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posterior of the state, owing to the black-box nature of

purely data-driven methods, and (2) leading to computationally

intensive training. If we have access to both measurements

y1:t and states x1:t as training data, then we can directly

use RNNs for state estimation by minimizing a loss based

on y1:t and x1:t . This is a supervised training approach using

labeled data. We can also use sequence-to-sequence modeling

methods, such as Transformers [27]. The problem is that in

most of the cases, we do not have access to states x1:t , and

hence such direct use of RNNs and Transformers is difficult

to realize. Furthermore, they typically yield a point estimate

and do not provide posterior distributions.

The third broad approach, known as the hybrid approach,

seeks to use the best of both worlds. It endeavors to amalga-

mate both model-driven and data-driven approaches. A recent

example is the KalmanNet method [28] that proposes an

online, recursive, low-complexity, and data-efficient scheme

based on the KF architecture. KalmanNet involves modeling

the Kalman gain using DNNs, thus maintaining the structure

of the model-based KF while incorporating some data-driven

aspects. The method uses a supervised learning approach

where we need labelled data comprised of true states and

noisy observations. However, it is shown robust to the noise

statistics. Experimentally, it is also shown to perform well in

cases when partial information about SSM is available or in

cases of model mismatch. A modification to the abovescheme

is also proposed as an unsupervised KalmanNet in [29],

which uses only noisy measurements as training data. The

KalmanNet idea - the hybrid approach - is further extended to

other tasks such as smoothing [30].

A comparison between model-based, data-driven, hybrid

methods/approaches, and DANSE is shown in Table I.

B. Notations

We use bold font lowercase symbols to denote vectors

and regular lowercase font to denote scalars, for example, x

represents a vector while x j represents the j ’ th component

of x. A sequence of vectors x1, x2, . . . , x t is compactly

denoted by x1:t , where t denotes a discrete time index. Then

x t ,j denotes the j ’ th component of x t . Upper case symbols

in bold font, like H , represent matrices. The operator (·)
⊤

denotes the transpose. N (·; m , L ) represents the probability

density function of the Gaussian distribution with mean m and

covariance matrix L . E{ ·} denotes the expectation operator.

The notation ∥ x ∥ 2
C denotes the squared ℓ2 norm of x weighted

by the matrix C, i.e. ∥ x ∥ 2
C = x ⊤ Cx.

C. Structure of the article

Thearticle is organized as follows: in section II, we describe

an unsupervised learning setup and the proposed DANSE

in detail, including a proposed empirical performance limit.

Next, we show experiments in section III. We demonstrate the

empirical performanceof DANSE for a linear SSM as a proof-

of-concept, and then for two nonlinear SSMs - the Lorenz

and Chen attractors [31], [32]. We experimentally compare

DANSE vis-à-vis KF (for the linear SSM), EKF, UKF, and

the unsupervised KalmanNet [29] (for the nonlinear SSMs).

Additionally, we endeavor to empirically answer pertinent

questions regarding training data requirements and robustness

to mismatched conditionsduring inference. Finally, weprovide

conclusions and the scope of future works in section IV.

I I . PROPOSED DANSE

A. On Bayesian Inference and Unsupervised Learning

Let there be a dynamical signal x1:T (with x t ∈ Rm ),

representing a model-free process of length T . The process

is expected to be complex and we have no prior knowledge of

the process. Neither do we know its statistical properties nor

have direct access to the process data in the learning stage.

We assume that we have access to the linear measurements

y t ∈ Rn of the process, where

y t = H t x t + w t , t = 1, 2, . . . , T. (1)

Here w t ∼ N (0, Cw ) is a standard measurement noise with

zero mean and covariance Cw ∈ Rn × n , and H t ∈ Rn × m de-

notes the known measurement system. Maintaining causality,

the Bayesian inference tasks are mentioned below.

(T1) State estimation problem: The inference task is to es-

timate the posterior of the current state x t given y1:t ,

denoted by p(x t |y1, y2, . . . , y t ) p(x t |y1:t ). In addition

to estimate the posterior of the time series x1:t , denoted

by p(x1, x2, . . . , x t |y1, y2, . . . , y t ) p(x1:t |y1:t ).

(T2) Forecasting problem: The inferencetask is to estimate the

distribution of the future measurement y t + 1 given y1:t ,

denoted by p(y t + 1|y1:t ), and also optionally that of the

future state x t + 1 given y1:t , denoted by p(x t + 1|y1:t ).

