
1

Compromise/Malware	
Detection	vs.	Avoidance	

for	Low-End	Embedded/Smart/IoT	
Devices

Gene Tsudik
CS Department

University of California, Irvine
gene.tsudik@uci.edu

2

OUTLINE
• IoT ecosystem and Low-End MCUs
• Security and Attacks
• Prevention/Detection
• The case for RATA
• RATA overview
• The case for CASU
• CASU overview
• Architecture details
• Implementation & Evaluation
• Summary & Takeaways

The IoT Ecosystem
• Ubiquitous, diverse and growing

• Widely used in
• Smart home/office applica0ons
• Smart ci0es and industrial automa0on

• Func8onality: sensors, actuators, control units

• Range from high-end (almost smartphone-like) to very low-
end (amoebas)

• Interconnected and/or Internet-connected
• AFrac8ve targets for aFacks and malware (e.g., Stuxnet,

Mirai Botnet)
• AFacks targets: privacy, security/safety, zombifica8on

• This will get a lot worse…

3

But why?
• Device-makers don’t prioritize security or privacy
• Budget constraints: $$ cost, size, performance, bandwidth, etc.
• Rush-to-market syndrome
•Malleable software/firmware
• Lack of assurance (no verification) of hw or sw
• Consumer tendency towards monocultures, e.g., Echo VA, Ring

DB, Nest,…
• Compromise one à compromise all

• Bottomline: the “IoT Armageddon” is coming…

Low-End MCUs common in
IoT/smart/Embedded/CPS devices

Low cost

$0.1 - 1

Low
power

1𝜇A – 1mA/MHz

Small
size

35x8x4 mm3 –
59x32x7 mm3

Anemic
computing

power

Single-core (8/16)-bit CPU,
8-48 MHz Frequency,
< 128 KB (RAM+FLASH)

No
security

§ No OS/Kernel, MMU, MPU, hypervisor, or TEE
§ Bare-metal execution, no virtualization
§ Examples: TI MSP430, AVR ATMega8

TI MSP430 AVR ATMega8

General architecture of a low-end MCU

• Code in PMEM, in-place execution

• DMEM used as stack/heap for code in PMEM

• ROM stores the bootloader

How to secure software on such tiny MCUs?

• Often perform real-time and/or safety-critical tasks
• Typically lack security features

• Could place all code in ROM or implement it as an ASIC…
• Then, updates would be impossible or would be manual/physical

•We focus on code injection attacks

• Inject malicious code via buffer overflows
• Embedded systems code is mostly written in C and C++
• These low-level languages are memory-unsafe à prone to

buffer overflows

• Two cases:
• Case 1: Modification of existing code
• Case 2: Inject code somewhere in memory and jump to it

Case2

Case1

Code Injection Attacks

How to cope with case 1?

• Remote Attestation (RA)
• Verify code integrity on a remote device
• If any modification is detected, revoke or physically

restore (or erase) device
• Issues:
• Considerable runtime overhead, especially

problematic for safety-critical/real-time devices
• Passive : detects, does not prevent, modifications
• Allows delayed detection of past compromise

Case1

• RATA [CCS’21] architecture minimizes RA runtime
overhead
• Includes a security monitor that records time of latest

PMEM modification
• RA in RATA amounts to secure confirmation of that time,

instead of measuring the entire code
• Mitigates TOCTOU
• Minimal (and constant) RA overhead

• RATA still just detects (does not prevent) modifications

Case1

How to cope with case 1?

• Data Execution Prevention (DEP)
• Prevents execution of code from DMEM
• Available in Windows, Linux, macOS

• Problem:
• Not available on low-end devices (except for

Harvard architecture-based MCUs)
Case2

How to mi7gate case 2?

