

OUTLINE

 [IoT ecosystem and Low-End MCUs
 Security and Attacks

* Prevention/Detection

« The case for RATA

« RATA overview

* The case for CASU

« CASU overview

 Architecture details

« Implementation & Evaluation

« Summary & Takeaways

The loT Ecosystem

Ubiquitous, diverse and growing

Widely used in
* Smart home/office applications
* Smart cities and industrial automation

Functionality: sensors, actuators, control units

Range from high-end (almost smartphone-like) to very low-
end (amoebas)

Interconnected and/or Internet-connected

Attractive targets for attacks and malware (e.g., Stuxnet,
Mirai Botnet)

Attacks targets: privacy, security/safety, zombification

This will get a lot worse...

But why?

* Device-makers don’t prioritize security or privacy

* Budget constraints: SS cost, size, performance, bandwidth, etc.
e Rush-to-market syndrome

* Malleable software/firmware

 Lack of assurance (no verification) of hw or sw

* Consumer tendency towards monocultures, e.g., Echo VA, Ring
DB, Nest,...

 Compromise one = compromise all

* Bottomline: the “loT Armageddon” is coming...

Low-End MCUs common in
loT/smart/Embedded/CPS devices

Anemic

computing
power

35x8x4 mm?3 — Single-core (8/16)-bit CPU,
59x32x7 mm?3 8-48 MHz Frequency,
<128 KB (RAM+FLASH)

$0.1-1 1uA — ImA/MHz

= No OS/Kernel, MMU, MPU, hypervisor, or TEE
= Bare-metal execution, no virtualization
= Examples: TI MSP430, AVR ATMega8

TI MSP430 AVR ATMega8

General architecture of a low-end MCU

.............................

MCU § Memory i
Interrupt Control Interr$:é|Zector
Logic ! §
{ | PMEM (FLASH) | |
CORE e ROM
% ‘| DMEM (RAM) | |
v]
DMA Peripheral ‘
Memory)
A NN — A A A A — —
Y
[DMA Peripherals J Peripherals

* Code in PMEM, in-place execution
« DMEM used as stack/heap for code in PMEM

e ROM stores the bootloader

How to secure software on such tiny MCUs?

» Often perform real-time and/or safety-critical tasks
 Typically lack security features

* Could place all code in ROM or implement it as an ASIC...
* Then, updates would be impossible or would be manual/physical

* We focus on code injection attacks

Code Injection Attacks

* Inject malicious code via buffer overflows
 Embedded systems code is mostly written in C and C++

* These low-level languages are memory-unsafe = prone to

buffer overflows

* TWO cases:

* Case 1: Modification of existing code
* Case 2: Inject code somewhere in memory and jump to it

.............................

| Table

PMEM (FLASH)
[

ROM

DMEM (RAM)

Peripheral
Memory

Casel

| Case2

How to cope with case 17

* Remote Attestation (RA)
* Verify code integrity on a remote device

* If any modification is detected, revoke or physically
restore (or erase) device

* [ssues:

* Considerable runtime overhead, especially
problematic for safety-critical/real-time devices

 Passive : detects, does not prevent, modifications
* Allows delayed detection of past compromise

Table

PMEM (FLASH)
l

ROM

]

DMEM (RAM)
|

Peripheral
Memory

§ Casel

How to cope with case 17

e RATA [CCS’21] architecture minimizes RA runtime
overhead

* Includes a security monitor that records time of latest
PMEM modification

* RA in RATA amounts to secure confirmation of that time,
instead of measuring the entire code

* Mitigates TOCTOU
 Minimal (and constant) RA overhead

* RATA still just detects (does not prevent) modifications

Table

PMEM (FLASH)
|

ROM

DMEM (RAM)
|

]

Peripheral
Memory

i Casel

e Data Execution Prevention (DEP)
* Prevents execution of code from DMEM
e Available in Windows, Linux, macOS

* Problem:

* Not available on low-end devices (except for
Harvard architecture-based MCUs)

