SXQgaXMgc ibGUgdG8g
aw52zZwW50I © uZ2x1lIGlh
Y2hpbmUgd = g¥2FulGJl
IHVzZZWQgd = tcHVOZSBh
ZZZZZZZZZZZZZZZZ ==
ZW5jZS4gsS pcyBtYWNo % %
BBBBBBBBBBBBBBB
Lkoghs¥ge Jb2iwdxRp é&;’ VETENSKAP ﬂ?

bmcgbWF3j | BNLCBOaG OCH KONST ©

VuIFUgd §b21wdx %Q . g?,
RRRRR W1lIH
Nlc 116 G%X(%‘b
F g

Axiomatic Hardware-Software
Security Contracts

Hamed Nemati, KTH

Joint work with Nicholas Mosier, Hanna Lachnitt, Caroline Trippel

CIDS Spring Conference 2024
KTH Royal Institute of Technology

Slides courtesy of Nicholas Mosier

Hardware Underpins Software Security

If one considers the union of all
optimizations on this slide, no instruction
operand/result or data at rest is safe

[Vicarte+, ISCA’21].

Subnormal floating point
[Andrysco+, S&P ‘15]

DRAM
[Google Project Zero ‘15]

Caches

[Osvik+, CT-RSA ’'06] || [Guanciale+, Oakland ‘16]

[Yarom+, USENIX ’14]

Division early exit
[Coppens, S&P ‘09]

Digit-serial multiplication
[GroBschéad+, ISISC ‘09]

000 Execution
[Lipp+, USENIX ‘18]

Indirect memory prefetchers
[Vicarte+, ISCA ‘21]

Register-file compression
[Vicarte+, ISCA ‘21]

Coherence Compressed Caches Silent stores
[Tsai+, ISCA ‘20] [Vicarte+, ISCA ‘21]
<\
| Value prediction
@; . (/ 3 L/ [Vicarte+, ISCA 21]
| ’ S lati - : Computation reuse
peculation [Vicarte+, ISCA ‘21]

[Kocher+, S&P ‘19]

And many more ...

Side-Channel Attacks

..,/“ .\
ik &Q‘“‘.‘-\n
‘\\ . \-‘
Architecture
Processor)
W |
B 1™ perthreading Speculation o
) AR Weak memory
Cache hierargy, Pipelining Multicore @ models

Microarchitecture

Hardware-Software Contracts
. eee

Software

Hardware jﬁ}

Lesson Learned from the PL Community

e Operational : Step-by-step state evolution

Example of Operational Specifications: Read(x) — y

Initial State Final State
Compute address using x Load value intoy
Jade Alglave
__________________ >
e Axiomatic: take arbitrary behavior, filter those
1990s 2010s not accepted by the semantics
Weak consistency Weak consistency Example of Candidate Execution:
(Operational) (Axiomatic) Instructions: Events: Event Graph:
: data, rf
Write(a) — x Write x W”%
Read(x) — vy Read x po ead x

Slide courtesy of Hernan Ponce de Ledn

Roadmap

* Building Blocks of Microarchitectural Leakage
* Leakage Containment Models: Modeling Microarchitectural Leakage
* Clou: Detecting and Mitigating Microarchitectural Leakage in Programs

>

compiler
4 N
Instruction Set : Eg:}frrs
Architecture (ISA) . y

e |nstructions
\. _J

microarchitecture
LLLLLL

rrrrtl

>

\,

ISA

Cana=1,b=0?

<= Can we observe a re-ordering of

Thread 1's stores or Thread 2's loads?

J

i)

Ll

Theaad " Theead 2°
&FD 7P
y =1 b =X

Memory

Consistency Model

(MCM)

A

EI]

It depends on the
architecture!

X (inted / arm

AN
IHIH.
i

4
0

Na

Can T2 observe a of T1's stores? Can Program 2 observe of x from Program 17?
T1 12 Program 1 Program 2

y—"atxh; || [7—= AT
</> </> </> </>

It depends on the

S ; i 7 microarchitecture! ‘ g 2]

Memory Leakage
Consistency Model Containment Model
. (MCM) | . (LCM) |

I H

I I I I I Microarchitecture

00

Instructi %
Retire
loating
I I I I I I fome

LLLLLL

~cycl

Execution Graph

instruction

< / > < / > ch con’crol-flow>

Architectural Executions

MCMs:
* Define the legal ordering + visibility of shared
memory accesses

4 D
Axiomatic Memory Axiomatic MCMs:
. * Model architectural executions of a program as
Consistency Model directed graphs
* Nodes: instructions
S * Directed edges: happens-before relations
 Consistency predicate defines legal executions forbidden

\,

«2
@)
i

Consistency
Predicate

00
as

Modeling Program Executions Axiomatically With
Happens-Before Relations

control-flow

Encodes branch outcomes.

