
Axiomatic Hardware-Software
Security Contracts

Hamed Nemati, KTH

Joint work with Nicholas Mosier, Hanna Lachnitt, Caroline Trippel

CIDS Spring Conference 2024

KTH Royal Institute of Technology

Slides courtesy of Nicholas Mosier

Caches
[Osvik+, CT-RSA ’06] 
[Yarom+, USENIX ’14]

Digit-serial multiplication 
[Großschäd+, ISISC ‘09]

Division early exit 
[Coppens, S&P ‘09]

Coherence
[Guanciale+, Oakland ‘16]

Subnormal floating point 
[Andrysco+, S&P ‘15]

OoO Execution
[Lipp+, USENIX ‘18]

Silent stores 
[Vicarte+, ISCA ‘21]

Computation reuse 
[Vicarte+, ISCA ‘21]

Value prediction 
[Vicarte+, ISCA ‘21]

Register-file compression 
[Vicarte+, ISCA ‘21]

Indirect memory prefetchers 
[Vicarte+, ISCA ‘21]

Compressed Caches 
[Tsai+, ISCA ‘20]

Speculation
[Kocher+, S&P ‘19]

DRAM
[Google Project Zero ‘15]

If one considers the union of all
optimizations on this slide, no instruction
operand/result or data at rest is safe
[Vicarte+, ISCA’21].

Hardware Underpins Software Security

And many more …

Processor

Cache hierarchy Pipelining

Speculation
Weak memory

models

Hyperthreading

Multicore

Architecture

Microarchitecture

Side-Channel Attacks

Hardware-Software Contracts

Hardware-software contracts for security

Software

Hardware

Lesson Learned from the PL Community

Peter Sewell

1990s
Weak consistency

(Operational)

Jade Alglave

2010s
Weak consistency

(Axiomatic)

• Operational : Step-by-step state evolution

Example of Operational Specifications: 𝖱𝖾𝖺𝖽(𝗑) ↦ 𝗒

Load value into 𝗒

𝖲𝗇𝖲𝟢

Initial State Final State

Compute address using 𝗑

• Axiomatic: take arbitrary behavior, filter those
 not accepted by the semantics
Example of Candidate Execution:

𝖱𝖾𝖺𝖽(𝗑) ↦ 𝗒 𝖱𝖾𝖺𝖽 𝗑
𝖶𝗋𝗂𝗍𝖾(α) ↦ 𝗑 𝖶𝗋𝗂𝗍𝖾 𝗑 𝖶𝗋𝗂𝗍𝖾 𝗑

𝖱𝖾𝖺𝖽 𝗑

𝖽𝖺𝗍𝖺, 𝗋𝖿

𝗉𝗈

Instructions: Events: Event Graph:

Slide courtesy of Hernán Ponce de León

• Background: Hardware-Software Contracts & Memory Consistency
Models (MCMs)

• Building Blocks of Microarchitectural Leakage
• Leakage Containment Models: Modeling Microarchitectural Leakage
• Clou: Detecting and Mitigating Microarchitectural Leakage in Programs

Roadmap

microarchitecture

compiler

Instruction Set
Architecture (ISA)

• registers

• memory

• instructions

Shared
MemoryISA

x = 1

y = 1

a = y

b = x

Thread 1 Thread 2
Can a = 1, b = 0?

It depends on the
architecture!

⟺ Can we observe a re-ordering of
Thread 1's stores or Thread 2's loads?

Memory
Consistency Model

(MCM)

Shared
Memory

Memory
Consistency Model

(MCM)

T1 T2
Can T2 observe a re-ordering of T1's stores?

Shared
Microarchitectural

State

Program 1 Program 2

Microarchitectural
leakage!

y = A[x]; z = A[3]

Can Program 2 observe leakage of x from Program 1?

Leakage
Containment Model

(LCM)

Memory access
re-orderings!

adopt a similar approach

It depends on the
microarchitecture!

Microarchitecture

Axiomatic Memory
Consistency Model

(MCM)

MCMs:
• Define the legal ordering + visibility of shared

memory accesses

Axiomatic MCMs:
• Model architectural executions of a program as

directed graphs

• Nodes: instructions

• Directed edges: happens-before relations

• Consistency predicate defines legal executions

control-flow

data-flow

instruction
Execution Graph

permitted

forbidden

Architectural Executions

Consistency
Predicate

𝑒0

𝑒1

𝑒2

𝑒4

𝑒3

control-flow

Encodes branch outcomes.
po

BR cc, L1, L2

L1

po

L2 L2

po
BR cc, L1, L2

L1

if (cc) L1 else L2

ST [x], 0

LD r1, [x]...

... = A[x]LD r1, [x]

LD/ST r2, [A + r1]...

A; B;

A
po

B

ST [x], 0

ST [x], 1...