How to mitigate case 27

Interrupt Vector
Table

| PMEM (FLASH)

ROM

DMEM (RAM)
|

Peripheral
Memory

| Case2

Remote Attestation (RA)

Verifier Prover

Program
Example RA schemes: 7 : Memory
SMART [NDSS’12], g M

7|

SANCUS [Sec’12],

Trustlite [EuroSys’14], (7) Ch

VRASED [Sec’19] a//enge

SIMPLE [ICCPS’20] \

PISTIS [Usenix’22] (2) Response = authenticated

challenge-based
measurement (MAC) of
prover’s current software

(3) ReSPOnse state
(4) Verify responsy‘

decide outcome

6/17/24 CCS 2021 12

s RA sufficient? What if malware corrupts the device in the
time between two consecutive RA measurements?

* RA is static 2 cannot detect presence of transient malware

* Expensive to attest entire program memory every time verifier requests it.
RA runtime is not negligible -- hinders execution of prover’s main task(s)

RATA approach: TOCTOU-Secure RA

TOCTOU (Time-of-Check to Time-of-Use)

* A race condition that occurs between: (1)
checking the state (of a part) of a system,
and (2) using results of that check

* Not unique to RA context "
* TOCTOU attack example:

 Malware that erases itself before the device
is checked (e.g., via RA) and reinfects it after il Qi —
the check is done w

v

Program
Memory

Gl

X

Check (RA) Use (Runtime)

6/17/24 CCS 2021

14

TOCTOU in RA

Vulnerability Windows
|

Regular RA: b 1 1 -

| | I

* Device vulnerable between Compase. :N :N \\\\\\\@

consecutive RA measurements y !
* More frequent RA - Reduced CPU Inteenglfirg,
time for regular applications ! ! ! ! | !

I | | | | |

>

Capp Cra Capp Cra Capp CrA Capp Time

TOCTOU-Security

T

A NN L\\\\\@ TOCTOU-Secure RA (goal):

| ' ' ! * Guaranteed memory integrity
xf;gfg I l i independent of RA frequency
f : ; ' * Reduced RA measurement time -

: l : ! > Increased CPU time for regular
Capp Cra Capp Cra Capp Time .. 8
applications

6/17/24 CCS 2021 15

Now, let’s step back for a second...

Why couldn'’t future ones benefit from TEEs or similar hw features?
Why not just place their entire functionality in hardware? = no malware!!l

* Alternatively, couldn’t we just minimize TOCTOU vulnerability windows?

6/17/24 CCS 2021 16

RATA:
Remote Attestation ~ "ecesitie
with
TOCTOU Avoidance

RATA, : Without
using secure clocks

l. De Oliveira Nunes, S. Jakkamsetti, N. Rattanavipanon, and G. Tsudik
On the TOCTOU Problem in Remote Attestation
ACM CCS 2021

o CCS 2021

17

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=WLvuu74AAAAJ&sortby=pubdate&authuser=1&citation_for_view=WLvuu74AAAAJ:sZOHfsbWRCYC

RATA,: TOCTOU-Secure RA using Secure Clocks

* Attested Region (AR) includes LMT

(“Latest Modification Time”) value

6/17/24

CCS 2021

Program
Memory

LMT

|RTC

RATAA

18

RATA,: TOCTOU-Secure RA using Secure Clocks

* Attested Region (AR) includes LMT
(“Latest Modification Time”) value

* RATA, monitors write-operations to AR /’ \
at all times. { | Program [\
| | Memory || I: .
&\ i “‘;“; RTC
\ /
N LMTY
e RATA 5
)]
L\ T

6/17/24 CCS 2021 19

RATA,: TOCTOU-Secure RA using Secure Clocks

* Attested Region (AR) includes LMT
(“Latest Modification Time”) value

* RATA, monitors write-operations to AR /,/7 | Q\‘

at all times. { | Program [\ M e
. . L. { Memory || U P :
* An AR write triggers a 1-bit signal that \) X (ORTC
causes LMT to be updated with the \
current clock time. L IMT (-
o setLMT RATAA
| I
\