To learn the parameters of DANSE, we have a training

dataset D comprised of N time-series measurements as D =

{ y
( i )

1:T ( i ) }
N
i = 1. Here y

( i )

1:T ( i ) = y
( i )
1 , y

( i )
2 , . . . , y

( i )

T ( i ) is the i t h

time-series measurements of length T ( i ) . Note that T ( i ) can

vary across time-series measurements (unequal lengths). Since

we do not have access to the corresponding state sequences,

D is unlabelled and the learning problem is unsupervised.

B. DANSE System

DANSE is model-free. It only has access to D. DANSE is

data-driven and seeksto haveanalytical tractability likemodel-

driven methods. So, to use data and the measurement system

together, a prior-posterior system setup needs to be developed

where the prior comes from data and the posterior follows the

constraint of the linear measurement system. Principally, we

model the unknown prior probability distribution p(x t |y1:t− 1)

as a Gaussian distribution parameterized using an RNN. At

time instant t, an RNN recursively uses the input sequence

y1:t− 1 and provides the parameters of the Gaussian prior as

the output, collectively denoted as α t |1:t− 1. An RNN has its

parameters θθθ, thus its output also depends on θθθ. To indicate

this, we writeα t |1:t− 1 α t |1:t− 1(θθθ). A simple block diagram

of the Bayesian estimation as the inference of DANSE is

shown in Fig. 1(a).

3

posterior of the state, owing to the black-box nature of
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empirical performanceof DANSE for a linear SSM as a proof-

of-concept, and then for two nonlinear SSMs - the Lorenz

and Chen attractors [31], [32]. We experimentally compare

DANSE vis-à-vis KF (for the linear SSM), EKF, UKF, and

the unsupervised KalmanNet [29] (for the nonlinear SSMs).

Additionally, we endeavor to empirically answer pertinent

questions regarding training data requirements and robustness
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We assume that we have access to the linear measurements
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Here w t ∼ N (0, Cw ) is a standard measurement noise with
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notes the known measurement system. Maintaining causality,

the Bayesian inference tasks are mentioned below.
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denoted by p(y t + 1|y1:t ), and also optionally that of the
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To learn the parameters of DANSE, we have a training
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{ y
( i )

1:T ( i ) }
N
i = 1. Here y

( i )

1:T ( i ) = y
( i )
1 , y

( i )
2 , . . . , y

( i )

T ( i ) is the i t h

time-series measurements of length T ( i ) . Note that T ( i ) can
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where the prior comes from data and the posterior follows the
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model the unknown prior probability distribution p(x t |y1:t− 1)

as a Gaussian distribution parameterized using an RNN. At

time instant t, an RNN recursively uses the input sequence

y1:t− 1 and provides the parameters of the Gaussian prior as

the output, collectively denoted as α t |1:t− 1. An RNN has its

parameters θθθ, thus its output also depends on θθθ. To indicate

this, we writeα t |1:t− 1 α t |1:t− 1(θθθ). A simple block diagram

of the Bayesian estimation as the inference of DANSE is

shown in Fig. 1(a).
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methods, such as Transformers [27]. The problem is that in

most of the cases, we do not have access to states x1:t , and

hence such direct use of RNNs and Transformers is difficult

to realize. Furthermore, they typically yield a point estimate

and do not provide posterior distributions.
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seeks to use the best of both worlds. It endeavors to amalga-
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based on the KF architecture. KalmanNet involves modeling

the Kalman gain using DNNs, thus maintaining the structure

of the model-based KF while incorporating some data-driven
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where we need labelled data comprised of true states and

noisy observations. However, it is shown robust to the noise

statistics. Experimentally, it is also shown to perform well in

cases when partial information about SSM is available or in

cases of model mismatch. A modification to the abovescheme

is also proposed as an unsupervised KalmanNet in [29],

which uses only noisy measurements as training data. The

KalmanNet idea - the hybrid approach - is further extended to

other tasks such as smoothing [30].
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dataset D comprised of N time-series measurements as D =
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i = 1. Here y
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time-series measurements of length T ( i ) . Note that T ( i ) can

vary across time-series measurements (unequal lengths). Since

we do not have access to the corresponding state sequences,

D is unlabelled and the learning problem is unsupervised.

