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Abstract

Proper modelling of the gravitational fields of irregularly shaped asteroids and comets
is an essential yet challenging part of any spacecraft visit and flyby to these bodies.
Accurate density representations provide crucial information for proximity missions,
which rely heavily on it to design safe and efficient trajectories. This work explores
using a spacecraft swarm to maximise the measured gravitational signal in a hypothet-
ical mission around the comet 67P/Churyumov-Gerasimenko. Spacecraft trajectories
are simultaneously computed and evaluated using a high-order numerical integrator
and an evolutionary optimisation method to maximise overall signal return. The
propagation is based on an open-source polyhedral gravity model using a detailed
mesh of 67P/C-G and considers the comet’s sidereal rotation. We compare perfor-
mance on various mission scenarios using one and four spacecraft. The results show
that the swarm achieved an expected increase in coverage over a single spacecraft
when considering a fixed mission duration. However, optimising for a single space-
craft results in a more effective trajectory. The impact of dimensionality is further
studied by introducing an iterative local search strategy, resulting in a generally im-
proved robustness for finding efficient solutions. Overall, this work serves as a testbed
for designing a set of trajectories in particularly complex gravitational environments,
balancing measured signals and risks in a swarm scenario.

The codebase is publicly available at: https://github.com/rasmusmarak/TOSS.
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Sammanfattning

En korrekt modellering av de gravitationsfält som uppstår runt irreguljärt formade
asteroider och kometer är en avgörande och utmanande del för alla uppdrag till
likartade himlakroppar. Exakta densitetsrepresentationer tillhandahåller viktig in-
formation för att säkerställa säkra och effektiva rutter för särsilt närgående rymd-
farkoster. I denna studie utforskar vi användningen av en svärm av rymdfarkoster för
att maximera den uppmätta gravitationssignalen i ett hypotetisk uppdrag runt kome-
ten 67P/Churyumov-Gerasimenko. Rymdfarkosternas banor beräknas och utvärderas
i parallella scheman med hjälp av en högre ordningens numerisk integration och en
evolutionär optimeringsmetod i syfte att maximera den totala uppmätta signalen.
Beräkningarna baseras på en öppen källkod för en polyhedral gravitationsmodell som
använder ett detaljerat rutnät av triangulära polygoner för att representera 67P/C-G
och beaktar kometens egna rotation. Vi jämför sedan prestanden för olika uppdragsce-
narier med en respektive fyra rymdfarkoster. Resultaten visar att svärmen uppnådde
en förväntad ökning i täckning jämfört med en enskild rymdfarkost under en fast
uppdragsvaraktighet. Dock resulterar optimering för en enskild rymdfarkost i en mer
effektiv bana. Påverkan av dimensionshöjningen hos oberoende variabler studeras vi-
dare genom att introducera en iterativ lokal sökstrategi, vilket resulterar i en generellt
förbättrad robusthet samt effektivare lösningar. Sammantaget fungerar detta arbete
som en testbädd för att studera och utforma rymdfarkosters banor i särskilt komplexa
gravitationsmiljöer, samt för att balansera uppmätta signaler och risker i ett svärm-
scenario.

Projektets kodbas finns tillgänglig på: https://github.com/rasmusmarak/TOSS.

Nyckelord
Svärmande rymdfarkoster, Banoptimering, Impulsiva manövrar, Evolutionära Algo-
ritmer, Polyhedral gravitationsmodell, Utforksning av små kroppar i solsystemet,
Diskreta sfäriska rutnät.
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Chapter 1

Introduction

Over the last decades, small-body exploration has gained a significant role in space
research. With a relative proximity to Earth, many smaller solar system bodies, in-
cluding near-Earth objects (NEOs), main-belt asteroids and comets, centaurs, and
trans-Neptunium objects, offer unique opportunities for scientific investigation. It
is believed that most of these bodies are remnants from the formation of our solar
system and, as such, act as geological time capsules. By studying their gravitation
field, one can therefore derive valuable clues on their geological properties, which may
provide critical insight into the history of our solar system [1–3]. Another burgeon-
ing application includes planetary defence, where a detailed understanding of mass
density distribution represents a crucial aspect for a successful redirection mission
[4]. For these reasons, the last two decades of space exploration have seen several
small-body missions, including targets of observation, landing and collecting samples
[4–8]. However, operating near these bodies is a challenging task. With a relatively
low mass rendering a particularly weak gravitational field, smaller bodies like aster-
oids and comets are often characterised by highly rugged topographies and poorly
constrained surface properties. Along with features such as irregular shapes, hetero-
geneous mass density distribution and a rotating motion [9], this typically results in
complex dynamics where ideal Keplerian motion becomes unstable, which can lead to
undesired escape or collision trajectories [10]. With often limited a priori knowledge
of these characteristics, operating near, on, or inside these bodies requires a high level
of autonomy and a robust gravitational field model.