6/17/24 CCS 2021

20

RATA: TOCTOU-Secure RA using Secure Clocks

* Attested Region (AR) includes LMT
(“Latest Modification Time”) value

* RATA, monitors write-operations to AR at / \

all times. [| program |\ M e

| U

* An AR write triggers a 1-bit signal that \ viemeny X+ (ORrTC

causes LMT to be updated with the current

clock time. 1

RATA,

* RATA, prevents unauthorized writes to settMT i -

LMT, resetting the device if it is attempted.

6/17/24 CCS 2021 21

RATA,: TOCTOU-Secure RA using Secure Clocks

 Attested Region (AR) includes LMT
(“Latest Modification Time”) value

* RATA, monitors write-operations to AR at | \T
all times. /] \

?

Program

?

* An AR write tri%)gers a 1-bit signal that s:
causes LMT to be updated with the \
current clock time.

(ORTC

* RATA, prevents unauthorized writes to
LMT, resetting the device if it is attempted.

* LMT cannot be modified/spoofed by
malware (in fact, any sw) on Prover.

RATAA

setLMT

» Attestation result need only needs to
authenticate LMT = not all software!

6/17/24 CCS 2021 22

RATA,: TOCTOU-Secure RA using Secure Clocks

Mod Mem(AR) A
(—Mod_Mem(LMT))

* Properties (LTL specifications):
* LMT is read-only to software

(—Mod_Mem(AR)) A
(—Mod_Mem(LMT))

G{Mod_Mem(LMT) =» reset}

* LMT is updated with the current time
from RTC if, and only if, AR is modified

G{Mod_Mem(AR) =» sety}

Formally Verified RATA, FSM

6/17/24 CCS 2021 23

Problem with secure clocks:

Generally unavailable on low-end
embedded systems

Thus, RATA,

RATA;: TOCTOU-Secure RA without Secure Clocks

* Given no RTC on prover, RATA; emulates “prover
time” using verifier’s clock

* Verifier maps every unique attestation challenge to its
own local (assumed secure/trusted) clock.

* Prover authenticates verifier and uses the attestation
challenge as its own time

* Rest of the design is same as RATA, except:

* The first authenticated RA after any modification to AR
always updates LMT with new challenge (Chal) sent by
verifier.

6/17/24 CCS 2021

Chal

/
h—

CLMTA

Program |
Memory

M Z

/

UPur

RATA;

25

RATA;: TOCTOU-Secure RA without Secure Clocks

* Properties (LTL specifications):
* LMT is read-only to software

G{Mod_Mem(LMT) =>» reset}

* LMT is never updated without
authentication

GEUP 1 A X(UPpyr) =2 X(PC = CRyym) }

* Modification to AR updates LMT in the next
authenticated attestation request

G{Mod_Mem(AR) V reset =»
[(PC = CRyyn 2 UP yr) W (PC = CR54 Vreset)]} Formally Verified RATA, FSM

6/17/24 CCS 2021 26

Mod_Mem(LMT)

(PC=0)A
(—Mod_Mem(LMT))

Formal Verification Pipeline

Verilog Design
Sub-Module 1

» Specify the LTL properties in SMV
(Symbolic Model Verifier) language

* Convert the Verilog HDL (FSMs) into SMV . | ’?‘|

* Check whether the FSMs obey the
specified LTL properties using NuSMV
Model Checker 2) HWoc

s e NuSMV
e T u

Verilog Design Verilog2SMV
Sub-Module N l

A
ALL LTL | 58 L
SPECS , 4

NuSMV Verification
Success

6/17/24 CCS 2021

Implementation

e RATA is built upon OpenMSP430
* Synthesized and executed on Basys3 FPGA

* RATA uses VRASED (a formally verified RA
architecture built on OpenMSP430) for its
RA measurement

e Source code:
https://github.com/sprout-uci/RATA

d B M sl
W@ D) e w® WD e WO W =

6/17/24 CCS 2021 28

CASU: Compromise Avoidance
via Secure Updates
for Low-end Embedded Systems

Ivan De Oliveira Nunes*, Sashidhar Jakkamsetti T, Youngil Kier, and Gene Tsudifl
IEEE/ACM ICCAD’22

