝑠 sin𝛼𝑠 − 𝑘𝑖 sin𝛼𝑖 = 𝑘𝑝 sin𝛼𝑝, (3.19) 

and condition (iii) in  will result in Eq.(3.17). 

 𝑘𝑖 cos𝛼𝑖 + 𝑘𝑠 cos𝛼𝑠 + 𝑘𝑄𝑃𝑀 = 𝑘𝑝 cos𝛼𝑝 , 
𝑘𝑖 sin𝛼𝑖 − 𝑘𝑠 sin𝛼𝑠 = 𝑘𝑝 sin𝛼𝑝. (3.20) 

Evaluating Eq.(3.19) and Eq.(3.20) will show that two independent signal-idler pairs can be 
created simultaneously for each domain grating period of the crystal. The ferroelectric grating 
period can be calculated by setting αs=0 and αi=0 respectively. The choice of the resonator and 
the reflectivity of the resonator mirrors, can be used to control which signal-idler pair that will 
be dominant in the OPO.  

 

3.3 Optical parametric oscillation 
As described in previous sections, optical parametric oscillation (OPO) is a nonlinear process 
that transfers energy of one wavelength into two longer wavelengths. The OPO consists of a 
resonator, that will help to control the process, and a nonlinear crystal. In this work PPKTP 
with a proper QPM period designed to obtain the desired wavelengths, has been used.  

There are two different kinds of OPOs. There is the singly resonant OPO where only the 
signal (or the idler) is resonating in the cavity. The other type is the doubly resonant OPO 
where the cavity is resonant for both the signal and the idler. This requires the cavity to be 
very stable since two waves that are coupled to each other must be resonant at simultaneously. 
A slight shift in cavity length, by for instance thermal drift, will shift the resonant frequencies, 
making the cavity difficult to keep stable. The OPOs built in this work were singly resonant 
for the signal wave. 

There are similarities between an OPO and a laser. Both are processes where a wave is 
resonating within a cavity with an active medium. In an OPO, however, the nonlinear 
response is very fast (a few fs), compared to the cavity roundtrip time, and no energy is stored 
within the crystal. Whilst energy is absorbed in the active laser material and the phase of the 
pumping wave is forgotten when the stimulated photon is emitted, the phase of the pumping 
wave is remembered in the signal and idler waves. The parametric process also has a 
threshold of operation and can show a longitudinal mode structure, just like the laser. 

To get the parametric process started high intensities are required and therefore the risk of 
damaging the crystals and optical components need to be considered. Measurements by 
Yoshida et al. [25] and Hildenbrand et al. [26

From Eq.

] have shown KTP has a damage threshold of 
approximately 20 J/cm2 for light with a wavelength of 1 μm and nanosecond pulses. There 
are, however, risks of damaging other optical components, especially the dielectric coating on 
the mirror used, too. 

(3.9) it can be seen that the coupled wave equations for an OPO are 
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 dE�ωp�
dz

= −i
ωpdeff

cnp
E(ωi)E(ωs)ei∆kz, 

dE(ωs)
dz

= −i
ωsdeff

cns
E�ωp�E∗(ωi)e−i∆kz, 

dE(ωi)
dz

= −i
ωideff

cni
E�ωp�E∗(ωs)e−i∆kz. 

(3.21) 

From these equations it can be seen that the energy transfer and the energy conservation will 
give the condition  

 
−

1
ωp

dIp
dz

=
1
ωs

dIs
dz

=
1
ωi

dIi
dz

. (3.22) 

This relation is called the Manley-Rowe equation, and describes the energy flow between the 
interacting fields [27

By integrating Eq.

]. 

(3.21) the signal single-pass amplification for a parametric device of length 
L can be written as 

 
𝐼𝑠(𝐿)

𝐼𝑠(0)
= 1 + Γ2

sinh2 �𝐿�Γ2 − �Δ𝑘
2
�
2
�

Γ2 − �Δ𝑘
2
�
2 ,  

(3.23) 

by assuming the incident signal wave is weak and the depletion of the pump is low. Here the 
parameter Γ2 is defined as 

 Γ2 = 𝜅𝐼𝑝, 

𝜅 =
8𝜋2𝑑𝑒𝑓𝑓2

𝜖0𝑐𝑛𝑝𝑛𝑠𝑛𝑖𝜆𝑠𝜆𝑖
. (3.24) 

This can be simplified by assuming ΓL≫1, which gives the approximation: 

 
𝐼𝑠(𝐿)

𝐼𝑠(0)
=

1
4

exp�2𝐿�𝛤2 − �
𝛥𝑘
2
�
2

�, (3.25) 

In the above equations plane waves are assumed. For the nonlinear interactions to take place 
is it convenient to work with strong focused laser beams, to reach high energy densities. 
However, as long as the PPKTP crystal is placed within the Rayleigh range of the beam plane 
waves can be assumed. What ultimately limits the focusing of the beam, in this work, is the 
damage threshold of the components. However it is desirable to match the focused beam with 
the mode of the resonator or, with the aperture of the crystal, making the Rayleigh range 
longer than the crystal, and the plane wave assumption is therefore valid. 

The pump energy threshold of for an OPO operating with nanosecond pulses can be written as 
[28] 
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ℇ𝑡ℎ =

0.6�𝜔𝑝2 + 𝜔𝑠2�
𝜅𝐿2 �

25𝑙
𝜏𝑐

+
1
2

ln
2

𝑅(1 − 𝐴)�
2

, (3.26) 

where R is the reflectivity of the output coupler, A accounts for the losses in the cavity, τ is 
the FWHM of the pulse length, L crystal length, l optical cavity length, ωp and ωs the mode 
radius of the pump and signal respectively. When the threshold is reached and the OPO is 
operating, the signal and idler will deplete the pump so that the gain and losses in the process 
are equal.  

As a measure of how well the OPO is working both the pump depletion and the efficiency of 
the OPO can be used. The nonlinear loss of the pump in the process is what is called the pump 
depletion. It is measured by comparing the total loss of the pump in the process to the linear 
loss of the pump below oscillation threshold. By letting ℇ* denote the measured energy below 
threshold, the pump depletion can be written 

 
𝜂𝑑𝑒𝑝𝑙 = 1 −  

ℇ𝑝𝑜𝑢𝑡

ℇ𝑝𝑖𝑛
ℇ𝑝∗𝑖𝑛

ℇ𝑝∗𝑜𝑢𝑡
. (3.27) 

The efficiency of the OPO can be calculated from 

 
𝑛𝑒𝑓𝑓 =

ℇ𝑠𝑜𝑢𝑡 + ℇ𝑖𝑜𝑢𝑡

ℇ𝑝𝑜𝑢𝑡
. (3.28) 

If the energy of the idler is not measured, it can be calculated as ℇ𝑖 = ℇ𝑠𝜆𝑠/𝜆𝑖 from the 
Manley-Rowe relation, Eq.(3.22).  

In an ideal OPO every depleted pump photon is transferred by the nonlinear process into one 
signal and idler pair of photons. So, the pump depletion should equal the efficiency of the 
OPO. In reality there are often losses due to scattering and diffraction in the resonator so the 
pump depletion is usually higher than the efficiency of the OPO. 

The desired wavelengths in the process can be obtained from fabricating periodically poled 
KTP crystals. From Eq.(3.15) the period of the ferroelectric grating for the desired 
wavelengths can be calculated from 

 Λ =
1

𝑛𝑝
𝜆𝑝
− 𝑛𝑠

𝜆𝑠
− 𝑛𝑖

𝜆𝑖

. 
(3.29) 

By that the gain curve for the process can be engineered to obtain desired wavelengths in the 
OPO. The refractive index of KTP can be found in Fradkin et al. [29] and Kato and Takaoka 
[30

If it is desirable to move the gain curve, and hence the spectrum, of the OPO, this can be done 
in several ways. In this work this is mainly done by temperature tuning. The gain curve is then 
adjusted by changing the refractive index and the length of the grating period by adjusting the 
temperature of the crystal. Eq.