(2) Response = authenticated
challenge-based
measurement (MAC) of
prover’s current software
state

(1) Challenge

(3) Response

(4) Verify response,
decide outcome

Verifier Prover

Remote Attestation (RA)

CCS 2021 12

Example RA schemes:
SMART [NDSS’12],
SANCUS [Sec’12],
Trustlite [EuroSys’14],
VRASED [Sec’19]
SIMPLE [ICCPS’20]
PISTIS [Usenix’22]

6/17/24

Is RA sufficient? What if malware corrupts the device in the
time between two consecutive RA measurements?

• RA is static à cannot detect presence of transient malware

• Expensive to attest entire program memory every time verifier requests it.
RA runtime is not negligible -- hinders execution of prover’s main task(s)

RATA approach: TOCTOU-Secure RA

• A race condition that occurs between: (1)
checking the state (of a part) of a system,
and (2) using results of that check
• Not unique to RA context
• TOCTOU attack example:

• Malware that erases itself before the device
is checked (e.g., via RA) and reinfects it after
the check is done

TOCTOU (Time-of-Check to Time-of-Use)

CCS 2021 14

Check (RA) Use (Runtime)

6/17/24

TOCTOU-Secure RA (goal):
• Guaranteed memory integrity

independent of RA frequency
• Reduced RA measurement time à

Increased CPU time for regular
applications

TOCTOU in RA

CCS 2021 15

Regular RA:
• Device vulnerable between

consecutive RA measurements
• More frequent RA à Reduced CPU

time for regular applications

6/17/24

• Are “low-end” amoeba-like IoT devices here to stay?

Why couldn’t future ones benefit from TEEs or similar hw features?

• Also, why bother with RA at all? Aren’t these gadgets/gizmos intended to
have a short life-span?

Why not just place their entire functionality in hardware? à no malware!!!

• Alternatively, couldn’t we just minimize TOCTOU vulnerability windows?

Now, let’s step back for a second…

CCS 2021 166/17/24

17

RATA:
Remote Attestation

with

TOCTOU Avoidance

CCS 20216/17/24

RATAA : Using secure
real-time clock (RTC)

RATAB : Without
using secure clocks

I. De Oliveira Nunes, S. Jakkamsetti, N. Rattanavipanon, and G. Tsudik
On the TOCTOU Problem in Remote Attestation
ACM CCS 2021

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=WLvuu74AAAAJ&sortby=pubdate&authuser=1&citation_for_view=WLvuu74AAAAJ:sZOHfsbWRCYC

• Attested Region (AR) includes LMT
(“Latest Modification Time”) value

RATAA: TOCTOU-Secure RA using Secure Clocks

CCS 2021 186/17/24

• Attested Region (AR) includes LMT
(“Latest Modification Time”) value
• RATAA monitors write-operations to AR

at all times.

RATAA: TOCTOU-Secure RA using Secure Clocks

CCS 2021 196/17/24

• Attested Region (AR) includes LMT
(“Latest Modification Time”) value
• RATAA monitors write-operations to AR

at all times.

• An AR write triggers a 1-bit signal that
causes LMT to be updated with the
current clock time.

RATAA: TOCTOU-Secure RA using Secure Clocks

CCS 2021 206/17/24

• Attested Region (AR) includes LMT
(“Latest Modification Time”) value
• RATAA monitors write-operations to AR at

all times.

• An AR write triggers a 1-bit signal that
causes LMT to be updated with the current
clock time.

• RATAA prevents unauthorized writes to
LMT, resetting the device if it is attempted.

RATAA: TOCTOU-Secure RA using Secure Clocks

CCS 2021 216/17/24

• Attested Region (AR) includes LMT
(“Latest Modification Time”) value
• RATAA monitors write-operations to AR at

all times.

• An AR write triggers a 1-bit signal that
causes LMT to be updated with the
current clock time.

• RATAA prevents unauthorized writes to
LMT, resetting the device if it is attempted.

• LMT cannot be modified/spoofed by
malware (in fact, any sw) on Prover.

• Attestation result need only needs to
authenticate LMT à not all software!