In recent years, however, more work has been seen investigating the use of dis-
tributed approaches for improving the learning process of small-body characteristics
[11–13]. A prominent example is ESA’s upcoming mission, Hera, to the Didymos
binary asteroid system. With modern advances in autonomous control and minia-
turisation of embedded systems, Hera will be using two 6U CubeSats to measure
the two asteroids’ sizes, shapes, and compositions as well as the impact of NASA’s
DART mission [4, 14, 15]. The benefits of swarming spacecraft for these purposes
are many: it allows for launching smaller spacecraft more frequently and at a lower
cost than larger spacecraft, reduced learning times, simultaneous observations and
distributed risks [16]. However, due to the complex dynamical nature of these bodies,
designing safe and efficient trajectories for swarm-based missions becomes increas-
ingly challenging. In fact, the main body of this work is dedicated to this task: to
determine a suitable trajectory optimisation strategy for maximising the information
gained by swarming spacecraft on the gravitational field near an irregularly shaped
smaller celestial body.

1



2 CHAPTER 1. INTRODUCTION

1.1 Related work

By reviewing related work, we aim to distil insights, best practices and fitting research
gaps that will inform the design process of a suitable optimisation strategy. To focus
the analysis, we will primarily overview recent advances on the two topics of interest:
gravity field modelling and trajectory optimisation of swarming spacecraft.

1.1.1 Modelling Gravitational Fields

In the context of geodesy, the literature typically presents three conventional gravity
field representations: spherical (or spheroidal) harmonics, mascon models and polyhe-
dral gravity models. The former approach is a multipole expansion method where the
accelerations can be computed using the spatial derivatives of the potential harmonics
[10]. Following its spherical nature, the resulting model is particularly suited for bod-
ies with strong axial symmetry and regularity. However, the convergence typically
becomes erratic inside the Brillouin sphere - a sphere co-centred with the expan-
sion and precisely covering the entire body - which renders the model unsuitable for
highly irregularly shaped celestial bodies. The second method attempts the gravity
field representation by filling the body’s occupied volume with smaller mass concen-
trations, or mascons, thus limiting the performance by the detail of the discretisation.
In addition, without clearly defined surface boundaries, evaluating points inside the
interior field becomes increasingly problematic. In contrast, the polyhedral gravity
model introduces a multifaceted polyhedron to approximate the target body’s closed
surface topography. When assuming an internal mass-density homogeneity, it is then
possible to derive an analytical formulation for the regional potential field. In the
literature of polyhedral modelling, prominent work includes that of Barnett [17], who
derived a closed analytical representation of the gravitational attraction considering
a triangular mesh representing the body’s surface model, Pohanka [18] who contin-
ued the work with general triangulation, Werner and Scheeres [19] who presented the
analytical expression for the gravity gradient tensor and Petrović [20] who provided a
closed expression of the full gravity tensor considering a polyhedral source, including
the gravitational potential and the two consecutive derivatives of the gradient matrix.
The final expression represents a twice application of the Gaussian divergence theorem
to transition from volume to line integrals along the polyhedron’s surface of flux. The
model was later refined by Tsoulis and Petrović [21] who derived and managed the
singularities that appear at specific compute locations. Consequently, the polyhedral
model enables an accurate gravity field representation of highly irregularly shaped
celestial bodies even inside the Brillouin sphere [19]. However, the performance is
inherently limited by the fidelity of the shape model and the assumption of mass
density homogeneity, which is rarely the case for smaller solar system bodies.

With recent progress in machine learning and neural networks, there has been
a growing interest in developing new data-driven models to provide more accurate
information about these complex bodies. One such model is the neural density field,
a versatile tool that can accurately describe the density distribution of a body’s mass
and its internal and external shape with few prior requirements. GeodesyNets is
a neural network that attempts to solve the gravity inversion problem by learning a
three-dimensional and differentiable function representing the body’s density, referred
to as the neural density field [22]. By training on either real or synthetic ground truth
data, the body’s shape and other geodetic properties can quickly be recovered utilis-
ing that its integration leads to a gravitational field model. This representation has
several advantages as it requires no prior shape model, converges inside the Brillouin
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sphere and is extensible even to heterogeneous density distributions. Thus avoid-
ing the limitations of spherical harmonics, mascons and polyhedral gravity models
[22]. Previous work includes training on synthetic ground truth data without any
shape models and on data recovered from the OSIRIS-REx mission visiting the as-
teroid 101955 Bennu with an available shape model [23, 24]. Although the former
non-differential approach showed comparable performance with a polyhedral gravity
model assuming homogenous mascons, the latter differential training on real data did
not significantly improve the fidelity of the modelled gravitational field. This result
was most likely due to uncertainties of non-gravitational forces in the considered tra-
jectories [23]. Hence, it is of great interest to generate more realistic trajectories based
on a polyhedral gravity model to study geodesyNets’ performance further.