] where it has been determined experimentally. 

(3.14) can be differentiated with the respect to temperature and 
the tuning rate for the signal frequency is then given by 
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 𝑑𝜐𝑠
𝑑𝑇

=
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𝑐 � 1
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− 𝜐𝑠
𝑑𝑛𝑠
𝑑𝑇

− 𝜐𝑖
𝑑𝑛𝑖
𝑑𝑇

−
𝑐
Λ
𝛼�, 

(3.30) 

where α is the thermal expansion and νg is the group velocity. The temperature derivatives of 
the refractive index can be found in Emanueli and Arie [31

Another way to adjust the gain curve is to change the angle with which the pump beam is 
incident on the crystal. That will then change the length of the grating in the direction of the 
pump beam 

]. 

The bandwidth of an OPG can be calculated from Eq.(3.25). Combining the value of Δk when 
the single pass amplification, Eq.(3.23), is reduced to half its maximum values, with the 
detuning of the signal frequency this phase mismatch results in the bandwidth of the OPG (off 
degeneracy) being 

 
Δ𝜈 =

2 ln(2)1/2

𝜋
�
Γ
𝐿
�
1/2 1

� 1
𝜈𝑔𝑠

− 1
𝜈𝑔𝑖
�
. 

(3.31) 

 

When the OPG is placed within a cavity and by that turned into an OPO this will affect the 
spectrum of the process. The multiple passes in the crystal and the cavity will narrow the 
spectrum, since the gain curve will multiply with itself. Also, when working with a standing 
wave cavity, as in this work, the longitudinal modes of the cavity might be imposed on the 
spectrum. However, when working with pulsed OPOs the mode buildup might be limited by 
the bandwidth of the pump beam. 

Since the nonlinear process is very fast and information such as the phase of the pumping 
beam is transferred to the signal and idler one can expect that the signal and idler will inherit 
the properties of the pump beam. Properties such as bandwidth and M2, or rather temporal and 
spatial coherence, will ultimately be transferred to the created signal and idler. There are, as 
will be shown, however means to improve the coherence of the generated beams. 
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4 OPO experiments 
In this chapter the experiments carried out in this work are presented and analyzed. The 
purpose of the experiments was to investigate the possibilities of enhancing the temporal and 
longitudinal coherence of mid-infrared parametric devices.  

First an optical parametric oscillator was designed and a highly coherent laser was used as 
pump source. By properly matching the TEM00 mode of a stable resonator with the focused 
pump beam, highly coherent beams in the mid-infrared part of the spectrum could be 
generated. Generally the properties of the pump source, such as spectral bandwidth and beam 
quality factor, are transferred to the generated beams.  

Highly coherent lasers, i.e. lasers operating in single transversal and longitudinal mode, are 
expensive and generally consist of large and sensitive systems. Therefore an investigation of 
using a multimode laser as pump source was done. Lasers operating in multiple transversal 
and longitudinal modes are substantially cheaper than single mode lasers and can generate 
large energies in compact arrangements. These properties make them attractive to be used as 
pump sources. Since the properties of the pump beam are transferred to the generated beams, 
it was of interest to investigate how the spatial and temporal coherence could be improved. 
Therefore it was of interest to investigate pumping nonlinear processes by employing Bessel 
beams. A multimode pump source was therefore used to pump OPG and OPO when pumping 
the process both by Gaussian and Bessel beam.  

4.1 OPO with a stable cavity 
One way of generating highly coherent beams in the mid-infrared spectrum is to use an 
optical parametric oscillator, OPO, pumped by a highly coherent laser and controlled by a 
stable cavity. The highly coherent laser pump source makes it possible to generate highly 
monochromatic signal and idler waves while the stable cavity provides feedback for the signal 
wave and with proper mode matching with the focused pump beam makes it possible to 
generate signal and idler waves that are spatially highly coherent. 

A seeded Q-switched all diode-pumped Nd:YAG laser and amplifying system operating in 
single longitudinal-mode at 1064.4 nm is used in this experiment. It has a 12 ns long pulses 
and 100 Hz repetition rate. Since it is seeded it operates in a single longitudinal mode and has 
a beam quality factor M2≈3. The laser has a pulse energy of 241 mJ. The pump energy was 
controlled by using a polarizing beam splitter and a half-waveplate. The pump beam was 
focused with three lenses in order to have a small focus and a Rayleigh range of around 10 
mm. The size of the focus was measured with the knife-edge method to be approximately 70 
μm. However, the beam suffered from some astigmatism, locating the horizontal and vertical 
foci at different positions along the optical axis. 

An PPKTP crystal with a ferroelectric period of 36.4 μm was chosen to obtain quasi phase 
matching at the desired wavelengths for the signal of 1596.6 nm and the idler of 3193.2 nm. 
The crystal was 10 mm long and of 1 mm thickness. The theoretical value of the period can be 
calculated using Eq.(3.15) to be 36.51 μm. However, preliminary experiments showed this 
period provided the wrong wavelengths, and moreover temperature tuning to the desired 
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wavelength was not possible. Therefore the period was adjusted to 36.4 μm and the desired 
wavelengths could be reached. The theoretical value of the grating period did not generate 
QPM for the desired wavelengths since it is determined from Sellmeier equations from 
Fradkin et al. [29] and Kato and Takaoka [30] with Eq.(3.14). These Sellmeier equations are 
not measured at the wavelengths that are generated in this work and the difference between 
them close to degeneracy is rather large [32 25]. Measurements by Yoshida [ ] have shown 
KTP crystals have a damage threshold of approximately 20 J/cm2. However, the damage 
threshold varies depending on wavelength, pulse length and several other parameters. To not 
damage the crystals, the limiting pump power was therefore calculated with a maximum 
fluence of 1 GW/cm2, corresponding to approximately 10 J/cm2. Moreover, the crystal did not 
have any anti reflection coating for any of the involved wavelengths. 

A resonator was simulated with the help of the program Winlase [33

4.1

]. The purpose of the 
simulation is to calculate the beam radius of the fundamental mode of the Gaussian beam 
supported by the cavity. With that knowledge it is then possible to pump an area smaller than 
the lowest order Gaussian mode in order to support that mode in the cavity. It is desirable to 
pump an area as big as possible to lower the energy fluence in the crystal. A tightly focused 
beam will give high energy fluence, and ultimately damage the crystal. However, pumping a 
too large area of the crystal will support higher order transversal modes in the cavity, which 
will decrease the spatial coherence of the beam. The focused pump beam and the lowest order 
Gaussian mode of the simulated are shown in Figs. . The TEM00 mode at the signal 
wavelength of the resonator is diffracting slower than the focused pump beam. Comparing the 
Rayleigh range of the focused pump beam and the TEM00 mode of the resonator, shows the 
Rayleigh range of the pump beam is about half as long as that of the focused pump beam. 
That is, due to the beam quality factor M2~3 of the pump beam the pump beam is diffracting 
faster than the TEM 00 mode of the resonator. 

 

(a) (b) 
Figure 4.1: The focused pump beam (red) with the simulated cavity radius (magenta) and the crystal position (blue). Dashed 
lines indicate the position of mirrors and crystal end faces for a better overview. In (a) is the horizontal plane displayed and 
in (b) the vertical plane 
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A plano-convex stable cavity was built with dielectric mirrors in order to support the lowest 
order Gaussian mode, according to the simulations in Fig. 4.1. The input coupler in the 
resonator was a dielectric mirror with a reflectivity close to 100%, for the signal and a radius 
of curvature (ROC) of 50 mm. The output coupler was a flat dielectric mirror with a 
reflectivity of 56% for the signal. The length of the cavity was 28 mm. A PPKTP crystal 
rested on a copper black and the temperature of the copper block, and hence the crystal, was 
controlled by a Peltier element. 