B. DANSE System

DANSE is model-free. It only has access to D. DANSE is

data-driven and seeksto haveanalytical tractability likemodel-

driven methods. So, to use data and the measurement system

together, a prior-posterior system setup needs to be developed

where the prior comes from data and the posterior follows the

constraint of the linear measurement system. Principally, we

model the unknown prior probability distribution p(x t |y1:t− 1)

as a Gaussian distribution parameterized using an RNN. At

time instant t, an RNN recursively uses the input sequence

y1:t− 1 and provides the parameters of the Gaussian prior as

the output, collectively denoted as α t |1:t− 1. An RNN has its

parameters θθθ, thus its output also depends on θθθ. To indicate

this, we writeα t |1:t− 1 α t |1:t− 1(θθθ). A simple block diagram

of the Bayesian estimation as the inference of DANSE is

shown in Fig. 1(a).
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posterior of the state, owing to the black-box nature of

purely data-driven methods, and (2) leading to computationally

intensive training. If we have access to both measurements

y1:t and states x1:t as training data, then we can directly

use RNNs for state estimation by minimizing a loss based

on y1:t and x1:t . This is a supervised training approach using

labeled data. We can also use sequence-to-sequence modeling

methods, such as Transformers [27]. The problem is that in

most of the cases, we do not have access to states x1:t , and

hence such direct use of RNNs and Transformers is difficult

to realize. Furthermore, they typically yield a point estimate

and do not provide posterior distributions.

The third broad approach, known as the hybrid approach,

seeks to use the best of both worlds. It endeavors to amalga-

mate both model-driven and data-driven approaches. A recent

example is the KalmanNet method [28] that proposes an

online, recursive, low-complexity, and data-efficient scheme

based on the KF architecture. KalmanNet involves modeling

the Kalman gain using DNNs, thus maintaining the structure

of the model-based KF while incorporating some data-driven

aspects. The method uses a supervised learning approach

where we need labelled data comprised of true states and

noisy observations. However, it is shown robust to the noise

statistics. Experimentally, it is also shown to perform well in

cases when partial information about SSM is available or in

cases of model mismatch. A modification to the abovescheme

is also proposed as an unsupervised KalmanNet in [29],

which uses only noisy measurements as training data. The

KalmanNet idea - the hybrid approach - is further extended to

other tasks such as smoothing [30].

A comparison between model-based, data-driven, hybrid

methods/approaches, and DANSE is shown in Table I.

B. Notations

We use bold font lowercase symbols to denote vectors

and regular lowercase font to denote scalars, for example, x

represents a vector while x j represents the j ’ th component

of x. A sequence of vectors x1, x2, . . . , x t is compactly

denoted by x1:t , where t denotes a discrete time index. Then

x t ,j denotes the j ’ th component of x t . Upper case symbols

in bold font, like H , represent matrices. The operator (·)
⊤

denotes the transpose. N (·; m , L ) represents the probability

density function of the Gaussian distribution with mean m and

covariance matrix L . E{ ·} denotes the expectation operator.

The notation ∥x∥2
C denotes the squared ℓ2 norm of x weighted

by the matrix C, i.e. ∥x∥2
C = x⊤ Cx.

C. Structure of the article

Thearticle is organized as follows: in section II, we describe

an unsupervised learning setup and the proposed DANSE

in detail, including a proposed empirical performance limit.

Next, we show experiments in section III. We demonstrate the

empirical performanceof DANSE for a linear SSM as a proof-

of-concept, and then for two nonlinear SSMs - the Lorenz

and Chen attractors [31], [32]. We experimentally compare

DANSE vis-à-vis KF (for the linear SSM), EKF, UKF, and

the unsupervised KalmanNet [29] (for the nonlinear SSMs).

Additionally, we endeavor to empirically answer pertinent

questions regarding training data requirements and robustness

to mismatched conditionsduring inference. Finally, weprovide

conclusions and the scope of future works in section IV.

I I . PROPOSED DANSE

A. On Bayesian Inference and Unsupervised Learning

Let there be a dynamical signal x1:T (with x t ∈ Rm ),

representing a model-free process of length T . The process

is expected to be complex and we have no prior knowledge of

the process. Neither do we know its statistical properties nor

have direct access to the process data in the learning stage.