% . .
R I T ‘ Rochester Institute +U c I University of
of Technology California, Irvine

Mitigating both cases in CASU RV

r Interrupt Vector
| Table
* Designate a fixed location for “authorized” code i
* Code installed by device owner/operator PMEM (FLASH) |
* Prevent modifications to authorized code \)
* Prevent execution of any other memory ' — |
* But, what if a software update is required?
. DMEM (RAM)
* Provide support for Secure Update
* CASU is an active Root-of-Trust that prevents Pﬁﬂ‘,’:ﬁ,'ya'

code injection attacks

CASU Overview

Hybrid (HW/SW) architecture UNAUTHORIZED SOFTWARE EXECUTION PREVENTION
&

AUTHORIZED SOFTWARE IMMUTABLE ZONE

TRUSTED EXECUTION
ZONE

i .

Two components:

o CASU-HW: 2 g -

. i [T =) | — | '
Immutability RESET =) AUTHORIZED > UPDATE
' SOFTWARE :
* Unauthorized Code . J I Bl
Execution Prevention 1‘ | | |
* CASU-SW: .
* Secure Update —>» : Violations to CASU i

[] : CASU Trusted Component

[Guarantees continuous software integrity between two authorized updates]

CASU-HW: Hardware Security Monitor

Security Properties (in LTL), formally verified via Model Checking:

e Authorized Code Immutability
e If CPU core or DMA tries to modify authorized code, reset MCU

Modify_Mem(auth_code) A =(PC € CASU-SW) - reset

* Unauthorized Code Execution Prevention
* If core tries to execute anything other than authorized code, reset MCU

-(PC € auth_code) A =(PC € CASU-SW) - reset

e CASU-SW (trusted) is exempt from these rules
* Ensures secure execution of CASU-SW

CASU-SW: Secure Update Protocol

Prv

Auth(Shnew, AT ok)

Install(Syew, AAck)

Vrf
Update(Shnew, ATok) Update Request
s
(Snew, AT ok)
W
(AAck)

Verify(AAck)

* Verifier (Vrf) sends new code (S,.,,) and authentication token (ATok) to device (Prv)
* CASU-SW on Prv authenticates S, using ATok and installs it

 |f successful, authenticated acknowledgement (AAck) is returned to Vrf

CASU-SW: Secure Update Workflow

Reset

~

Init

status = 07?

CASU_SwW

* Upon an update request, current code
downloads new version

* After installation, new code sends AAck
to verifier

e During installation, if any violation
occurs, status bit remains ‘0’, which
indicates failure and re-triggers
installation at boot time

o]

Execute
| Authorized_SW |

‘ >

‘)

Acknowledge

Secure Update

Download |
Update S_new
Set status = 1 l
5| —Install P ves— Authenticate . =~
CASU_SwW CASU_SwW

authentication succeed?

Implementation

* CASU is implemented on MSP430
e Due to public availability of OpenMSP430 (Verilog)

* Synthesized and deployed on Basys3 FPGA

e CASU uses VRASED (a formally verified RA
architecture) for implementing authentication
part of Secure Update

* Open-source implementation on GitHub:

[https://github.com/sprout-uci/casu]

Evaluation: Hardware Overhead

{- CASU-HW “costs” 5.3% LUTs and 4.9% registers over unmodified OpenMSP430 }
 Overhead comparable to similar hybrid architectures

20 20
18 n 18-
| -
ﬁ16- %16-
= 14 'Sy 141
- O
© 12 o 121
[—_
O 10 © 10 -
= 5
g 8 1 E 8 1
< 61 T 6
N g
N 4 < 4/
N
2 °r 2
0- 0-
VRASED RATA APEX PURE