This setup gave a beam radius of the fundamental Gaussian mode within the cavity of 
approximately 100 μm. Another option would have been a concentric/confocal cavity since it 
would have a nicer overlap with the focused pump beam. That would require a longer cavity, 
and would therefore result in a higher threshold of the parametric process. A schematic 
picture of the plano-convex setup is shown in Fig. 4.2. 

 
Figure 4.2: Sketch of the setup pumped with a Gaussian beam and using a stable cavity. Blue, red and violet lines are 
representing the pump, signal and idler, respectively. The length of the cavity was 28 mm. 

Fig. 4.3a displays the efficiency and the pump depletion of the OPO and Fig. 4.3b displays the 
output energy of the signal wave. The efficiency is calculated with Eq.(3.28) and Eq.(3.22) 
using the measured energy of the input pump beam and the signal beam. Measurements of the 
transmitted pump beam were made after the first mirror in the filtering stage, and the 
measured data could be used in Eq.(3.27) to calculate the pump depletion of the process. The 
OPO has an oscillation threshold at slightly below 0.3 mJ of pump pulse energy. The 
efficiency increases slowly and reaches a maximum of 15% three times above threshold and 
the maximum output energy of the signal wave is 0.9 mJ. The output energy was only 
measured to slightly above three times the threshold to not risk damaging the crystal. Also, 
higher above threshold losses in the OPO due to parasitic processes and back conversion will 
increase causing the efficiency to decrease. Only half of the depleted pump is converted to 
signal and idler waves, suggesting the losses in the cavity are rather high. Since the crystal is 
uncoated, it reflects about 10% of both the signal and idler waves. There can therefore be 
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back conversion in the backward direction. The generated signal wave can also act as a pump 
source for a second parametric process. Calculations show that phase matching is obtained 
when 2.83 µm and 3.66 µm are generated when the signal wave is used as pump source. The 
generated idler will act as a seed for the second parametric process. The down conversion will 
thereby transfer energy from the signal wave into the idler. However, the powers at the idler 
wavelength are not measured and thereby not providing a solid proof.  Since the interacting 
waves are co-propagating Also, the fluctuations in the pulse energies are rather big, about 10-
20%. However, the purpose of this OPO is to generate a highly coherent beam, so the 
efficiency is not the main concern. 

  

(a) (b) 
Figure 4.3: Measured values combined with trend lines for a) The efficiency and the depleted pump of the OPO b) The 
output energy of the signal of the OPO.  

Spectra of the signal were recorded with an optical spectrum analyzer (OSA) which has a 
resolution bandwidth of 0.1 nm. When recorded with the OSA the spectrum showed a very 
distinct behavior of regular peaks due to the etalon effect caused by the close spacing between 
the crystal and the output coupler. The spectrum was recorded at several different 
temperatures. The central wavelength at each temperature is displayed in Fig. 4.4, together 
with simulated signal wavelength as a function of temperature with Sellmeier equations from 
Fradkin [29] with temperature correction from Emanueli and Arie [31], and temperature 
corrected Sellmeier equations from Kato and Takaoka [30]. The measured data follows the 
simulated curves, even if it is slightly oscillating. The discrepancy between the measured data 
and theoretical curves might be due to the fact that none of the theoretical curves are 
measured at this wavelength. Also, the desired wavelengths are rather close to degeneracy of 
the pump beam. Close to degeneracy, i.e. generating 2 μm fro m a 1 μm pump beam, the 
calculated values for the domain grating period differ significantly depending on which 
reference is used for the refractive index. This might also explain why the theoretical value of 
the QPM period for the desired signal and idler wavelength pair was outside of the 
temperature tuning range. The desired wavelengths of the signal and idler were obtained at 
50˚C.  
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Figure 4.4: The wavelength of the signal as a function of the temperature of the crystal. Measured data, star and trend line, is 
displayed together with theoretical curves calculated from [29] and [30]  

The spectra of the signal and idler in the OPO were recorded at 50˚C by using a lock-in 
amplifier and a spectrometer (JobinYvoniHR 550) with a PbSe detector, and are displayed in 
Figs. 4.5. When the spectrum of the idler wave was measured, a 2 μm band-pass filter was 
used to block the pump and signal waves. The signal wave could otherwise show up as 
artifacts in the spectrum, making it more difficult to interpret. The signal has a central peak at 
1595.9 nm and a FWHM of 0.2 nm. Two small side peaks can be observed in the spectrum 
located approximately 1nm apart from the central peak. A spacing of approximately 1nm 
corresponds to a Fabry-Perot etalon with a width of approximately 1.5 mm. This etalon effect 
is a result of the crystal being placed approximately 1.5 mm from the output coupler. Since 
the crystal is not anti-reflection coated for any of the involved wavelengths this phenomenon 
will occur. The spectrum of the idler has its central peak at 3192.9 nm and a FWHM of 0.5 
nm, corresponding to 14 GHz. The resolution of the spectrometer is about 19 GHz, meaning 
that the spectra might be narrower than the resolution of the spectrometer. This spectrum 
shows only one side peak with a spacing of 1.3 nm, which corresponds to 38 GHz. This side 
peak is an effect of the small peaks in the spectrum of the signal. The intracavity Fabry-Perot 
etalon will allow the signal to be resonant at certain resonant frequencies. The small side 
peaks in the signal will therefore give rise to small side peaks in the idler spectrum as well, 
which wavelength can be calculated by the Manley-Rowe relation. Over all, the OPO show a 
high temporal coherence, which is an effect of using a single longitudinal mode pump laser. 
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(a) (b) 
Figure 4.5: a) The spectrum of the signal wave in the OPO at 50˚C. b) The spectrum of the idler wave in the OPO at 50˚C 

The M2 was calculated from measurements of the beam radius at several positions after a lens 
with focal length of 150 mm. The beam radius was measured with the knife-edge method. A 
fitting of Eq.(2.6) to the measured data gives M2

hori=1.3 and M2
vert=1.7. The measured data 

and the result of the fitting are shown in Figs. 4.6. The slightly worse spatial coherence in the 
vertical direction is an effect of the astigmatism of the pump beam. Due to the astigmatism it 
is not possible to mode match both the vertical and horizontal direction perfectly. This will 
show as the spatial coherence being slightly worse in one direction. As can be seen in Figs.4.6 
is the mode matching not perfect since the Rayleigh range, the length of the focus, is a bit too 
short to obtain perfect mode matching simultaneously for the horizontal and vertical direction, 
and the spatial coherence will therefore decrease slightly. The Rayleigh range is however a 
property linked to the M2 of the pump beam, which is difficult to improve. However, a M2 
around 1.5 indicates a spatial coherence which is high enough to fulfill the requirements 
stated in the introduction. 
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(a) (b) 
Figure 4.6: Measured beam radii at several distances from the lens are shown by blue point and the fitting of the measured 
data to Eq.(2.6) is shown by the red line. The right graph a) shows the horizontal measurements and the left graph b) the 
vertical measurements. 
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4.2 Parametric processes pumped by a Gaussian and a Bessel 
beam 

The purpose of this set of experiments is to investigate the difference of beam quality of the 
output beam when pumping a parametric process with a transverse Bessel intensity 
distribution rather than a Gaussian one. Pumping the nonlinear process with a Bessel beam 
might improve the beam quality and the spectral quality of the output signal when a pump 
beam of poor spatial and temporal coherence, i.e. a pump beam with a rather high beam 
quality factor, M2, and a broad spectrum, is used. OPG and OPO were investigated with both 
pump configurations. The investigation of the OPG provided understanding of how the 
coherence is affected by the various pump configurations, unhindered by the averaging effects 
of the resonator.  