We assume that we have access to the linear measurements

y t ∈ Rn of the process, where

y t = H t x t + w t , t = 1, 2, . . . , T. (1)

Here w t ∼ N (0, Cw ) is a standard measurement noise with

zero mean and covariance Cw ∈ Rn × n , and H t ∈ Rn × m de-

notes the known measurement system. Maintaining causality,

the Bayesian inference tasks are mentioned below.

(T1) State estimation problem: The inference task is to es-

timate the posterior of the current state x t given y1:t ,

denoted by p(x t |y1, y2, . . . , y t ) p(x t |y1:t ). In addition

to estimate the posterior of the time series x1:t , denoted

by p(x1, x2, . . . , x t |y1, y2, . . . , y t ) p(x1:t |y1:t ).

(T2) Forecasting problem: The inferencetask is to estimate the

distribution of the future measurement y t + 1 given y1:t ,

denoted by p(y t + 1|y1:t ), and also optionally that of the

future state x t + 1 given y1:t , denoted by p(x t + 1|y1:t ).

To learn the parameters of DANSE, we have a training

dataset D comprised of N time-series measurements as D =

{ y
( i )

1:T ( i ) }
N
i = 1. Here y

( i )

1:T ( i ) = y
( i )
1 , y

( i )
2 , . . . , y

( i )

T ( i ) is the i t h

time-series measurements of length T ( i ) . Note that T ( i ) can

vary across time-series measurements (unequal lengths). Since

we do not have access to the corresponding state sequences,

D is unlabelled and the learning problem is unsupervised.

B. DANSE System

DANSE is model-free. It only has access to D. DANSE is

data-driven and seeksto haveanalytical tractability likemodel-

driven methods. So, to use data and the measurement system

together, a prior-posterior system setup needs to be developed

where the prior comes from data and the posterior follows the

constraint of the linear measurement system. Principally, we

model the unknown prior probability distribution p(x t |y1:t− 1)

as a Gaussian distribution parameterized using an RNN. At

time instant t, an RNN recursively uses the input sequence

y1:t− 1 and provides the parameters of the Gaussian prior as

the output, collectively denoted as α t |1:t− 1. An RNN has its

parameters θθθ, thus its output also depends on θθθ. To indicate

this, we writeα t |1:t− 1 α t |1:t− 1(θθθ). A simple block diagram

of the Bayesian estimation as the inference of DANSE is

shown in Fig. 1(a).
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most of the cases, we do not have access to states x1:t , and

hence such direct use of RNNs and Transformers is difficult

to realize. Furthermore, they typically yield a point estimate

and do not provide posterior distributions.

The third broad approach, known as the hybrid approach,

seeks to use the best of both worlds. It endeavors to amalga-

mate both model-driven and data-driven approaches. A recent

example is the KalmanNet method [28] that proposes an
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based on the KF architecture. KalmanNet involves modeling

the Kalman gain using DNNs, thus maintaining the structure

of the model-based KF while incorporating some data-driven
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noisy observations. However, it is shown robust to the noise

statistics. Experimentally, it is also shown to perform well in

cases when partial information about SSM is available or in

cases of model mismatch. A modification to the abovescheme

is also proposed as an unsupervised KalmanNet in [29],

which uses only noisy measurements as training data. The

KalmanNet idea - the hybrid approach - is further extended to
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methods/approaches, and DANSE is shown in Table I.
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represents a vector while x j represents the j ’ th component
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denoted by x1:t , where t denotes a discrete time index. Then

x t ,j denotes the j ’ th component of x t . Upper case symbols

in bold font, like H , represent matrices. The operator (·)
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denotes the transpose. N (·; m , L ) represents the probability

density function of the Gaussian distribution with mean m and

covariance matrix L . E{ ·} denotes the expectation operator.

The notation ∥x∥2
C denotes the squared ℓ2 norm of x weighted

by the matrix C, i.e. ∥x∥2
C = x⊤ Cx.
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an unsupervised learning setup and the proposed DANSE
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Next, we show experiments in section III. We demonstrate the

empirical performanceof DANSE for a linear SSM as a proof-

of-concept, and then for two nonlinear SSMs - the Lorenz

and Chen attractors [31], [32]. We experimentally compare

DANSE vis-à-vis KF (for the linear SSM), EKF, UKF, and

the unsupervised KalmanNet [29] (for the nonlinear SSMs).