1.1.2 Trajectory Optimisation of Spacecraft Swarms

The challenge of designing trajectories near smaller celestial bodies can be derived
from their complex and unstable dynamic environments, which typically makes tradi-
tional analytical solutions of Keplerian motion infeasible. Under these circumstances,
mission designers are required to plan robust control strategies, which can be done
using principles of optimal control [25]. The core idea is to determine a control se-
quence for a dynamical system that optimises the transition of states according to
some pre-defined measure while also satisfying a set of constraints. According to
Betts [26], such optimal control problems can be solved using both indirect and direct
approaches. Although indirect methods provide excellent accuracy, we will focus on
direct methods since they generally provide more robust search processes and lower
computational effort without requiring an initial system intuition.

In the literature on small-body exploration, spacecraft swarms have recently demon-
strated promising results regarding scientific returns compared to more conventional
monolithic approaches [27]. With the prospective benefits of swarms, numerous pa-
pers have proposed methods for designing a set of trajectories around smaller bodies
to obtain a high-accuracy mapping of body attributes and efficient spacecraft naviga-
tion. In terms of direct approaches, examples include mixed-integer linear program-
ming schemes with gradient-based global search processes [27], sampling-based model
predictive control frameworks [28] and two-staged optimisation schemes including a
nonlinear optimisation process for trajectory planning and a genetic multi-spacecraft
travelling salesman problem [29]. Although these articles have used widely different
approaches, a common feature is that swarm missions tend to require the simultaneous
optimisation of several competing objectives such as viewing angles, keeping in line
of sight for communication purposes, minimising fuel consumption, maximising some
defined measure of coverage and avoiding direct impacts. In order to satisfy these ob-
jectives, the optimisation space expands significantly, creating an even greater demand
for robust and efficient search strategies. For these types of problems, population-
based optimisation schemes are well suited. With similar motivation, Pearl, J.M et
al. [30] proposes an alternative approach using a curvilinear surface-based gravity
model and differential evolution for optimising the initial state of a single-spacecraft
trajectory. The performance of each candidate solution is then determined by inte-
grating the system dynamics and computing the fitness along the state propagation.
With population-based algorithms demonstrating promising results for designing tra-
jectories around smaller bodies, we will use these findings as a reference for selecting
a suitable optimisation strategy.
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1.2 Objectives and Limitations

The main objective of this thesis is to develop a method of optimising trajectories for
a spacecraft swarm operating near a smaller celestial body with the target of max-
imising the coverage of its gravitational field. Considering the results from previous
work, we propose a method employing a population-based evolutionary optimisation
scheme to determine the initial state and control sequence corresponding to each
spacecraft in the swarm. In order to solve the equations of motion, we rely on a
polyhedral gravity model to represent the gravitational signal. To demonstrate the
method, we implement it for a prospective mission to the comet 67P/Churyumov-
Gerasimenko and compare the relative performance between a single spacecraft and
a swarm considering several quality measures.

The contribution of this work is ultimately threefold. First, we aim at formulating
and solving a nonlinear optimisation problem considering a spacecraft swarm for the
defined context and objective. The second and subsequent contribution is a data
set representing the measured accelerations that can be used to study the training
and robustness of geodesyNets further [24, 31]. Finally, even though the method is
demonstrated for a specific mission, the underlying framework will be designed as an
open-source modular codebase1 in order to remain relevant for a broader range of
mission objectives, such as surface observation, inter-spacecraft communication and
training of on-board AI models.

In the numerical study, we limit ourselves to evaluating a single swarm setting.
Nevertheless, with the level of generality in the code, we aim to present a method
applicable to varying sizes of swarms and bodies of interest.