Throughout these experiments a flashlamp-pumped Q-switched Nd:YAG laser was used to 
pump the parametric process. The laser provided 6.5 ns (FWHM) long pulses at 20 Hz 
repetition rate. It operates in longitudinal-multimode oscillations around a center wavelength 
of 1064 nm. The beam quality factor, M2, was measured to be 5. 

A PPKTP crystal with a period of 36.4 μm was used to generate the desired wavelength pair 
of 1596.6 nm and 3193.2 nm. The same crystal described in Chap. 4.1 was used. When 
pumping the crystals with a conical beam, which is the case when pumping with a Bessel 
beam, the phase-matching conditions will change, as seen in Chap. 3.2. This will slightly 
change the required grating period from the collinear case. This change is however small 
enough to be within the wavelength range tunable by temperature. 

In the OPO setups a Fabry-Perot cavity with two plane mirrors was used as resonator, and was 
singly resonant for the signal wave. The input coupler was coated for high reflectivity (>99%) 
at the signal wavelength and low reflectivity (<5%) at the pump wavelength. The coating of 
the output coupler provided a reflectivity of about 43% at the signal wavelength. The length 
of the cavity was 24.5 mm. After the resonator (or crystal when working with the OPG) a 
filtering stage was constructed consisting out of two dielectric mirrors, which were highly 
reflective for the signal wave, with the purpose of separating out the signal wave from the 
remaining pump wave to make individual measurements on the signal possible. 

4.2.1 Pumping of OPG by a focused Gaussian beam 
To investigate the gain properties of the crystal and how the resonator affects the parametric 
process was an OPG set up. The OPG was pumped by a Gaussian beam that was focused with 
a plano-convex lens with 50 mm focal length. The beam waist of the pump beam was 
measured to be 75 μm and the Rayleigh range was approximately 10 mm. The crystal was 
placed within the Rayleigh range, since one can assume the laser beam to propagate as plane 
waves within this distance. Fig. 4.7 is a schematic picture of the setup. The crystal rested on a 
copper block and the temperature was kept to 50̊ C, just as for the stable cavity OPO, to fulfill 
the phase matching conditions for the desired wavelengths.  
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Figure 4.7: Sketch of the setup pumped with a Gaussian beam focused by a regular lens. Blue, red and violet lines are 
representing the pump, signal and idler. 

The output energy of the signal is shown in Fig. 4.8b and the efficiency and pump depletion 
of the OPG are shown in Fig. 4.8a. The OPG has its threshold at 0.5 mJ of pump pulse 
energy. Due to the risk of damaging the crystal the output power was only measured to be 
slightly three times above threshold. That is, when the pump input power is about 1.1 mJ. The 
efficiency three times above threshold is 15% and the pump depletion about 24%. The 
depletion of the pump saturates about two times above threshold. In an OPG all of the 
depleted pump should be transferred into the generated signal and idler wave. Therefore the 
efficiency and the pump depletion are supposed to be equal. In these graphs they are not. One 
possible explanation is that the generated signal acts as pump wavelength for a second 
parametric process. Calculations of the QPM shows a second signal and idler pair, at 2.8 µm 
and 3.66 µm respectively, that is phase matched for the employed grating period when using 
the desired signal wave at 1596 nm as a pump source. Since all interacting waves are co-
propagating, the generated idler will act as a seed for the second parametric process. Despite 
not being perfectly phase matched, the second parametric process will have gain and transfer 
energy from the signal wave to the idler wave. This will deplete the measured signal and can 
account for the discrepancy between the measured depleted pump and the efficiency of the 
process. This cascaded process is possible since all interacting beams are co-propagating, that 
is, propagating in the same direction and therefore enabling interactions between the various 
beams. Also, the measured intensity fluctuates about 10-20% for all measured values, and 
hence might the discrepancy between the depleted pump and the efficiency of the process be 
smaller than indicated.  
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(a) (b) 
Figure 4.8: a) The efficiency and pump depletion of the OPG. b) The output energy of the signal of the OPG. 

Fig. 4.9 displays the spectrum of the OPG at two times above threshold recorded with an OSA 
at 50°C approximately 3 times above threshold. The spectrum has its center at 1596.5 nm and 
a FWHM of 4.5 nm. The broad spectrum is an effect of the multi mode nature of the pump 
beam. The spectrum of the idler wave is not measured since the OSA only has a range of 380-
1700 nm. The broad spectrum of the pump, due to the multiple longitudinal modes, is 
transferred to the signal and idler waves.  

 
Figure 4.9: The spectrum of the signal wavelength in the OPG at 50˚C. 
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The M2 was calculated from measurements of the beam radius at several positions after a lens 
with focal length 70 mm. The beam radius was measured with the knife-edge method. A 
fitting of Eq.(2.6) to the measured data gives M2

hori=5.8 and M2
vert=4.4. The measured data 

and the result of the fitting are shown in Figs. 4.10. This resembles the properties of the pump 
beam, which is expected. The multi mode nature of the pump will result in the pump photons 
having of a lot of different momenta (wave vectors) and the difference will be transferred to 
the signal and idler waves. 

 

 

  

(a) (b) 
Figure 4.10: Measure beam radii at several distances from the lens are shown by blue point and the fitting of the measured 
data to Eq.(2.6) is shown by the red line.The right graph a) shows the horizontal measurements and the left graph b)the 
vertical measurements 
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4.2.2 Pumping of OPG by a Bessel beam 
Just as for the Gaussian pumped process is it of relevance to investigate the gain properties of 
the PPKTP crystal when being pumped with a conical beam. This will give insight to what 
effects the non-collinear phase matching has and how a resonator can be used to exploit these 
effects. 

A transverse Bessel intensity was created with the help of an axicon with a prism angle α=1°. 
This top angle gives a beam radius of approximately 30 μm, approximated using Eq.(2.20). 
The crystal was placed in the focal line of the axicon at a distance of approximately 80 mm. 
The crystal rested on a copper block and its temperature was controlled and kept at 55˚C to 
fulfill the phase matching conditions for the desired signal and idler wavelength pair. A 
schematic picture of the setup is shown in Fig. 4.11. 

Figure 4.11: Sketch of the setup with blue, red and violet lines representing the pump, signal and idler. 

The efficiency and the pump depletion of the OPG are depicted in Fig. 4.12a and the output 
power of the signal wave is depicted in Fig. 4.12b. The threshold of the parametric process 
was measured to 2.2 mJ of input pulse energy. The input pump pulse energy was limited to 
4.5 mJ to avoid damaging the crystal. The efficiency 2 times above threshold is 6%, while the 
pump depletion is 14% with a maximum output power of 0.16 mJ of the signal wave. There 
is, however, no sign of depletion saturation at 2 times above threshold. The measurement is, 
in fact, restricted by the limited input pump energy. In the Gaussian pumped OPG saturation 
was already apparent as an effect of the noncollinear interactions. Since all interacting beams 
are propagation in different directions there will be no back conversion in the forward 
direction. Only half of the depleted pump is transferred in to signal and idler. As described in 
Chap 3.2, there are two possible phase matching options which results in high parametric 
gain. In one of the possible high gain possibilities, the signal wave is propagating in a cone 
with an angle larger than the angle of the conical pump beam, and the idler is propagating 
along the optical axis. That might explain why the efficiency is not equal to the depleted 
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pump. About half of the pump which is depleted is transferred into the signal and idler pair in 
which the idler propagates along the optical axis and the signal propagates in a cone and is 
therefore not detected by the power meter, after the separation stage, hence the discrepancy 
between efficiency and pump depletion. 