RATAA: TOCTOU-Secure RA using Secure Clocks

CCS 2021 226/17/24

RATAA: TOCTOU-Secure RA using Secure Clocks

CCS 2021 23

• Properties (LTL specifications):
• LMT is read-only to software

• LMT is updated with the current time
from RTC if, and only if, AR is modified

G{Mod_Mem(LMT)	è reset}

G{Mod_Mem(AR)	è setLMT}
Formally Verified RATAA FSM

6/17/24

Thus, RATAB

Problem with secure clocks:

Generally unavailable on low-end
embedded systems

• Given no RTC on prover, RATAB emulates “prover
time” using verifier’s clock
• Verifier maps every unique attestation challenge to its

own local (assumed secure/trusted) clock.

• Prover authenticates verifier and uses the attestation
challenge as its own time

• Rest of the design is same as RATAA except:
• The first authenticated RA after any modification to AR

always updates LMT with new challenge (Chal) sent by
verifier.

RATAB: TOCTOU-Secure RA without Secure Clocks

CCS 2021 256/17/24

CCS 2021 26

• Properties (LTL specifications):
• LMT is read-only to software

• LMT is never updated without
authentication

•Modification to AR updates LMT in the next
authenticated attestation request

G{Mod_Mem(LMT)	è reset}

G{		UPLMT ∧ X(UPLMT)	è X(PC	=	CRauth)}⎦

G{Mod_Mem(AR)	⋁ reset	è
[(PC	=	CRauthà UPLMT)	W (PC	=	CRmax ⋁ reset)]}

RATAB: TOCTOU-Secure RA without Secure Clocks

Formally Verified RATAB FSM

6/17/24

• Specify the LTL properties in SMV
(Symbolic Model Verifier) language

• Convert the Verilog HDL (FSMs) into SMV

• Check whether the FSMs obey the
specified LTL properties using NuSMV
Model Checker

Formal Verification Pipeline

CCS 2021 276/17/24

• RATA is built upon OpenMSP430
• Synthesized and executed on Basys3 FPGA
• RATA uses VRASED (a formally verified RA

architecture built on OpenMSP430) for its
RA measurement
• Source code:

haps://github.com/sprout-uci/RATA

Implementation

CCS 2021 286/17/24

CASU: Compromise Avoidance
via Secure Updates

for Low-end Embedded Systems

Ivan De Oliveira Nunes*, Sashidhar Jakkamsetti , Youngil Kim , and Gene Tsudik
IEEE/ACM ICCAD’22

† † †

†*

• Designate a fixed location for “authorized” code
• Code installed by device owner/operator

• Prevent modifications to authorized code
• Prevent execution of any other memory

• But, what if a software update is required?
• Provide support for Secure Update

• CASU is an active Root-of-Trust that prevents
code injection attacks

Mitigating both cases in CASU

CASU Overview

Hybrid (HW/SW) architecture

Two components:
• CASU-HW:

• Authorized Code
Immutability

• Unauthorized Code
Execution Prevention

• CASU-SW:
• Secure Update

Guarantees con8nuous so:ware integrity between two authorized updates

CASU-HW: Hardware Security Monitor

Security Properties (in LTL), formally verified via Model Checking:
• Authorized Code Immutability

• If CPU core or DMA tries to modify authorized code, reset MCU

• Unauthorized Code Execution Prevention
• If core tries to execute anything other than authorized code, reset MCU

• CASU-SW (trusted) is exempt from these rules
• Ensures secure execution of CASU-SW

Modify_Mem(auth_code) ∧ ¬(PC ∈ CASU-SW) → reset

¬(PC ∈ auth_code) ∧ ¬(PC ∈ CASU-SW) → reset

CASU-SW: Secure Update Protocol

• Verifier (Vrf) sends new code (Snew) and authentication token (ATok) to device (Prv)

• CASU-SW on Prv authenticates Snew using ATok and installs it

• If successful, authenticated acknowledgement (AAck) is returned to Vrf

CASU-SW: Secure Update Workflow

• Upon an update request, current code
downloads new version

• A@er installaAon, new code sends AAck
to verifier

• During installaAon, if any violaAon
occurs, status bit remains ‘0’, which
indicates failure and re-triggers
installaAon at boot Ame