1.3 Report Outline

The thesis is organised as follows: Chapter 2 acquaints the reader with the general
concepts of mechanics and coordinate transformation necessary to define space flight
near rotating bodies. In addition, we present the basic formulation of the polyhedral
gravity model and the equations of motion adapted for impulsive manoeuvres. In
Chapter 3, we define a nonlinear optimisation problem suited for the thesis objective.
Section 3.3 is particularly important as it introduces a discretisation of the space
around the target body from which a coverage score can be defined to represent the
measured gravitational signal. Chapter 4 presents an appropriate method for solv-
ing the optimisation problem, focusing specifically on population-based evolutionary
methods. Next, in Chapter 5, we introduce the necessary numerical methods and
techniques for solving the suggested equations of motion and optimisation problem.
To demonstrate the models and their performance, Chapter 6 presents numerical
results on scaling properties, hyperparameter tuning and three mission scenarios con-
sidering a specific target body. Chapter 7 discusses the acquired results, limitations,
computational properties and general performance. Finally, Chapter 8 concludes the
thesis with general remarks and recommendations for future work.

1
Thesis codebase (TOSS): https://github.com/rasmusmarak/TOSS

https://github.com/rasmusmarak/TOSS


Chapter 2

Spacecraft Dynamics

The second chapter is devoted to familiarising the reader with the dynamics character-
ising operations near smaller, irregularly shaped rotating bodies. A basic introduction
is first given on appropriate reference frames and coordinates transformation. The
succeeding two sections introduce the traditional derivation of the equations of mo-
tion, focusing mainly on an expression representing the gravitational attraction acting
on the spacecraft and a brief overview of the polyhedral gravity model. In the last
section, we present the specific set of equations defining the state transition over time
using first-order differential equations. Lastly, we introduce impulsive manoeuvres as
the system perturbation and define the associated control variable.

2.1 Reference Frames

As customary in the field [3, 9, 25], we introduce two frames of reference to model the
motion of a spacecraft near a rotating body. The former is the inertial frame, which
defines a non-accelerating coordinate system where any considered object adheres to
Newton’s first law of motion. In other words, we assume the spacecraft to have a
constant velocity unless subject to any perturbing forces. Since the assumption of
Newtonian motion enables a more straightforward form of mechanics, it will be the
preferred reference frame for defining subsequent trajectories. Furthermore, to model
the gravitational attraction acting on a spacecraft by a rotating body, it follows nat-
urally to adopt a non-inertial reference frame that rotates at the same rate and in the
same plane as the body’s surface. Hence, we introduce a body-fixed frame to enable
a representation of the gravitational field. The formal definition of the two frames are:

I = (̂i, ĵ, k̂): In the inertial frame, the origin O is fixed at the small-body centre
of mass. The ĵ axis is defined by a hyperplane parallel with the direction vector
between the two points on the body with the greatest distance. To complete the
right-hand system, î and k̂ are defined orthogonal to each other and to ĵ.

5
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F = (ê1, ê2, ê3): The origin of the body-fixed frame is located at the small-body
centre of mass and rotates synchronously with its surface. Hence, the three axes
align with the body’s principal moments of inertia. In detail, ê1 and ê3 are defined
in the direction of the minimum and maximum principal axes, which are expressed
by angles of declination � and right-ascension ↵ relative to the inertial frame. The
final axis ê2 is selected to complete the orthogonality of the new right-hand system.
Finally, we assume a spin state with constant angular velocity and principal rotation
around ê3. Notably, the direction of the instantaneous axis can also evolve with time,
commonly referred to as precession. However, as an effect of considering a shorter
mission duration, we limit the study to the assumption of a fixed rotation axis.

r

Figure 2.1: Small-body inertial (I) and fixed (F) reference frames.

To simplify the notation, we define a vector v in reference frame A as Av. However,
the superscript will remain omitted from the equation whenever the current frame is
trivial or extraneous. A coordinate transformation from the inertial frame I to the
body-fixed frame F can then be expressed as I v̂ = I

TF
F v̂ using corresponding

rotation matrices Rx,y,z(✓) for a rotation of angle ✓ about each cartesian axis.

2.1.1 Coordinate Transformation

There are several ways of describing the angular position of a rotating rigid body.
A common choice is to employ the three Euler angles �, ✓ and  , representing the
orientation of one basis set relative to another. The body-fixed frame can then be
obtained from the inertial frame by a sequence of rotations through each angle

F
RI = [R3( )][R1(✓)][R3(�)], (2.1)

where the first rotation is defined by the precession angle �, the second rotation
by the nutation angle ✓ and the third rotation by the spin angle  [32, 33]. In detail,
the three rotations are explicitly defined as
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[R3( )] =

2

6664

cos  sin  0

�sin  cos  0

0 0 1

3

7775
, (2.2)