 

  

(a) (b) 
Figure 4.12: a) The efficiency and depleted pump of the OPG. b) The output power of the signal wave of the OPG. 

Fig. 4.13 shows the spectrum of the signal wavelength in the OPG at two times above 
threshold when kept at 55 °C, which is recorded with an OSA, where the desired wavelength 
of the signal was obtained. The OPG has a center wavelength of 1596.7 nm and bandwidth of 
2.8 nm at FWHM, which corresponds to an idler wavelength of 3189.2 nm, calculated using 
Eq.(3.7). The idler is, however not measured, due to the limited wavelength range of the OSA. 
As seen in Chap. 3.2 the QPM when using Bessel beams will give rise to two resonant pairs 
with high parametric gain for each period length of the ferroelectric grating. This, when not 
controlled by a resonator, will broaden the spectrum of the parametric process by allowing 
several different processes to take place. The main factor influencing the spectral width is the 
diffraction free propagation length, i.e. the length of the focal line, which in turn is determined 
by the coherence radius of the beam and the prism angle, α, of the axicon. This is the length of 
the nonlinear process in which the parametric gain can be tied to the spectral width. 
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Figure 4.13: Spectrum of the Bessel pumped OPG at 55 ˚C. The temperature difference compared to the OPO in previous 
section can be accounted for by the lack of a resonator and the orientation of the crystal. 

After the filtering stage the signal beam was focused by a lens with focal length 70 mm. The 
beam radius after the lens was measured at several positions on the optical axis. The 
measurement was done with the travelling knife-edge method and Eq.(2.6) was fitted to the 
measured values. Figs. 4.14 display the measured beam radii and the fitting of Eq.(2.6). 
M2

hori=2.5 and M2
vert=2.5 were obtained in this setup. This result is lower than for the 

Gaussian pumped OPG, suggesting that the noncollinear phase matching improves the spatial 
coherence as well as the temporal coherence. The interference in the Bessel beam provides an 
automatic selection of the spatially coherent parts of the pump beam, which will be 
transferred to the generated waves. The spatial coherence is therefore improved by the 
limitation on how high gain can be obtained in the nonlinear process.  

  

(a) (b) 
Figure 4.14: Measured beam radii at several distances from the lens are shown by blue point and the fitting of the measured 
data to Eq.(2.6) is shown by the red line. The right graph a) shows the horizontal measurements and the left graph b) the 
vertical measurements. 
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4.2.3 Pumping of OPO by a focused Gaussian beam 
 

In this setup an OPO was pumped by a Gaussian beam which was focused with a plano-
convex lens of focal length of 50 mm, similar to the Gaussian pumped OPG. The beam waist 
of the pump beam was measured to be 75 μm and the Rayleigh range was approximately 10 
mm. The crystal was placed within the Rayleigh range, since one can assume the laser beam 
to propagate as plane waves within this distance. The maximum input power used was limited 
to 2 mJ which did not damage the crystal. The same crystal as for the OPG (described in 
Chap. 4.2.1) was used. A schematic picture of the setup is shown in Fig. 4.15. 

 

Figure 4.15: Sketch of the setup pumped with a Gaussian beam focused by a regular lens. Blue, red and violet lines are 
representing the pump, signal and idler. The length of the cavity was 24.5 mm. 

The efficiency together with the pump depletion of the OPO are shown in Fig. 4.16a and the 
output energy of the signal wave is displayed in Fig. 4.16b. The threshold of the OPO is at 0.2 
mJ of pump pulse energy. The maximum output pulse energy of the signal wave is measured 
to be 0.18 mJ. The OPO reaches its maximum efficiency of about 18% with pump depletion 
of about 27% at pump pulse energies 3 times above the threshold value, which is higher than 
for the Gaussian pumped OPG. The efficiency then decreases slightly, even though the pump 
depletion increases, due to losses from parasitic effects and back conversion from the signal 
and idler to the pump wave. Among other things, SFG between the pump and the signal was 
observed. Also observed was SFG between the signal and the parasitic SHG of the pump 
resulting in radiation at a wavelength of 399 nm. These SFG processes are, however, 
operating at so low powers they are not measurable. One explanation for the discrepancy in 
efficiency and the pump depletion might be the signal wave acting as a pump source for down 
conversion. Calculations show that phase matching is obtained for generating the wavelengths 
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at 2.66 µm and 3.66 µm when using the signal wave as a pump source. The collinear phase 
matching makes the idler seed a second parametric process, transferring energy from the 
signal wavelength into the idler wavelength. This will deplete the generated signal wave at 
1596 nm, and will be shown as a discrepancy between the efficiency and the depleted pump.  

  

(a) (b) 
Figure 4.16: a) Efficiency and depleted of OPO pumped with a focused Gaussian beam. b) Output power of signal wave. 

The spectrum of the signal in this OPO is shown in Fig. 4.17a. Fig. 4.17b shows the spectrum 
with the crystal turned a few degrees in order to remove etalon effects. The spectra have their 
central peaks at 1596.3 nm and 1597.2 nm respectively, so the turning of the crystal also 
slightly changes the central wavelength. The peaks in Fig. 4.17a have a FWHM of 0.1 nm and 
are separated by 1 nm. This separation and width of the peaks corresponds to an intracavity 
etalon of 1.28 mm, corresponding to the distance between the crystal and the input coupler. 
Turning the crystal somewhat removes the etalon effect and gives a better view of the 
spectrum. The spectrum of the turned crystal has a FWHM of 4 nm. The spectrum of the idler 
wave was not measured since it is located outside of the range of the OSA. The corresponding 
idler wavelength can however be calculated using Eq.(3.7) to be 3190.8 nm and 3187.2 nm 
respectively. The broad spectrum is an effect of the longitudinal multi mode nature of the 
pump beam. The feedback in the resonator is slightly narrowing the spectral gain compared to 
the OPG.  The resonator is, however, not limiting the spectral bandwidth in any other manner. 
Therefore, the multiple longitudinal modes of the pump beam will be transferred to the 
generated signal and idler. 
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(a) (b) 
Figure 4.17: a) Spectrum of the signal in an OPO pumped by a focused Gaussian beam at 50 ˚C. b) Spectrum of same OPO 
with the crystal slightly turned.  

A lens with 100 mm focal length of was used to focus the signal after the separation stage, in 
order to measure the M2 of the signal. This was measured using the knife-edge method and 
Eq.(2.6) was then fitted to measured data. Figs. 4.18 display the measured data and the fitting 
plots. M2

horiz=2 and M2
vert=2.2 were obtained from the fitting. This beam has increased spatial 

coherence compared to the signal generated in the Gaussian pumped OPG. The spatial 
coherence is also improved compared to the pump beam. This suggests the presence of a 
resonator, which provides feedback for the signal, limits possible high gain interactions and 
controls how the transverse mode of the signal can build up, and hence controls the spatial 
coherence. In a resonator consisting of two flat mirrors the beam quality factor, M2, is 
essentially determined by the beam radius of the pump wave and the length of the resonator. 
A small misalignment of a mirror will, however, significantly deteriorate the spatial 
coherence by providing gain for noncollinear processes. 
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(a) (b) 
Figure 4.18: Measured beam radii at several distances from the lens are shown by blue point and the fitting of the measured 
data to Eq.(2.6) is shown by the red line. The right graph a) shows the horizontal measurements and the left graph b) the 
vertical measurements. 
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4.2.4 Pumping of OPO with a Bessel beam 
In the final setup an OPO was set up to be pumped by a beam with a radial Bessel distributed 
intensity. A schematic figure of the setup is shown in Fig. 4.19. The transverse Bessel 
intensity was created with an axicon with the prism angle α=1˚, similar to the previous Bessel 
pumped OPG. The resonator makes it possible to promote one of the two possible processes 
with high gain and thereby select only one signal and idler pair. The maximum pump energy 
is limited to 2.4 mJ. The crystal was placed along the focal line of the axicon at a distance of 
approximately 80 mm. The crystal rested on a copper block and its temperature was 
controlled and kept at 60˚C. 