A; B;

A

if (cc) L1 else L2

BR cc,

L1, L2

BR cc, L1, L2

Or

L1

L2

L1 L2

data-flow

Encodes dynamic data-flow through memory.

X = 0;
. = X;
ST [x], ©

LD r1," {x]

reads-from (rf)
relates store—>load if load
reads from store

X = 0;
X = 1;
ST [x], ©
ST [x], -1

coherence order (co)
constructs a total order on
same-address stores

dependencies

Encodes syntactic data-flow through registers.

LD/ST r2, +[A + ri]

address dependency (addr):
relates load—>access where accesses
uses load in address computation

Roadmap

 Background: Hardware-Software Contracts & Memory Consistency
Models

* Leakage Containment Models: Modeling Microarchitectural Leakage
* Clou: Detecting and Mitigating Microarchitectural Leakage in Programs

Microarchitectural Data-flow Enables Leakage

Program | Program 2

y = Alx];| z = A[3];

Cache Ingredients for modeling
A [3] Address Data

<
I

1. Instructions exhibit >1

z = A[3] 2. Which execution is realized

Microarchitectural Data-flow Enables Leakage

Program | Program 2

y = Alx];| z = A[3];

transmitter Cache Ingredients for modeling

?y = A[3] W Address Data
b A;3 1. Instructions exhibit >1
= | utens.
z = A[3] 2. Which execution is realized

o

receiver

cache hit (5 ns)

leaks: x = 3

Microarchitectural Data-flow Enables Leakage

Program | Program 2

y = Alx];| z = A[3];

transmitter Cache Cache

E;? Y = A [3] write Address Data Address Data
\A _ - — A [5] — -

Wz = A[3]

receiver

cache hit (5 ns)

leaks: x = 3

A+3

Al3]

Microarchitectural Data-flow Enables Leakage

Program | Program 2
= Alx];:;l z = Al3];
y [x1; [3] "transmitter
transmitter Cache Cache
(?:? y = A [3] W Address Data Address Data
/ A+3 | y A [5] write : :
read . - i :
_ - - A+5 |
@Z = A[3] _ - Vi Al3] read _ _

receiver

o

receiver

cache hit (5 ns) cache miss (50 ns)

leaks: x = 3 leaks: x # 3

Microarchitectural Control Flow Increases Leakage Scope

Spectre vi: Bounds Check Bypass

// 1dx out-of-bounds
if (idx < A_size) A mispredicted branch

2. char secret = A[idx];
3; tmp = Blsecret];
4:

}

Modern hardware predicts branch outcomes and speculatively executes instructions along predicted paths.

Microarchitectural Control Flow Increases Leakage Scope

Cache Spectre vi: Bounds Check Bypass
Address Data

- - // idx out-of-bounds

_ _ if (idx < A_size) { mispredicted branch
= - 2

- - 3: (;’

_ ; .t

array B

_ _ void attacker() {

- - x = B[0];
_ ~ read x = B[1];
x = B[42];
1 © Cache hit! Leaks secret = 42

Modern hardware predicts branch outcomes and speculatively executes instructions along predicted paths.

LCMs

MCMs Lay the Foundation for LCMs But Fall Short for
Modeling Microarchitectural Leakage

| PO
v

LD r@, [idx]
| po
LD r1,Y [A_size]

if (idx < A_size) { lpo
char secret = Al[idx]; applying MCM axioms BR r0 >= rl1, end
tmp = B[secret];

¥

transmitter
PO &

bl@

receiver

MCMs do not capture microarchitectural control-flow or microarchitectural data-flow
... but they tell us how to construct a model that does!

Roadmap

 Background: Hardware-Software Contracts & Memory Consistency
Models

* Building Blocks of Microarchitectural Leakage

* Clou: Detecting and Mitigating Microarchitectural Leakage in Programs

Deriving a Microarchitectural Semantics From
Architectural MCMs

MCMs / LCMs LCMs Microarch.