[R1(✓)] =

2

6664

1 0 0

0 cos ✓ sin ✓

0 �sin ✓ cos ✓

3

7775
, (2.3)

[R3( )] =

2

6664

cos � sin � 0

�sin � cos � 0

0 0 1

3

7775
. (2.4)

The resulting orthogonal cosine matrix corresponding to the three Euler rotations
can then be defined as

F
RI =

2

6664

�sin � cos ✓ sin  cos � cos ✓ sin  + sin � cos  sin ✓ sin  

�sin � cos ✓ cos  cos � cos ✓ cos  + sin � sin  sin ✓ cos  

sin  sin ✓ �cos � sin ✓ cos ✓

3

7775
. (2.5)

However, it should be noted that the traditional Euler angle representation gen-
erally suffers from singularities that arise from a so-called gimbal lock. Intuitively,
this phenomenon derives from the indistinguishability of precession and spin angle
changes that arise when the nutation is at some critical value, such as zero [33]. A
common strategy for dealing with these singularities is to apply another transforma-
tion representation, such as quaternions, which avoids the singularities altogether. In
order to formulate a quaternion rotation, we first recall from Euler’s rotation theorem
that any two cartesian coordinate frames can be related by a unique rotation about
a single line through their common origin. In this definition, the line is referred to
as the Euler axis û and the angle of rotation as the principal angle ⇠. Accordingly,
we can obtain the body-fixed frame F from the inertial frame I by a single rotation
about û. Using Rodrigues’ rotation formula, the unit vector rotation corresponding
to the transformation can be defined as

2

6664

ê1

ê2

ê3

3

7775
= cos⇠

2

6664

î

ĵ

k̂

3

7775
+ (1� cos⇠)(û ·

2

6664

î

ĵ

k̂

3

7775
)û+ sin⇠ (û⇥

2

6664

î

ĵ

k̂

3

7775
). (2.6)

Another approach is to describe the Euler axis in terms of its direction cosines l,
m and n along the original inertial frame. By substituting the orthonormal quantities

û = l̂i+mĵ + nk̂ where l
2 +m

2 + n
2 = 1, (2.7)

into Eq. (2.6), performing ordinary vector operations and recalling that the rows
of the rotation matrix defined in Eq. (2.5) comprise the direction cosines, we may
instead formulate the rotation matrix in terms of the Euler axis direction cosines and
the principal angle ⇠ resulting in
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F
RI =

2

6664

l
2(1� cos⇠) + cos⇠ lm(1� cos⇠) + nsin⇠ ln(1� cos⇠)�msin⇠

lm(1� cos⇠)� nsin⇠ m
2(1� cos⇠) + cos⇠ mn(1� cos⇠) + lsin⇠

ln(1� cos⇠) +msin⇠ mn(1� cos⇠)� lsin⇠ n
2(1� cos⇠) + cos⇠

3

7775
.

(2.8)
Now, introducing the quaternion representation, we define a quaternion “q as com-

posed of four numbers

“q =

8
>>>>>><

>>>>>>:

q1

q2

q3

q4

9
>>>>>>=

>>>>>>;

=

8
<

:
q

q4

9
=

; , (2.9)

where q is the vector part and q4 the scalar part. We refer to “q as a pure quater-
nion if the scalar part equals zero. Similarly, a unit quaternion implies that the norm
||“q|| =

p
||q||2 + q24 is equal to one. Furthermore, quaternions also obey the tradi-

tional addition and scalar multiplication rules, where addition is both associative and
communicative [33]. The product between two quaternions can be defined as

“p⌦ “q =

8
<

:
p4q + q4p+ p⇥ q

p4q4 � p · q

9
=

; , (2.10)

where q ⇥ p = �(p ⇥ q), thus implying that the multiplication is in general not
communicative, that is

“p⌦ “q 6= “q ⌦ “p, (2.11)

with an exception for the identity quaternion

“I =

8
<

:
0

1

9
=

; . (2.12)

Finally, the conjugate “q⇤ is given by multiplying the vector part of “q by �1,
consequently changing the sign of the corresponding vector components. Focusing on
the unit quaternion, we can define a new quaternion that considers the Euler axis û
and principal angle ⇠ as

“q =

8
<

:
sin( ⇠2 )û

cos( ⇠2 )

9
=

; . (2.13)

Recalling the quantities presented in Eq. (2.7), we define each component of “q as

q1 = lsin(
⇠

2
), q2 = msin(

⇠

2
), q3 = nsin(

⇠

2
), q4 = cos(

⇠

2
). (2.14)