- or -

data-flow

Encodes dynamic data-flow through memory.
rf, co, fr

reads-from (rf)
relates storeload if load

reads from store

x = 0;
... = x;

rf

coherence order (co)
constructs a total order on

same-address stores

co

x = 0;
x = 1;

dependencies

Encodes syntactic data-flow through registers.
addr, data, ctrl

address dependency (addr):
relates loadaccess where accesses

uses load in address computation

addr

Modeling Program Executions Axiomatically With
Happens-Before Relations

• Background: Hardware-Software Contracts & Memory Consistency
Models

• Building Blocks of Microarchitectural Leakage
• Leakage Containment Models: Modeling Microarchitectural Leakage
• Clou: Detecting and Mitigating Microarchitectural Leakage in Programs

Roadmap

z = A[3]

y = A[3]
- -

- -

- -

- -

- -

y = A[x]; z = A[3];

Address Data

Cache

Program 1 Program 2

Ingredients for modeling
microarchitectural leakage:
1. Instructions exhibit >1

different executions.
2. Which execution is realized

depends on hardware
information flows.

Microarchitectural Data-flow Enables Leakage

z = A[3]

y = A[3]
- -

A+3 ………………

- -

- -

- -

A[3]

y = A[x]; z = A[3];

microarchitectural
data-flow

Address Data

Cache

write

read

transmitter

receiver

😇

😈

cache hit (5 ns)

leaks: x = 3

Program 1 Program 2

Ingredients for modeling
microarchitectural leakage:
1. Instructions exhibit >1

different executions.
2. Which execution is realized

depends on hardware
information flows.

Microarchitectural Data-flow Enables Leakage

z = A[3]

y = A[3]
- -

A+3 ………………

- -

- -

- -

A[3]

y = A[x]; z = A[3];

microarchitectural
data-flow

Address Data

Cache

write

read

transmitter

receiver

😇

😈

cache hit (5 ns)

leaks: x = 3

- -

- -

- -

- -

- -

Address Data

Cache

z = A[3]

y = A[5]

Program 1 Program 2

Microarchitectural Data-flow Enables Leakage

z = A[3]

y = A[3]
- -

A+3 ………………

- -

- -

- -

A[3]

y = A[x]; z = A[3];

microarchitectural
data-flow

Address Data

Cache

write

read

transmitter

receiver

😇

😈

cache hit (5 ns)

leaks: x = 3

- -

- -

- -

A+5 ………………

- -

Address Data

Cache

z = A[3]

y = A[5]

⊤
microarchitectural

data-flow

cache miss (50 ns)

leaks: x ≠ 3

😇

😈

transmitter

receiver

write

read

Program 1 Program 2

Microarchitectural Data-flow Enables Leakage

1:

2:

3:

4:

Spectre v1: Bounds Check Bypass

 // idx out-of-bounds
 if (idx < A_size) {
 char secret = A[idx];
 tmp = B[secret];
 }

mispredicted branch

Microarchitectural Control Flow Increases Leakage Scope

Modern hardware predicts branch outcomes and speculatively executes instructions along predicted paths.

1:

2:

3:

4:

Spectre v1: Bounds Check Bypass

 // idx out-of-bounds
 if (idx < A_size) {
 char secret = A[idx];
 tmp = B[secret];
 }

mispredicted branch

Modern hardware predicts branch outcomes and speculatively executes instructions along predicted paths.

out-of-bounds load
secret-dependent load

- -

- -

- -

- -

- -

B+42 ………………

- -

- -

- -

- -

Address Data

Cache

array B
write

void attacker() {
 x = B[0];
 x = B[1];
 ...
 x = B[42];
}

read

microarchitectural
data-flow

😇

😈 Cache hit! Leaks secret = 42

Microarchitectural Control Flow Increases Leakage Scope

if (idx < A_size) {
 char secret = A[idx];
 tmp = B[secret];
}

LD r0, [idx]

LD r1, [A_size]

BR r0 >= r1, end

 LD r2, [A+r0]

 LD r3, [B+r2]

⊤

⊤

transmitter

receiver

😇

😈

po

po

po

po

rf

rf

MCMs do not capture microarchitectural control-flow or microarchitectural data-flow

… but they tell us how to construct a model that does!

applying MCM axioms

To model microarchitectural leakage,
we need:
1. Architectural semantics (MCMs)
2. Microarchitectural semantics (???)LC

M
s

MCMs Lay the Foundation for LCMs But Fall Short for
Modeling Microarchitectural Leakage

• Background: Hardware-Software Contracts & Memory Consistency
Models

• Building Blocks of Microarchitectural Leakage
• Leakage Containment Models: Modeling Microarchitectural Leakage
• Clou: Detecting and Mitigating Microarchitectural Leakage in Programs