Additionally, we endeavor to empirically answer pertinent

questions regarding training data requirements and robustness

to mismatched conditionsduring inference. Finally, weprovide

conclusions and the scope of future works in section IV.
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Let there be a dynamical signal x1:T (with x t ∈ Rm ),

representing a model-free process of length T. The process

is expected to be complex and we have no prior knowledge of

the process. Neither do we know its statistical properties nor

have direct access to the process data in the learning stage.

We assume that we have access to the linear measurements

y t ∈ Rn of the process, where

y t = H t x t + w t , t = 1, 2, . . . , T. (1)

Here w t ∼ N (0, Cw ) is a standard measurement noise with

zero mean and covariance Cw ∈ Rn × n , and H t ∈ Rn × m de-

notes the known measurement system. Maintaining causality,

the Bayesian inference tasks are mentioned below.

(T1) State estimation problem: The inference task is to es-

timate the posterior of the current state x t given y1:t ,

denoted by p(x t |y1, y2, . . . , y t ) p(x t |y1:t ). In addition

to estimate the posterior of the time series x1:t , denoted

by p(x1, x2, . . . , x t |y1, y2, . . . , y t ) p(x1:t |y1:t ).

(T2) Forecasting problem: The inferencetask is to estimate the

distribution of the future measurement y t + 1 given y1:t ,

denoted by p(y t + 1|y1:t ), and also optionally that of the

future state x t + 1 given y1:t , denoted by p(x t + 1|y1:t ).

To learn the parameters of DANSE, we have a training

dataset D comprised of N time-series measurements as D =

{ y
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1:T ( i ) }
N
i = 1. Here y
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1 , y
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2 , . . . , y
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T ( i ) is the i t h

time-series measurements of length T ( i ) . Note that T ( i ) can

vary across time-series measurements (unequal lengths). Since

we do not have access to the corresponding state sequences,

D is unlabelled and the learning problem is unsupervised.

B. DANSE System

DANSE is model-free. It only has access to D. DANSE is

data-driven and seeksto haveanalytical tractability likemodel-

driven methods. So, to use data and the measurement system

together, a prior-posterior system setup needs to be developed

where the prior comes from data and the posterior follows the

constraint of the linear measurement system. Principally, we

model the unknown prior probability distribution p(x t |y1:t− 1)

as a Gaussian distribution parameterized using an RNN. At

time instant t, an RNN recursively uses the input sequence

y1:t− 1 and provides the parameters of the Gaussian prior as

the output, collectively denoted as α t |1:t− 1. An RNN has its

parameters θθθ, thus its output also depends on θθθ. To indicate

this, we writeα t |1:t− 1 α t |1:t− 1(θθθ). A simple block diagram

of the Bayesian estimation as the inference of DANSE is

shown in Fig. 1(a).
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methods, such as Transformers [27]. The problem is that in

most of the cases, we do not have access to states x1:t , and
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to realize. Furthermore, they typically yield a point estimate

and do not provide posterior distributions.
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model the unknown prior probability distribution p(x t |y1:t− 1)

as a Gaussian distribution parameterized using an RNN. At
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y1:t− 1 and provides the parameters of the Gaussian prior as

the output, collectively denoted as α t |1:t− 1. An RNN has its

parameters θθθ, thus its output also depends on θθθ. To indicate
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and do not provide posterior distributions.
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posterior of the state, owing to the black-box nature of

purely data-driven methods, and (2) leading to computationally

intensive training. If we have access to both measurements

y1:t and states x1:t as training data, then we can directly

use RNNs for state estimation by minimizing a loss based

on y1:t and x1:t . This is a supervised training approach using
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based on the KF architecture. KalmanNet involves modeling
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aspects. The method uses a supervised learning approach
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methods, such as Transformers [27]. The problem is that in

most of the cases, we do not have access to states x1:t , and

hence such direct use of RNNs and Transformers is difficult

to realize. Furthermore, they typically yield a point estimate

and do not provide posterior distributions.

The third broad approach, known as the hybrid approach,

seeks to use the best of both worlds. It endeavors to amalga-

mate both model-driven and data-driven approaches. A recent

example is the KalmanNet method [28] that proposes an

online, recursive, low-complexity, and data-efficient scheme
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DANSE vis-à-vis KF (for the linear SSM), EKF, UKF, and

the unsupervised KalmanNet [29] (for the nonlinear SSMs).