By calculating the corresponding conjugate quaternion “q⇤ and employing standard
trigonometric identities, we can then derive a new representation for the direction
cosine matrix presented Eq. (2.5) using quaternions:
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F
RI =

2

6664

1� 2q22 � 2q23 2q1q2 � 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 1� 2q21 � 2q23 2q2q3 � 2q0q1

2q1q3 � 2q0q2 2q2q3 + 2q0q1 1� 2q21 � 2q22

3

7775
. (2.15)

We have therefore shown that a unit quaternion represents a rotation about the
axis û for some angle ⇠. In this thesis, however, we will consider transforming a
spacecraft’s position from the inertial frame to the body-fixed frame, that is F

QI(r) :
Ir ! Fr. In order to define such a rotation, we first introduce two pure quaternions
based on the position in each frame:

I “r =

8
<

:

Ir

0

9
=

;
F “r =

8
<

:

Fr

0

9
=

; . (2.16)

Using Eq. (2.10), we compute the product of “q and I “r to obtain

“q ⌦ I “r =

8
<

:
cos( ⇠2 )

Ir + sin( ⇠2 )(û⇥
Ir)

�sin( ⇠2 )(û ·
Ir)

9
=

; . (2.17)

Multiplying with the conjugate “q⇤ on the right, Eq. (2.17) then results in the
desired position quaternion, that is

F “r = (“q ⌦ I “r)⌦ “q⇤ =

8
<

:

Fr

F
r4

9
=

; . (2.18)

The operation presented in Eq. (2.18) therefore represents the rotation of Ir
around the axis û through angle ⇠. Conversely, the rotation through an angle �⇠
is obtained by the much similar operation “q⇤

⌦ (“q ⌦ I “r) [33]. This inverse relation
can be ensured by the following substitution, making use of the previously presented
quaternion properties:

“q ⌦ (“q⇤
⌦

I “r ⌦ “q)⌦ “q⇤ = (“q ⌦ “q⇤)⌦ I “r ⌦ (“q ⌦ “q⇤) (2.19)

= “I ⌦ I “r ⌦ “I (2.20)

= ( “I ⌦ I “r)⌦ “I (2.21)

= I “r ⌦ “I (2.22)

= I “r. (2.23)

For this thesis, we limit ourselves by the assumption that the small body’s instan-
taneous axis of rotation coincides with the Euler axis and that the body is rotating
about this axis with a constant angular velocity !. Consequently, the rotation angle
is simply obtained by ⇠(t) = !t, where t is the specific time corresponding to position
Ir(t). The transformation between the two reference frames is expressed as

F “r(t) = F
QI(

I “r(t),!, t) = “q⇤
⌦ (“q ⌦ I “r). (2.24)

The benefits of using quaternions for this application are many. First, quaternion
rotations are generally more intuitive than traditional Euler angles as they only deal
with one form of rotation compared to the latter and its complex sequential nature.
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Next, quaternions entirely avoid any singularities, such as gimbal lock. Finally, given
their compact representation and that they only deal with numeric values rather than
trigonometric functions, they are typically more computationally efficient than most
other alternatives. However, quaternions also suffer from a notably involved algebra
and a lack of unique representation for the attitude.

2.2 Dynamics Near Rotating Bodies

To describe the motion of a spacecraft in the vicinity of a rotating body, we employ
a classic representation of a particle’s motion in a body-fixed Euclidean space. The
formulation is simplified by assuming the particle to have negligible mass following
the different order of magnitude between a spacecraft and a smaller solar system
body. When considering a body with uniform motion about its instantaneous axis
F ẑ, the equations of motion are most efficiently expressed in the body-fixed frame.
The benefits of doing so are unambiguous; by deriving integrated results in a non-
inertial frame, there will be no need for further transformations in order to evaluate the
gravitational attraction acting on the spacecraft. Furthermore, following the property
of uniform rotation, the equations remain time-invariant, simplifying the formulation.
Finally, the equations of motion are defined as

r̈ + 2⌦⇥ ṙ + ⌦⇥ (⌦⇥ r) + ⌦̇⇥ r = Vr, (2.25)

where r is a body-fixed vector from the small-body centre of mass, ṙ and r̈ are the
first and second time derivatives of r with respect to F , ⌦ is the instantaneous rotation
vector with magnitude |⌦| = ! representing the angular velocity of the rotation, and
Vr is the gradient of the gravitational potential V (r), which is also time-invariant
in F [34]. We will now focus on studying the conserved quantities of Eq. (2.25) to
obtain a richer understanding of its fundamental properties.