Implementation

• CASU is implemented on MSP430
• Due to public availability of OpenMSP430 (Verilog)

• Synthesized and deployed on Basys3 FPGA
• CASU uses VRASED (a formally verified RA

architecture) for implementing authentication
part of Secure Update
• Open-source implementation on GitHub:

https://github.com/sprout-uci/casu

Evaluation: Hardware Overhead

• CASU-HW ”costs” 5.3% LUTs and 4.9% registers over unmodified OpenMSP430
• Overhead comparable to similar hybrid architectures

Evaluation: Secure Update Runtime

Secure Update runtime is linear in terms of code size

CASU Summary:
• CASU prevents sw-based attacks on low-end embedded systems

• Active root-of-trust architecture

• CASU-HW provides software immutability and data execution prevention;
formally verified
• CASU-SW provides secure code update
• 5% hardware overhead over vanilla OpenMSP430
• Requires hw modifications
• Needs a separate “heartbeat” mechanism to check device liveness
• Resetting the device is exploitable by DoS-focused attacks
• No protection against physical attacks

https://arxiv.org/pdf/2209.00813.pdf

https://github.com/sprout-uci/casu

https://arxiv.org/pdf/2209.00813.pdf
https://github.com/sprout-uci/casu

Talk Summary:
• Discussed compromise detection vs compromise prevention
• Which approach is better depends on specific setting
• RATA and CASU are low-cost effective means of doing each
• HW modifications don’t help deployed/existing devices
• Dealing with large numbers of (perhaps inter-connected) devices is a challenge
• Resetting a safety-critical device interrupts/disrupts its operation
• Extending described techniques from simple (bare metal) to more

sophisticated (higher-end) IoT devices isn’t easy
• Larger code base, bigger attack surface

• There is no panacea, and no hope for a one-size-fits-all solution!

Related Efforts

•Bruno Crispo’s group at Uiversity of Trento, e.g., PISTIS

• Frank Piessens’ group at KUL, e.g., SANCUS

•Ahmad Sadeghi’s group at TU Darmstadt, e.g., TRUSTLITE

Recent related work at SPROUT

• PARseL: Towards a Verified Root-of-Trust over seL4, ICCAD 2023.

• Caveat (IoT) Emptor: Towards Transparency of IoT Device Presence, ACM CCS 2023.

• CASU: Compromise Avoidance via Secure Updates for Low-end Embedded Systems, ICCAD 2022.

• Privacy-from-Birth: Protecting Sensed Data from Malicious Sensors with VERSA, IEEE Security & Privacy (Oakland) 2022.

• SCRAPS: Scalable Collective Remote Attestation for Pub-Sub IoT Networks with Untrusted Proxy Verifier, USENIX Security 2022.

• GAROTA: Generalized Active Root-Of-Trust Architecture, USENIX Security 2022.

• Delegated Attestation: Scalable Remote Attestation of Commodity CPS, ACM WiSec 2021.

• On the TOCTOU Problem in Remote Attestation, ACM CCS 2021.

• DIALED: Data Integrity Attestation for Low-end Embedded Devices, ACM/IEEE DAC 2021.

• On the Root of Trust Identification Problem, ACM IPSN 2021.

• Tiny-CFA: Minimalistic Control-Flow Attestation Using Verified Proofs of Execution, DATE 2021.

https://arxiv.org/pdf/2209.00813.pdf
https://arxiv.org/pdf/2205.02963.pdf
https://www.usenix.org/conference/usenixsecurity22/presentation/petzi
https://arxiv.org/pdf/2102.07014.pdf
https://sprout.ics.uci.edu/projects/attestation/papers/wisec21-final45.pdf
https://arxiv.org/pdf/2005.03873.pdf
https://arxiv.org/pdf/2103.12928.pdf
https://arxiv.org/pdf/2010.13858.pdf
https://sprout.ics.uci.edu/pubs/tiny-cfa.pdf

End of Talk

•Questions?