Additionally, we endeavor to empirically answer pertinent

questions regarding training data requirements and robustness

to mismatched conditionsduring inference. Finally, weprovide

conclusions and the scope of future works in section IV.

I I . PROPOSED DANSE

A. On Bayesian Inference and Unsupervised Learning

Let there be a dynamical signal x1:T (with x t ∈ Rm ),

representing a model-free process of length T . The process

is expected to be complex and we have no prior knowledge of

the process. Neither do we know its statistical properties nor

have direct access to the process data in the learning stage.

We assume that we have access to the linear measurements

y t ∈ Rn of the process, where

y t = H t x t + w t , t = 1, 2, . . . , T. (1)

Here w t ∼ N (0, Cw ) is a standard measurement noise with

zero mean and covariance Cw ∈ Rn × n , and H t ∈ Rn × m de-

notes the known measurement system. Maintaining causality,

the Bayesian inference tasks are mentioned below.

(T1) State estimation problem: The inference task is to es-

timate the posterior of the current state x t given y1:t ,

denoted by p(x t |y1, y2, . . . , y t ) p(x t |y1:t ). In addition

to estimate the posterior of the time series x1:t , denoted

by p(x1, x2, . . . , x t |y1, y2, . . . , y t ) p(x1:t |y1:t ).

(T2) Forecasting problem: The inference task is to estimate the

distribution of the future measurement y t + 1 given y1:t ,

denoted by p(y t + 1|y1:t ), and also optionally that of the

future state x t + 1 given y1:t , denoted by p(x t + 1|y1:t ).

To learn the parameters of DANSE, we have a training

dataset D comprised of N time-series measurements as D =

{ y
( i )

1:T ( i ) }
N
i = 1. Here y

( i )

1:T ( i ) = y
( i )
1 , y

( i )
2 , . . . , y

( i )

T ( i ) is the i t h

time-series measurements of length T ( i ) . Note that T ( i ) can

vary across time-series measurements (unequal lengths). Since

we do not have access to the corresponding state sequences,

D is unlabelled and the learning problem is unsupervised.

B. DANSE System

DANSE is model-free. It only has access to D. DANSE is

data-driven and seeks to haveanalytical tractability likemodel-

driven methods. So, to use data and the measurement system

together, a prior-posterior system setup needs to be developed

where the prior comes from data and the posterior follows the

constraint of the linear measurement system. Principally, we

model the unknown prior probability distribution p(x t |y1:t− 1)

as a Gaussian distribution parameterized using an RNN. At

time instant t, an RNN recursively uses the input sequence

y1:t− 1 and provides the parameters of the Gaussian prior as

the output, collectively denoted as α t |1:t− 1. An RNN has its

parameters θθθ, thus its output also depends on θθθ. To indicate

this, we writeα t |1:t− 1 α t |1:t− 1(θθθ). A simple block diagram

of the Bayesian estimation as the inference of DANSE is

shown in Fig. 1(a).
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4: An example of the true state trajectories of the Lorenz attractor SSM (left, in blue), the corresponding measured

jectories using , in black), and the estimated state trajectories using DANSE (right, in black) with figures

(a)-(c) at SMNR = 20 dB, (d)-(f) at SMNR = 10 dB and (g)-(i) at SMNR = 0 dB respectively.

F. Non-linear auto-regressive model with sparse coefficients

We consider a non-linear auto-regressive model with sparse

coefficients. The idea is to let the order of the autoregressive

l to be large, but not allow all the coefficients to equally

contribute to the evolution of the state. In this way, we can end

up with models that are non-Markovian and can demonstrate

of the RNN usage.

+ 1
= 0

H x

where

) : can be a simple non-linearity such as

sin or the logistic sigmoid function we need to think

a bit). The process and measurement covariance matrices

can be scaled-diagonal as defined previously. The coefficients

. . . can be -sparse , with

a support set such that |I . The elements of

can be randomly chosen from the uniform distribution over

, . . . , p , and then the values corresponding to the

support, i.e. can be chosen from a Dirichlet distribution.

would mean that belongs to a nsional

simplex.

Parameter choices: Using some of the values from the

KalmanNet paper [27], we have

For process = 2 = 10 = 0 = 0 02

For measurement model: could be a random Gaussian

matrix some known structure?)

rsity: 05 or 10

Non-linear AR model: Model order T/ , T 1]

where is the length of the sequence. This may imply

l padding of the sequence to ensure the recursion

in (18) begins without having to wait for a window of

samples.