Arch. Semantics Semantics
abstraction level architecture microarchitecture
communication medium memory location xstate
control-flow po tfo
data-flow rf, co rfx, cox
legal executions consistency predicate confidentiality predicate

Encodes SW-visible Encodes HW-visible
execution execution

LCMs Model Microarchitectural Data-Flow Through xstate

 xstate: any non-architectural
state in a microarchitecture

» xstate variables represent
hardware state elements which:

* facilitate microarchitectural
data-flow between instructions

* be read from and written to by
iInstructions

* Instructions may read and/or
write xstate variable(s)

xstate facilitates microarchitectural dataflow

> .
&) write
S0
read 3 ~

o

xstate examples

LD r2, [A,] {SOR}\

- >

t1

PHT
/ Branch address
L BTB LSelectorTable S0 |
o

LD r2, [4,] {slgV} —

9 @
o oo Le3

] 23

2%

| GHR
\farget 4 R NIRTE— S

branch predictors

..—\
}' (2 |

QMM-V)

load-store queue

Detecting Leakage in Programs with LCMs

Architectural Microarchitectural

High Level Idea: Noninterference Noninterference

else, microarch. leakage

Key Idea: apply the standard notion of conditional
non-interference using rf and rfx to represent
architectural and microarch. Observation, rspct.

* Observation: searching for instances of microarchitectural leakage in programs can
be reduced to searching for violations of three non-interference rules.

—>

Example rule: non-interference (‘\;;;,4»@) holds if for all writes w and
all reads r,

w r — w r

—>
AA
L

Else, there is an interfering transmitter w’ where w’ r

rfx Non-Interference Detects Spectre vl Leakage

] Architectural Microarchitectural]
High Level ldea: . . else, microarch. leakage
" Noninterference Noninterference ’
Example: Architectural execution: Microarchitectural execution:
T T
Spectre V1 D ro, [&idx] LD ro, [&idx] {s@}
if (idx < A_size) { |
char secret = Alidx]; LD r1, [&A_size] LD rl, [8A_size] {sl}
tmp = Blsecret];
1 BR r@ >= rl1, end BR r@ >= rl1, end
LD r2, [A+r@] {s2}
LD r3, [B+r2] {s3}
1 Transient fetch order (tfo) 1

models the transient
execution paths of a program.

rfx Non-Interference Detects Spectre vl Leakage

Architectural
Noninterference

High Level ldea:

Example:

Spectre V1

if (idx < A _size) {
char secret = A[idx];
tmp = Blsecret];

}

Architectural execution:

Microarchitectural

. else, microarch. leakage
Noninterference

Microarchitectural execution:
T T
LD ro, [&idx] LD ro, [&idx] {s@}

LD r1, [&A_sizel LD r1, [&A_size] {s1}

rfx noninterference

violations
BR ro >= r1, end

BR ro >= r1, end

1 Transient fetch order (tfo) 1
models the transient
execution paths of a program.

Roadmap

* Background: Hardware-Software Contracts & Memory Consistency
Models

* Building Blocks of Microarchitectural Leakage
* Leakage Containment Models: Modeling Microarchitectural Leakage

Clou Automats Leakage Detection

configuration
parameters

withess
executions

§O i

LLVM-IR leakage fence repaired
detection insertion LLVM-IR

engine

executable

set of
transmitters

SMT solver

hard-coded
LCM

Clou Found Bugs in Real-World Code

» More scalable than previous tools: OpenSSL Blog

* Binsec/Haunted [Daniel+ NDSS21] slog | s
* Pitchfork [Cauligi+ PLDI20])

e Re PO rted 7 new Spectre v4 Spectre and Meltdown Attacks
vulnerabilities in libsodium Against OpenSSL
The OpenSSL Technical Committee (OTC) was recently made aware of several potential attacks

o Re po rted 5 n ew SPeCt re V1 against the OpenSSL libraries which might permit information leakage via the Spectre attack.!

Although there are currently no known exploits for the Spectre attacks identified, it is plausible

Vu I nera bi I ities i n O pen SS L that some of them might be exploitable.

1. Mosier et al., “Axiomatic Hardware-Software Contracts for Security,” in Proceedings of the
49th ACM/IEEE International Symposium on Computer Architecture (ISCA), 2022. €

Posted by OpenSSL Technical Committee « May 13th, 2022 12:00 am

Key Takeaways

« LCMs expose microarchitectural control and data flow to software to
reason about the security implications of hardware on software

 LCMs can precisely pinpoint a wide variety of leakage in different
microarchitectures

* L CMs abstract away unnecessary implementation details
* L CMs are easy to adopt