First, by the assumption of uniform rotation, it follows that ⌦̇ = 0, consequently
reducing Eq. (2.25) into

r̈ + 2⌦⇥ ṙ + ⌦⇥ (⌦⇥ r) = Vr. (2.26)

Then, by introducing an explicit definition of the efficient potential, Eq. (2.26) can
be reformulated as a complete system, including terms for both the Coriolis force and
the potential force [35]. Moreover, by redefining the position and inertial velocity of
the spacecraft using canonical variables, q = r and p = ⌦⇥r+ṙ, one can use Legendre
transformation to reach the Hamiltonian form of the dynamical system [q̇, ṗ]T . We
define this quantity as

J =
1

2
ṙ · ṙ �

1

2
(⌦⇥ r) · (⌦⇥ r)� V (r). (2.27)

Differentiating J with respect to time results in the equation

J̇ = ṙ · r̈ � (⌦⇥ r) · (⌦̇⇥ r)� (⌦⇥ r) · (⌦⇥ ṙ)� Vr(r) · ṙ. (2.28)

Now, taking the dot product of Eq. (2.25) with ṙ, rearranging the resulting
equation to equal zero, and then combining it with the differentiated function of J as
presented in Eq. (2.28), we obtain a system of equations defined as

J̇ = ⌦̇ · (vI ⇥ r), (2.29)
vI = ṙ + ⌦⇥ r, (2.30)
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where vI denotes the inertial velocity of the spacecraft in motion near the body
of interest [36]. Consequently, if the asteroid follows the presumption on uniform
principal axis rotation, that is, assuming ⌦̇ ⌘ 0, it follows that the quantity J remains
conserved and defines the Jacobi integral for Eq. (2.25). Conversely, it also holds that
the equations of motion in F are time-invariant whenever ⌦̇ ⌘ 0. By the uniform
rotation property, one can therefore assume the Jacobi integral J(r, ṙ) to remain
constant for the subsequent motion of a spacecraft with a given initial position and
velocity [37]. In scalar form, the equations of motion can be reduced to

Vx = ẍ� 2!ẏ � !2
x, (2.31)

Vy = ÿ � !
2
y + 2!ẋ, (2.32)

Vz = z̈. (2.33)

In this thesis, we approximate the derivative of the body’s gravitational potential,
[Vx, Vy, Vz]T , acting on the spacecraft in the body-fixed frame using a series of physical
models defining a polyhedral gravity model.

2.3 Polyhedral Gravity Model

The study of the analytical formulation for the gravitational signal considering a poly-
hedral source is widely known for its long history of active research and steady flux
of original contributions improving the existing theoretical and computational foun-
dation [38]. A principal component of the polyhedral framework is the definition of a
prismatic solid consisting of a finite number of faces defined by interconnected vertices
similar to the general representation of a graph [39]. For a larger number of polygonal
faces, the polyhedral model consequently results in a finer approximation of three-
dimensional arbitrarily shaped bodies. From these shape models, it is then possible
to derive a formulation for the corresponding regional potential fields, including the
gravitational potential [20]. However, it was not until the late twentieth century that
the geophysical community saw a revitalised interest in adopting polyhedral modelling
as a promising tool for the geometric representation of arbitrarily shaped density dis-
tributions. Although earlier examples focused primarily on representing buried ore
bodies, later work have seen a wide variety of applications in areas of geodesy, geo-
physics and dynamical astronomy, considering irregularly shaped celestial bodies in
particular [19, 40]. When determining the gravity tensor from a polyhedral source,
the literature presents two distinct approaches: a numerical solution and the exact
analytical solution. Among examples of the former approach, we find several numer-
ical integration schemes, like the one presented by Talwani and Ewing [41], and the
computation of spherical harmonics coefficients for polyhedral sources as presented
by Tsoulis et al. [42]. For the latter variety, the list of prominent examples is long.
The analytical approach is generally classified as either applied geometric triangula-
tion of the considered polyhedral faces or focusing on determining the gradients of
the gravitational potential induced by the polyhedral shape model. In this thesis, we
will focus on the latter and specifically the line integral method presented by Tsoulis
and Petrović [20, 21, 39], and later implemented by Schuhmacher [43], as the primary
gravitational field model for the target small body. Hence, the rest of this section is
devoted to presenting the fundamental principles of the polyhedral framework, focus-
ing mainly on constructing a field model and its later application as an approximation
to Eqs. (2.31-2.33).
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To derive an analytical expression for the gravitational signal, let us first consider
a polyhedral solid with a finite number of arbitrarily shaped planar faces defined
by interconnecting line segments and vertices at the end of each segment. If we then
assume the polyhedron to have a homogeneous mass-density distribution ⇢ and a finite
volume U , we can formulate a set of integral equations representing the gravitational
field evaluated at an arbitrary point in space P [39]. Thus, we introduce a new
coordinate system with origin (xi = 0) located at point P and a suitable direction of
each coordinate axis defined by the basis of unit vectors (e1, e2, e3). As in the work
by Tsoulis and Petrović [20, 21, 39], we define the explicit expression for the signal
with the following functionals