Roadmap

MCMs / LCMs
Arch. Semantics

LCMs Microarch.
Semantics

abstraction level architecture microarchitecture

communication medium memory location xstate

control-flow po tfo

data-flow rf, co rfx, cox

legal executions consistency predicate confidentiality predicate

Deriving a Microarchitectural Semantics From
Architectural MCMs

Encodes HW-visible

execution

Encodes SW-visible

execution

• xstate: any non-architectural
state in a microarchitecture

• xstate variables represent
hardware state elements which:

• facilitate microarchitectural
data-flow between instructions

• be read from and written to by
instructions

• Instructions may read and/or
write xstate variable(s)

xstate facilitates microarchitectural dataflow

- -

A+3 ………………

- -

- -

- -

😇

😈

𝑠0

xstate examples

load-store queue

caches
branch predictors

𝑠0
𝑠1
𝑠2
𝑠3

…

𝑠0
𝑠1
𝑠2

…

… …

hitLD r2, [] 𝐴0 {𝑠0𝑅}
LD r2,[] 𝐴1 {𝑠1

𝑅
𝑊} miss

microarchitectural
data-flow

write

read

LCMs Model Microarchitectural Data-Flow Through xstate

Example rule: rfx non-interference (😇 😈) holds if for all writes and
all reads ,

↛ 𝒘
𝒓

𝒘 rf 𝒓 ⟹ 𝒘 rfx 𝒓

Else, there is an interfering transmitter where 𝒘′ 𝒘′
𝒓𝒇𝒙 𝒓

😇 😈

Detecting Leakage in Programs with LCMs

Key Idea: apply the standard notion of conditional
non-interference using rf and rfx to represent
architectural and microarch. Observation, rspct.

• Observation: searching for instances of microarchitectural leakage in programs can
be reduced to searching for violations of three non-interference rules.

High Level Idea: Architectural

Noninterference

Microarchitectural

Noninterference else, microarch. leakage

LD r0, [&idx] {s0}
LD r1, [&A_size] {s1}
BR r0 >= r1, end
 LD r2, [A+r0] {s2}
 LD r3, [B+r2] {s3}

⊤

⊥

tfo

tfo

tfo

tfo

tfo

rfx

rfx

LD r0, [&idx]
LD r1, [&A_size]
BR r0 >= r1, end
 LD r2, [array1+r0]
 LD r3, [array2+r2]

⊤
coxrf

Microarchitectural execution:Architectural execution:

tfo

Transient fetch order (tfo)
models the transient

execution paths of a program.

rfx Non-Interference Detects Spectre v1 Leakage

High Level Idea: Architectural

Noninterference

Microarchitectural

Noninterference else, microarch. leakage

Example:

Spectre V1 po

po

po

po

⊥

if (idx < A_size) {
 char secret = A[idx];
 tmp = B[secret];
}

LD r0, [&idx] {s0}
LD r1, [&A_size] {s1}
BR r0 >= r1, end
 LD r2, [A+r0] {s2}
 LD r3, [B+r2] {s3}

⊤

⊥

tfo

tfo

tfo

tfo

tfo

rfx

rfx

LD r0, [&idx]
LD r1, [&A_size]
BR r0 >= r1, end
 LD r2, [array1+r0]
 LD r3, [array2+r2]

⊤

⊥

coxrf
po

po

po

po

Microarchitectural execution:Architectural execution:

tfo

Transient fetch order (tfo)
models the transient

execution paths of a program.

rfx Non-Interference Detects Spectre v1 Leakage

High Level Idea: Architectural

Noninterference

Microarchitectural

Noninterference else, microarch. leakage

Example:

Spectre V1

 noninterference
violations

𝗋𝖿𝗑
if (idx < A_size) {
 char secret = A[idx];
 tmp = B[secret];
}

• Background: Hardware-Software Contracts & Memory Consistency
Models

• Building Blocks of Microarchitectural Leakage
• Leakage Containment Models: Modeling Microarchitectural Leakage
• Clou: Detecting and Mitigating Microarchitectural Leakage in Programs

Roadmap

{}
source symbolic

abstract event
graph

leakage
detection

engine

LLVM-IR

clang

SMT solver

configuration
parameters witness

executions

set of
transmitters

fence
insertion

repaired
LLVM-IR executable

hard-coded
LCM

Clou Automats Leakage Detection

• More scalable than previous tools:

• Binsec/Haunted [Daniel+ NDSS21]

• Pitchfork [Cauligi+ PLDI20])

• Reported 7 new Spectre v4
vulnerabilities in libsodium

• Reported 5 new Spectre v1
vulnerabilities in OpenSSL

Clou Found Bugs in Real-World Code

• Reported 5 new Spectre v1
vulnerabilities in OpenSSL

• LCMs expose microarchitectural control and data flow to software to
reason about the security implications of hardware on software

• LCMs can precisely pinpoint a wide variety of leakage in different
microarchitectures

• LCMs abstract away unnecessary implementation details
• LCMs are easy to adopt

Key Takeaways