CASU VRASED RATA APEX PURE CASU

Evaluation: Secure Update Runtime

200
—@®— Entire Secure Update

180 1 —e— Authenticate Subroutine

Temperaturé¢
—@®— Install Subroutine Sensor
160 7 (734 bytes)
140 -
120 - Ultrasonic Ranger

(422 bytes

100 4 Blinking LED
(250 bytes)

Runtime (ms)

80 -

60 -

40 - o =

20 1 1 1 1 1
200 300 400 500 600 700

Binary size (in bytes)

[Secure Update runtime is linear in terms of code size

800

CASU Summary:

* CASU prevents sw-based attacks on low-end embedded systems
* Active root-of-trust architecture

* CASU-HW provides software immutability and data execution prevention;
formally verified

* CASU-SW provides secure code update

* 5% hardware overhead over vanilla OpenMSP430

* Requires hw modifications

* Needs a separate “heartbeat” mechanism to check device liveness
* Resetting the device is exploitable by DoS-focused attacks

* No protection against physical attacks

@ https://arxiv.org/pdf/2209.00813.pdf
() https://github.com/sprout-uci/casu

https://arxiv.org/pdf/2209.00813.pdf
https://github.com/sprout-uci/casu

Talk Summary:

* Discussed compromise detection vs compromise prevention

* Which approach is better depends on specific setting

* RATA and CASU are low-cost effective means of doing each

 HW modifications don’t help deployed/existing devices

* Dealing with large numbers of (perhaps inter-connected) devices is a challenge
» Resetting a safety-critical device interrupts/disrupts its operation

* Extending described techniques from simple (bare metal) to more
sophisticated (higher-end) loT devices isn’t easy
e Larger code base, bigger attack surface

* There is no panacea, and no hope for a one-size-fits-all solution!

Related Efforts

* Bruno Crispo’s group at Uiversity of Trento, e.g., PISTIS

* Frank Piessens’ group at KUL, e.g., SANCUS

* Ahmad Sadeghi’s group at TU Darmstadt, e.g., TRUSTLITE

Recent related work at SPROUT

PARselL: Towards a Verified Root-of-Trust over selL4, ICCAD 2023.
Caveat (loT) Emptor: Towards Transparency of loT Device Presence, ACM CCS 2023.
CASU: Compromise Avoidance via Secure Updates for Low-end Embedded Systems, ICCAD 2022.

Privacy-from-Birth: Protecting Sensed Data from Malicious Sensors with VERSA, IEEE Security & Privacy (Oakland) 2022.

SCRAPS: Scalable Collective Remote Attestation for Pub-Sub IoT Networks with Untrusted Proxy Verifier, USENIX Security 2022.
GAROTA: Generalized Active Root-Of-Trust Architecture, USENIX Security 2022.

Delegated Attestation: Scalable Remote Attestation of Commodity CPS, ACM WiSec 2021.

On the TOCTOU Problem in Remote Attestation, ACM CCS 2021.

DIALED: Data Integrity Attestation for Low-end Embedded Devices, ACM/IEEE DAC 2021.

On the Root of Trust Identification Problem, ACM IPSN 2021.

Tiny-CFA: Minimalistic Control-Flow Attestation Using Verified Proofs of Execution, DATE 2021.

https://arxiv.org/pdf/2209.00813.pdf
https://arxiv.org/pdf/2205.02963.pdf
https://www.usenix.org/conference/usenixsecurity22/presentation/petzi
https://arxiv.org/pdf/2102.07014.pdf
https://sprout.ics.uci.edu/projects/attestation/papers/wisec21-final45.pdf
https://arxiv.org/pdf/2005.03873.pdf
https://arxiv.org/pdf/2103.12928.pdf
https://arxiv.org/pdf/2010.13858.pdf
https://sprout.ics.uci.edu/pubs/tiny-cfa.pdf

End of Talk

eQuestions?