 
Figure 4.19: Sketch of the setup with blue, red and violet lines representing the pump, signal and idler. The length of the 
cavity was 24.5 mm. 

The efficiency of the OPO is depicted in Fig. 4.20a and the output power of the signal wave is 
depicted in Fig. 4.20b. The threshold of the parametric process is at 0.6 mJ of input pulse 
energy. The output power of the signal wavelength increases almost linearly with the input 
power. The pump depletion and the efficiency increase first with rather steep slopes, and then 
start saturating as pump powers increase. Neither the efficiency nor the pump depletion shows 
any sign on decreasing after the maximum values are reached.  The curves for the depleted 
pump and the efficiency follow each other rather closely, indicating that majority of the 
depleted pump is used in the desired process and that the losses are not so significant. The 
small losses compared to the Gaussian pumped OPO, confirms the theory that cascaded 
processes are depleting the measured signal wave. These processes can only take place when 
the interacting waves are co-propagating, that is, when collinear phase matching is being used 
and the idler wave is seeding the second parametric process. When employing noncollinear 
phase matching, these cascaded processes are not present since all interacting waves are 
propagating in various directions. These losses are mainly due to parasitic processes and 
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scattering in the cavity. The efficiency of the OPO is 21% at approximately 3 times above 
threshold and the maximum output energy of the signal is 0.32 mJ per pulse. The resonator 
which is present and provides feedback for the signal wave yields an increase in efficiency, 
but also ultimately limits the efficiency of the process at the same time. The efficiency can be 
optimized for certain power ranges by adjusting the output coupling and the crystal length. 
Ultimately, it is the length of the nonlinear crystal that affects the efficiency of the process, 
since it determines the starting point of the nonlinear process. For a long interaction length 
within the crystal more pump energy can be converted.  

  

(a) (b) 
Figure 4.20: a) Efficiency of the parametric process and depletion of the pump. b) The output power of the signal wave 

Fig.4.21 shows the spectrum of the OPO at 60˚C, since the desired wavelengths were obtained 
at this temperature, which was recorded with an OSA. The central peak of the spectrum is 
located at 1596.5 nm and has a full-width half-maximum (FWHM) bandwidth of 0.2 nm, 
corresponding to 24 GHz. The corresponding idler wavelength 3190 nm, which is calculated 
using Eq(3.7). The spectrum of the idler was not measured since it is outside the measureable 
range of the OSA. The narrow central peak in the signal spectrum shows that the process has 
a narrow bandwidth, and hence has good temporal coherence. The temporal coherence is an 
effect of pumping with a transverse Bessel distribution. The phase-matching is noncollinear 
and makes it possible to promote one single wavelength of the signal since back conversion 
and the associated spectral broadening is limited. More important is the interference pattern 
that creates the Bessel beam, provides an automatic selectivity of the spatially coherent wave 
vectors in the pump beam. The coherence of these wave vectors will be transferred to the 
signal wave, and therefore generating a highly coherent signal. This effect is, however, only 
present with when a resonator is used that provides feedback for the signal wave, and by that 
determines which high gain phase matching condition will be used. The small side peaks are 
located about 1 nm from the central peak, which corresponds to a Fabry-Perot cavity of 1.28 
mm. The crystal was located about 1.28 mm from the input coupler, and none of the end faces 
of the crystal are AR-coated. Therefore it seems the small peaks are from an intracavity etalon 
between the input coupler and the end face of the crystal.   
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Figure 4.21: Spectrum of the OPO pumped by a Bessel beam taken at 60˚ C. 

After the second mirror in the separation stage, a lens of focal length 100mm was placed in 
order to measure the beam quality factor, M2, of the generated signal. The beam radius was 
measured with the traveling knife-edge method and Eq.(2.6) was then used to fit the measured 
data to obtain the M2. The measured beam radii and the fittings are shown in Figs. 4.22 along 
with the obtained M2 for both the vertical and the horizontal direction. The fitting of Eq.(2.6) 
to the experimental data results in M2

hori=1.9 and M2
vert=2.1. This result shows an 

improvement of the spatial coherence of the generated signal compared to that of the input 
pump beam, and also to that of the Bessel pumped OPG. This suggests the spatial coherence 
here is limited by the resonator used. 

  

(a) (b) 
Figure 4.22: Measured beam radii at several distances from the lens are shown by blue point and the fitting of the measured 
data to Eq.(2.6) is shown by the red line. The right graph a) shows the horizontal measurements and the left graph b) the 
vertical measurements. 
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4.2.5 Comparison 
The four performed experiments can give some insight in how the focusing of the pump beam 
and how the resonator can affect the nonlinear process. To start this analysis the efficiencies 
of the two OPO are depicted in Fig. 4.23a and the ones of the two OPG are shown in Fig. 
4.23b. The efficiencies are plotted against pump energy above threshold.  

  

(a) (b) 
Figure 4.23: a) The efficiencies of the different OPO as a function of power above threshold. The efficiencies follow each 
other rather closely. b) The efficiencies of the two different OPG as a function of power above threshold. 

Looking at the OPGs it can be observed that the efficiency of the Gaussian pumped OPG is 
higher than for that of the Bessel pumped OPG, 6% and 12% respectively about two times 
above threshold. This is expected from the energy distribution of the Bessel beam. Only a 
fraction of the total power is contained within the central maximum of the Bessel distributed 
intensity, while the rest of the power is contained in the rings. Therefore, only the coherent 
part of the pump beam is used in the process. The noncollinear phase matching, that is an 
effect of using a Bessel beam, will however increase the threshold of the parametric process. 
Also, there are two possible high gain processes for the Bessel pumped OPG, and the 
efficiency is only measured for one of them. The depleted pump is used in both of these 
processes and this will show as a lower efficiency compared to the Gaussian pumped OPG 
and significant losses in the process. However, the efficiencies of the two different OPO are 
rather similar. The curves for the efficiencies follow each other closely and saturate to a value 
about 20% approximately three times above threshold. The existence of a resonator increases 
the efficiency of the Bessel pumped process of about three times, compared to the OPG, while 
the efficiency of the Gaussian pumped process is only increased marginally, compared to the 
OPG. At first glance, one might expect the efficiency of the Gaussian pumped process to 
increase more in the existence of a resonator. The efficiency of the Gaussian pumped OPO is 
decreased due to cascaded energy transfer into the idler wave. Hence, it seems the resonator 
imposes restrictions on the efficiency in a stronger way than the choice of focusing of the 
pump beam. This particular resonator seems to limit the efficiency to somewhere around 20%.  
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The spectra from the different experiments are compared in various ways in Figs. 4.24. To 
investigate the influence of the different ways of focusing the pump beam, it is of interest to 
compare the different spectra.  

  

(a) (b) 

  

(c) (d) 
Figure 4.24: a) Spectra of the OPGs . The red spectrum is the OPG with the pump focused by a lens and the green is with the 
pump focused by an axicon. b) Spectra of the OPOs. The red spectrum shows the pump focused by a lens while the green is 
with the pump focused by an axicon. c) Spectra of the OPO (red) and OPG (green) when the pump is focused by an axicon d) 
Spectra of the OPO (red) and OPG (green) when the pump is focused by a lens. All spectra are normalized with respect to 
themselves. 