G. mixing model

We consider a sinusoidal mixing model that produces a state

sequence using two coupled non-linear state space (NLSS)
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Fig. 3: State estimation for Lorenz attractor using DANSE, at 20 dB and 0 dB SMNR with H t = I 3. The first row is for

20 dB SMNR, and the second row is for 0 dB SMNR. The left column shows the true state trajectories, the middle column

shows noisy measurement trajectories, and the right column shows the estimated state trajectories. Note that, in unsupervised

learning, the training dataset D comprises of N such ‘ red colored’ noisy measurement trajectories.
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Fig. 4: Performance comparison of all methods for the Lorenz

attractor SSM, including the empirical performance limit.

training sample trajectories N to provide good performance.

The performance improves with an approximately linear trend

with respect to log10 N for small N and then shows a

saturation trend. The performance improvement indicates an

(approximate) exponential trend with respect to N – a power

law behavior. This remindsus of performance-versus-resource,

such as distortion-rate curves in source coding. Note that we

include KalmanNet’s behavior in the same figure and find that

it can be trained with fewer data. We believe that the reason

is – KalmanNet knows the process SSM. On the other hand,

DANSE requires more data as it does not know the process

SSM.
2) On mismatched conditions for robustness study: Here

we study two cases as follows:
a) Mismatched process: We study the robustness of

training-based methods - DANSE and KalmanNet - for a

mismatched process. We generate a mismatched process by

varying the process noise σ2
e . A change in the process noise

reflects a drift in the original SSM. Keeping SMNR = 10

dB, we train DANSE and KalmanNet using σ2
e = − 10 dB

and then test at varying σ2
e . An increase in σ2

e amounts to

an increase in uncertainty (or randomness) in Lorenz SSM.

The performances are shown in Fig. 8. We observe that the

performancesof both DANSE and KalmanNet deterioratewith

increasing σ2
e .

b) Mismatched measurement noise: Now, we investigate

the effect of a mismatch in the additive measurement noise w t

on the performances of DANSE and KalmanNet. The change

in the measurement noise during testing reflects a change in

the measurement setup. Keeping σ2
e fixed corresponding to

− 10 dB, we train DANSE and KalmanNet using SMNR = 10

dB and then test at varying SMNR. The performances are

Additive Gaussian noise. Signal power = Noise power (0 dB SMNR)

True signal (state) Noisy measurements Estimated signal (state)

A stochastic
 process

2
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Fig. 3: State estimation for Lorenz attractor SSM using DANSE, at 20 dB and 0 dB SMNR, with H t = I 3. The first row is

for 20 dB SMNR, and the second row is for 0 dB SMNR. Note that, in unsupervised learning, at a chosen SMNR, a training

dataset D comprises of N such ‘ red colored’ noisy measurement trajectories as data samples.
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DANSE, KalmanNet and the empirical perf. limit were trained

using D with N = 1000, T = 100.

where et ⇠N (0, Ce) with Ce = σ2
e I 3, and

F t (x t− 1) = exp

0

@

2

4
− 10 10 0

28 − 1 − x t− 1,1

0 x t− 1,1 − 8
3

3

5 ∆

1

A , (19)

with the step-size ∆ = 0.02 seconds. In our simulations, we

use a finite-Taylor series approximation of 50th order for (19).

The measurement model is

y t = H t x t + w t 2 R3. (20)

We use H t = I 3. The measurement noise is w t ⇠N (0, Cw )

with Cw = σ2
w I 3, while σ2

e corresponds to − 10 dB. For this

SSM, we compare DANSE vis-à-vis EKF, UKF, and unsu-

pervised KalmanNet. We train both DANSE and KalmanNet

using dataset D with N = 1000, T = 100. We evaluate all

the methods on the same test set Dtest with N test = 100 and

Ttest = 2000. Like the linear SSM case, we test on longer

trajectories than the training.

While we have used H t = I 3 for experiments, we could

have used any 3 ⇥ 3 full rank matrix as a measurement

matrix, and the performance trend is expected to be same.

