

Electrum Laboratory

- 1300 m² cleanroom
- ISO 9001 certified / controlled processes and calibrated characterization tools
- Users: ~50 % academia and ~50% start-up/SME/RISE
- KTH + 20 other entites in 2024 (>100 individuals)

- Silicon Technology
- Silicon Integated Circuits
- Silicon Microsystems
- Compound Semiconductors
- SiC High Voltage High power, Harsh environment
- InP, GaAs, InGaAs... opto-electronic, Infrared Imaging

Orghonic Stress Stress

CMOS electronics in Electrum Laboratory

• 13 Patterning Masks

VETENSKAP OCH KONST

 10^{3}

10²

[mrl/Vrl] ^{SQ} 10⁻¹

10⁻³

 10^{-5}

PFET

L_c=1 µm

- >40 individual process steps
- Turn around ~ 3 months

-1.8 -1.5 -1.2 -0.9 -0.6 -0.3 0 0.3 0.6 0.9 1.2 1.5 1.8 V_{GS} [V]

- Full Digital Design flow in Cadence - 10 track Cell library, P&R, timing
 - D Flip Flop is Height/Width 40/108 μ m

Research field: Transparent Si electronics

Prof. Per-Erik Hellström (EES) Mattias Ekström (EES) Prof. Frank Niklaus (MST) Arne Quelmatz (MST)

High Voltage SiC Bipolar Transistors (>3.3 kV)

Fig. 1. Schematic cross-sectional view of the fabricated 4H-SiC BJT.

Fig. 2. Room temperature I-V characteristics of the fabricated 0.08 mm² (active area of 0.18 mm²) 4H-SiC BJTs with emitter width of 40 μ m.

A. Salemi, H. Elahipanah, K. Jacobs, C. -M. Zetterling and M. Östling, "**15 kV-Class Implantation-Free 4H-SiC BJTs With Record High Current Gain**," in IEEE Electron Device Letters, vol. 39, no. 1, pp. 63-66, Jan. 2018, doi: 10.1109/LED.2017.2774139.

- EU Chips Act: Pilot line Advanced semiconductor devices based on Wide Bandgap materials (2025-2030) https://www.chips-ju.europa.eu/pilot-lines-detail/
- KTH's part is to:

VETENSKAP

- Deliver devices based on the available SiC Bipolar Junction Transistor (BJT) technology that has been demonstrated to sustain up to 15 kV of collector-emitter voltage.
- Initially offer BJT devices for 3-5 kV (TRL level 5) on 150 mm SiC wafers.
- Research and develop Insulated Gate Bipolar Junction Transistors (IGBT) in 150 mm SiC wafers.
- In-house available innovative, basal plane dislocation-free,1 150 mm SiC substrates from KISAB (<u>https://kisabsemi.com/</u>) and SiC epitaxy from Coherent (www.coherent.com).