 

Fig. 4.24a shows the spectra of the Bessel (green) and Gaussian (red) pumped OPG. The 
spectrum of the Gaussian pumped OPG is only slightly broader than the spectrum of the 
Bessel pumped OPG. It could be expected that the difference should be bigger and that the 
spectrum of the Bessel pumped OPG should be narrower. However, the non-existence of a 
resonator will cause a broader spectrum since the resonator will impose conditions on the 
momentum transfer in the process. This can be illustrated in Fig. 4.24d, where the spectra of 
the Bessel pumped OPG and OPO are shown. The spectrum of the OPO is a lot narrower than 
the spectrum for the OPG. The spectrum of the OPO looks like a narrower but similar 
spectrum of the OPG which is modulated by Fabry-Perot transmission. This modulation is an 
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interference effect due to an intracavity Fabry-Perot etalon between one of the end-faces of 
the crystal and the input coupler. The same modulation can be seen in the spectrum for the 
Gaussian pumped OPO when looking at Fig. 4.24b, where the spectra of the two OPO are 
illustrated. The Gaussian pumped OPO has a few high central peaks and several minor side 
peaks while the Bessel pumped OPO has one central peak and only a few minor side peaks. 
The distance between the peaks and the width of the peaks are almost the same in both of the 
spectra suggesting that it is the intracavity etalon that modulates the spectrum. However, the 
spectrum of the Gaussian pumped OPO closely resembles that of the Gaussian pumped OPG, 
modulated by an etalon. This can be seen Figs. 4.24c. The spectrum of the OPO is slightly 
narrower than that of the OPG, but there is still a pronounced resemblance.  

The narrow spectrum of the Bessel pumped OPO is a combined effect of the transverse Bessel 
distribution and the existence of a resonator. The resonator will narrow the bandwidth due to 
the multiple passes through the crystal. However, the resonator itself will not impose any 
other effects except the modulation of the spectrum, which in turn depends on choice of the 
resonator and the location of the crystal within the resonator. However, the combination of a 
resonator and focusing the pump beam with an axicon will impose conditions on how the 
momentum, and energy, can be transferred in the parametric process. The resonator restricts 
which one of the two high gain noncollinear processes will be operating, and the interference 
pattern, that creates the Bessel beam, will provide an automatic selection of the spatially 
coherent wave vectors of the pump beam. The multimode nature of the pump beam, i.e. the 
pump is characterized by rather broad spectrum and high M2, will therefore not be visible, 
since only the part of the beam which is coherent, and therefore creates the interference 
pattern and focal line, will be used in the nonlinear process. This will cause the generated 
signal to have a narrow bandwidth and be close to diffraction limited. As an effect, the idler 
also has a narrow bandwidth and a narrow spread of its ring. The resonator is however a 
condition for this limitation to take place, since it provides feedback and limits the possible 
high gain interactions even further. Without the resonator is the spectrum for the Bessel 
pumped process just as broad as the spectrum of the Gaussian pumped process. Hence, the 
combination of the resonator and the axicon will drastically improve the temporal coherence 
of the beam. 

Observing the improvement in temporal coherence makes it interesting to look also at the 
spatial coherence. A good measurement for the spatial coherence is, as previously stated, the 
beam quality factor, M2. The various M2 are listed in Table 1. 

 Lens Axicon 

OPG M2≈5 M2≈2.5 

OPO M2≈2 M2≈2 
Table 1: Tabulated values of the averaged M2 for the different experiments. 

As expected from theory [34] does the Gaussian pumped OPG inherit the spatial coherence 
from the pump beam. An improvement of the M2 can be observed when the OPG is pumped 
with a Bessel beam rather than a Gaussian beam. The measured value of the Bessel pumped 
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OPG is a factor of 2 smaller than the Gaussian pumped process. One might expect the 
Gaussian pumped OPO to inherit the properties of the pump as well. However, considering 
both the Bessel pumped and Gaussian pumped OPO, measurements show they have very 
similar spatial coherence. The big improvement in the spatial coherence when the process is 
pumped with a Bessel beam, which can be observed in the OPG, is no longer present. Hence, 
it seems the existence of a resonator is the limiting factor for the spatial coherence, not the 
method of focusing the pump beam. Ultimately is seems the transversal modes, which exist 
within the resonator, are the limiting factor for the spatial coherence of the OPO. This 
suggests the design of the resonator is crucial for high spatial coherence.  

Throughout these experiments two flat mirrors where used to create a Fabry-Perot resonator, 
in which the transversal modes are not Gaussian but rather more irregular transverse patterns. 
These transverse patterns define how the energy within the resonator will be distributed. It 
seems this condition on the energy distribution in the resonator is stronger than the method of 
pumping, and as long as the fundamental mode of the resonator is matched, the choice of 
focusing will not matter. A decrease the spatial coherence, i.e. a higher M2, could be obtained 
by focusing on a bigger area in the crystal so that higher order modes of the resonator will be 
supported. Therefore, it would be of interest to build an OPO with a resonator with at least 
one of the mirrors being curved, that is, a stable resonator. By doing so the spatial coherence 
might be improved further since the transversal modes of that type of resonator are Gaussian.  

Ultimately, the performance of the Bessel pumped and the Gaussian pumped OPO are equal 
except for one property, the temporal coherence. The spectrum of the Bessel pumped OPO is 
a lot narrower and can be considered better than for the Gaussian pumped OPO. Therefore, 
the use of the axicon can be used to improve the temporal coherence of an OPO pumped with 
a multimode laser, while the efficiency and spatial coherence of the process is controlled by 
the choice of resonator. The efficiency is however also controlled by the length of the crystal. 
A combination of a stable cavity and a pump beam focused by an axicon would possibly 
create a signal wave with high spatial and temporal coherence, even when pumped by a beam 
of low spatial and temporal coherence, making it possible to generate highly coherent beams 
in the far and mid-infrared part of the spectrum. 
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5 Discussion and outlook 
 

In Chap. 4.1 an OPO with a stable resonator was built and pumped by a highly coherent 
beam. The signal and idler inherited the temporal coherence, and the signal also showed a 
good spatial coherence. However, the spatial coherence was not equal in the vertical and 
horizontal direction. This was due to the astigmatism of the pump beam, making simultaneous 
mode matching impossible in both the horizontal and vertical direction. Also, the input 
coupler is a curved mirror, which will act as a negative lens, changing the measured beam 
radius and Rayleigh range. Hence, the beam radius will increase due to the input coupling 
mirror acting as a negative lens, making the area where the crystal is pumped bigger. Both of 
these factors will decrease the spatial coherence of the generated beam, since they will cause 
the signal to oscillate in more than one transversal mode.  

In Chap. 4.2 the influence of method of focusing the pump beam was investigated. Two sets 
of experiments were carried out when the pump beam was focused with a lens, with the pump 
beam retaining its transverse Gaussian intensity distribution and, two sets of experiments were 
carried out when the pump beam was focused with an axicon, creating a transverse Bessel 
intensity distribution. The experiments showed that when the pump beam was focused with an 
axicon the temporal coherence was improved compared to the pump beam used. The spatial 
coherence and the efficiency of the process, on the other hand were determined by the choice 
of resonator rather than choice of focusing method. This conclusion raises the question of how 
the beam quality could be further improved. The resonator used throughout these experiments 
was a Fabry-Perot etalon with flat mirrors. These resonators does not have pure Gaussian 
modes, but rather more irregular transverse patterns and suffer from higher power leakage and 
diffraction losses than stable cavities with well-defined Gaussian modes. Since the transverse 
modes are not perfectly Gaussian, and the M2 analysis assumes approximately Gaussian 
beams, will this show in the measurements as a slightly higher M2, and hence a slightly worse 
spatial coherence. The flat-flat Fabry-Perot is, however, convenient to work with since it is 
easy to align. Therefore, one way of improving the spatial quality would be to build the OPO 
with a stable resonator. This kind of resonators has well defined transverse Gaussian modes. 
By appropriately pumping an area smaller than the lowest order transverse mode it is rather 
easy to obtain a spatially highly coherent beam. When combined with a Bessel distributed 
pump beam highly coherent beams could be generated, even when a pump beam of poor 
quality is used. This makes it possible to generate highly coherent beams without the use of a 
pump source that operates in a single longitudinal and transversal mode. 