The reason is that we can pre-multiply both sides of (1) by

H − 1
t and transform the measurement vector as y 0

t = x t + w 0
t ,

where y 0
t , H − 1

t y t and w 0
t , H − 1

t w t ⇠ N (0, Cw 0) =

N 0, H − 1
t Cw (H − 1

t )> . Wecould provide thesameargument

for a full column rank matrix H t . In that case we will use

pseudo-inverse H
†
t , H >

t H t
− 1

H >
t instead of H − 1

t .

1) State estimation: With a focus on the state estima-

tion task, we start with a visual illustration of the DANSE

performance. Fig. 3 shows two random instances of Lorenz

attractor SSM trajectories, their noisy measurements, and

corresponding estimates using DANSE. The top row is SMNR

= 20 dB and the bottom row for SMNR = 0 dB. Note that,
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4: An example of the true state trajectories of the Lorenz attractor SSM (left, in blue), the corresponding measured

jectories using , in black), and the estimated state trajectories using DANSE (right, in black) with figures

(a)-(c) at SMNR = 20 dB, (d)-(f) at SMNR = 10 dB and (g)-(i) at SMNR = 0 dB respectively.
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We consider a non-linear auto-regressive model with sparse

coefficients. The idea is to let the order of the autoregressive

l to be large, but not allow all the coefficients to equally

contribute to the evolution of the state. In this way, we can end

up with models that are non-Markovian and can demonstrate

of the RNN usage.
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a bit). The process and measurement covariance matrices

can be scaled-diagonal as defined previously. The coefficients

. . . can be -sparse , with

a support set such that |I . The elements of

can be randomly chosen from the uniform distribution over

, . . . , p , and then the values corresponding to the

support, i.e. can be chosen from a Dirichlet distribution.

would mean that belongs to a nsional

simplex.

Parameter choices: Using some of the values from the

KalmanNet paper [27], we have

For process = 2 = 10 = 0 = 0 02

For measurement model: could be a random Gaussian

matrix some known structure?)
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Non-linear AR model: Model order T/ , T 1]
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of the RNN usage.
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We consider a sinusoidal mixing model that produces a state

sequence using two coupled non-linear state space (NLSS)
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in (18) begins without having to wait for a window of
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G. mixing model

We consider a sinusoidal mixing model that produces a state

sequence using two coupled non-linear state space (NLSS)

0 dB SMNR

Fig. 3: State estimation for Lorenz attractor using DANSE, at 20 dB and 0 dB SMNR with H t = I 3. The first row is for

20 dB SMNR, and the second row is for 0 dB SMNR. The left column shows the true state trajectories, the middle column

shows noisy measurement trajectories, and the right column shows the estimated state trajectories. Note that, in unsupervised

learning, the training dataset D comprises of N such ‘ red colored’ noisy measurement trajectories.
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Fig. 4: Performance comparison of all methods for the Lorenz

attractor SSM, including the empirical performance limit.

training sample trajectories N to provide good performance.

The performance improves with an approximately linear trend

with respect to log10 N for small N and then shows a

saturation trend. The performance improvement indicates an

(approximate) exponential trend with respect to N – a power

law behavior. This remindsusof performance-versus-resource,

such as distortion-rate curves in source coding. Note that we

include KalmanNet’s behavior in the same figure and find that

it can be trained with fewer data. We believe that the reason

is – KalmanNet knows the process SSM. On the other hand,

DANSE requires more data as it does not know the process

SSM.
2) On mismatched conditions for robustness study: Here

we study two cases as follows:
a) Mismatched process: We study the robustness of

training-based methods - DANSE and KalmanNet - for a

mismatched process. We generate a mismatched process by

varying the process noise σ2
e . A change in the process noise

reflects a drift in the original SSM. Keeping SMNR = 10

dB, we train DANSE and KalmanNet using σ2
e = − 10 dB

and then test at varying σ2
e . An increase in σ2

e amounts to

an increase in uncertainty (or randomness) in Lorenz SSM.

The performances are shown in Fig. 8. We observe that the

performancesof both DANSE and KalmanNet deterioratewith

increasing σ2
e .

b) Mismatched measurement noise: Now, we investigate

the effect of a mismatch in the additive measurement noise w t

on the performances of DANSE and KalmanNet. The change

in the measurement noise during testing reflects a change in

the measurement setup. Keeping σ2
e fixed corresponding to

− 10 dB, we train DANSE and KalmanNet using SMNR = 10

dB and then test at varying SMNR. The performances are

Additive Gaussian noise. Signal power = Noise power (0 dB SMNR)
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