The main goal of this work is to generate a temporally and spatially highly coherent beam 
which will be used to seed another parametric process. This is achieved, within the required 
demands, in two of the setups built. The OPO with a stable resonator which was pumped by a 
single mode pump source showed a narrow bandwidth of 0.2 nm and a beam quality factor 
M2~1.5. The OPO pumped by a conical beam, created from a multimode pump source, shows 
a bandwidth of 0.2 nm and a beam quality factor, M2~2. These are two very similar results, 
despite the two different pump sources used. 
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The difference in the beam quality factor of the two setups can be accounted for by the use of 
different types of resonators. As stated in previous analysis the transverse mode patterns of a 
Fabry-Perot resonator are not perfectly Gaussian but rather more irregular yielding a slightly 
higher beam quality factor when Gaussian beams are assumed as in the analysis made. To get 
a more qualitative analysis of the efficiencies and spatial coherence of the different setups the 
same resonator should be used for both setups. That would make it possible to further 
investigate the advantages and disadvantages with using a multimode laser to generate highly 
coherent beams. Multimode Q-switched lasers are in general considered inexpensive, reliable 
and being able to provide high pulse energies, while lasers operating in single longitudinal 
and transversal mode are more expensive. The limitations of the spatial coherence and the 
efficiency when pumping with a conical multimode beam are therefore interesting to be 
compared to those when pumping with a single mode beam. 

When comparing the current setups the spectral bandwidth is of most interest. The OPO 
pumped by a multimode pump source shows the same spectral bandwidth as the OPO pumped 
by a single mode pump source, when focused with an axicon creating a conical beam. This 
shows it is possible to generate a highly coherent signal, or idler, also when using a 
multimode pump laser. The two setups have the same bandwidth which indicates it is 
ultimately other things rather than the pump laser that limits how narrow bandwidth can be 
generated, with proper phase and mode matching. Noncollinear phase matching is a way of 
generating highly coherent beams since there will be no back conversion or coupling between 
the generated waves and therefore the range of the wave vectors can be kept very narrow for 
the desired beam. One option to further investigate this aspect would be to employ 
noncollinear phase matching combined with a single mode pump source to investigate if the 
bandwidth becomes even narrower. 

The narrow bandwidth generated when pumping with a conical beam is an effect of the non-
collinear phase matching, making it possible to generate a signal or idler with a narrow 
bandwidth. The generated wave which is not propagating along the optical axis (depending on 
which of signal or idler has the desired wavelength) makes it difficult to use and analyze in a 
later stage in a cascaded setup. It will, due to the noncollinear phase matching, diverge in a 
cone with a slightly bigger angle than the one of the pump beam. If it is desirable to use both 
the signal and idler generated it is therefore of advantage to use the OPO pumped by a single 
mode pump source. When using collinear phase matching, as in the setup pumped with a 
single mode beam, there are several possibilities of back conversion and other interactions 
making the spectrum of the generated beam broadened. With noncollinear phase matching the 
back conversion and other undesired noncollinear processes, due to couple between the 
interacting waves, are prevented, keeping the bandwidth of the generated beam narrow. 

The Bessel beam used in this work is created with an axicon starting from a multimode laser 
beam. Since the laser beam is operating in multiple longitudinal modes the coherence length 
is limited. The limited coherence length imposes restrictions on the transverse Bessel intensity 
that is created by interference. Due to the multiple oscillating modes in the beam, and hence 
wavelengths, the interference pattern will not be ideal. The contrast of the interference pattern 
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will be decreased when the amount of oscillation modes is increasing, and hence, the 
bandwidth gets broader. It is clear that the noncollinear phase matching is beneficial to 
generate a signal or idler with a narrow bandwidth. The interference pattern created is 
however creating a focal line and hence yielding the peak powers required for the parametric 
process to occur. The transverse Bessel distribution created with the multi mode pump laser is 
not perfect due to the broad bandwidth of the pump. How this affects the parametric process 
remains to be assessed.  

All spectra of the various OPO in this thesis show narrow peaks due to an intracavity etalon 
between the crystal and one of the mirrors. This modulation is not necessary a negative effect 
but needs to be dealt with. One way to take advantage of the etalon effect would be to insert 
another etalon in the cavity with larger mode spacing. The effects of the narrow peak and the 
large mode spacing could then be combined. The large mode spacing would then suppress the 
smaller peaks while supporting the narrow central peak, resulting in a highly coherent wave. 
This might, however, introduce losses due to scattering and diffraction in the cavity and, 
slightly worsen the spatial coherence if not accounted for in the design of the resonator. One 
easy way to make the etalon effect smaller or even remove it completely would be to coat the 
end faces of the crystal with an anti-reflection coating. If the anti-reflection coating is made 
for both the signal and pump wave the efficiency of the process could also be increased.  

Another way of removing the modulation of the spectrum due to the intracavity etalon would 
be to build a ring cavity consisting of three or more mirrors. That would mean the signal 
would be resonating in a traveling wave resonator, rather than a standing wave resonator 
removing any etalon effects. This would also result in the OPO having a higher threshold and 
the risk of damaging the crystal due to intense pumping increases. Another disadvantage of 
using a ring resonator is that it is more difficult to align due to its many degrees of freedom. 
This kind of resonator might however narrow the bandwidth of the generated signal, 
increasing the temporal coherence, as well as increasing the spatial coherence when properly 
matched with the pump beam. 
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5.1 Future work 
The signal and idler waves in the experiment in Chap. 4.1 will later be used to pump a second 
parametric process to enhance the energy of the idler wave. In this process energy from the 
signal wave will be used to amplify the idler wave. The idler will thereafter be used to seed an 
OPO with conversion of radiation from the wavelength of 2μm to a wavelength of 6.4μm, for 
the MIRSURG project. For the seeded OPO, generating 6.4 μm, is it of importance that the 
idler possess high spatial and temporal coherence. 

It is of interest to further investigate the possibilities of generating a highly coherent beam 
when pumping the parametric process using a multi mode laser. To get a deeper 
understanding of the limitations of the noncollinear multi mode pumped OPO is it of interest 
to compare it with the stable cavity OPO pumped by a single mode laser. This should be done 
under the same conditions, i.e. with the same resonator to ultimately see how the efficiency of 
the process and the beam quality factor is affected by the conical beam. If the qualities of the 
two OPOs are similar this indicates there is a way of generating highly coherent beams in the 
mid-infrared part the spectrum also with laser that can be considered cheap compared to 
single mode pump sources. This opens up possibilities for the field of research within 
generating beams for different applications in the mid- and far-infrared spectrum. 

The properties of the multi mode Bessel beam should be studied further than done in this 
work. It is clear the noncollinear conical beam creates a way of improving the temporal 
coherence of an OPO when pumped by a multi mode pump source. It is, however, of interest 
to study the influence on the multi mode nature on the interference pattern created. This could 
give a deeper understanding on how the interference pattern affects the parametric process.  It 
is also of interest to study the interference pattern when created by a single mode pump 
source, compared to when it is created with a multi mode pump source. Pumping an OPO 
with a single mode pump source focused to a conical beam would give further understanding 
on how the noncollinear phase matching and the interference pattern created affects the 
process. 
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