V = G⇢

˚
U

1

l
dU, (2.34)

Vxi = G⇢

˚
U

@

@xi

✓
1

l

◆
dU, (i = 1, 2, 3), (2.35)

Vxixj = G⇢

˚
U

@
2

@xi@xj

✓
1

l

◆
dU, (i, j = 1, 2, 3), (2.36)

where V is the gravitational potential, Vxi is the attraction, Vxixj is the second-
order derivative of the gravity tensor and G = 6.6743·10�11

m
3
kg

�1
s
�2 is the universal

gravitational constant. In this case, the subscript of V denotes the corresponding
partial derivative. Furthermore, we introduce l as the distance function

l =
q
(x1 � x0

1)
2 + (x2 � x0

2)
2 + (x3 � x0

3)
2, (2.37)

which refers to a new coordinate system with origin at x
0 = [x0

1, x
0
2, x

0
3]

T = 03⇥1

corresponding to the orthogonal projection of P onto the polyhedral face Sp and the
basis of orthonormal unit vectors (e1, e2, e3) located at point P . Given the symmetric
properties of linearly independent derivatives that emerge in the gradiometric tensor
Vxixj , and the validity of Laplace’s equation for its diagonal terms, the three integral
equations ultimately reduce to nine unknown quantities of interest [39]. A comple-
mentary geometric perspective on the polygonal plane Sp and the quantities used for
representing the corresponding potential can be seen in Fig. 2.2.

Figure 2.2: Geometric representation of a polyhedral face and the properties
expressed in Eqs. (2.45 - 2.47). (Credited to Petrović [20])
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The principal idea of the line integral method is to transform the volume integrals
in Eqs. (2.34 - 2.36) into a set of closed analytical expressions using the Gaussian
divergence theorem while preserving the transcendental functions (logarithms and
arctangents) along each line segment on the closed-surface polyhedron S. The trans-
formation consists of two stages. The first step remarks the transition into a set of
surface integrals equal to the number of polygonal planes Sp on the closed surface
S =

S
n

p=1 Sp using the divergence formula
˚

U

div F dU =

‹
S

F ·N dS, (2.38)

where N denotes the outer unit normal to S and F a suitable vector field. Al-
though finding three vector fields whose divergence leads to the desired integration
represents a problem without a unique solution, a simple example that suffices the
divergence property is presented by Pétrovic [20]. The result is the transformation
into a set of two-dimensional integral expressions that are algebraically related with
the Hessian normal form of the equations of a plane Ax+By+Cz+D = 0. For each
polygon Sp, the Hessian normal form can be written as

�php = x1cos(Np, e1) + x2cos(Np, e2) + x3cos(Np, e3), (2.39)

where the quantity hp refers to the positive distance between the considered point
P and the plane p with a unit normal Np pointing outside the polyhedral mass. The
sign of hp is then managed by the binary term �p = {�1, 1} which takes a negative
value if the unit normal points towards the half-space containing the point P and
a positive value otherwise. The equations resulting from the transformation of Eqs.
(2.34 - 2.36) are then defined as

V =
G⇢

2

nX

p=1

�php

¨
Sp

1

l
dS, (2.40)

Vxi = G⇢

nX

p=1

cos(Np, ei)

¨
Sp

1

l
dS, (i = 1, 2, 3), (2.41)

Vxixj = G⇢

nX

p=1

cos(Np, ei)

¨
Sp

@

@xj

✓
1

l

◆
dS, (i, j = 1, 2, 3), (2.42)

representing the evaluation of each surface plane Sp [39]. The second stage of the
line integral approach thus considers the transition from surface integrals to a set of
line integral equations along each segment Gpq of the polygonal line Gp =

S
m

q=1 Gpq

in the plane Sp. For this step, we consider the new local coordinate system of the
orthogonal projection P

0 with the three basis terms

e03 = Np, e02 =
ej ⇥Np

|ej ⇥Np|
, and e01 = e02 ⇥ e03. (2.43)

We can then apply the Gaussian divergence theorem directly in each plane using
¨

Sp

div F dS =

˛
Gp

F · np dS, (2.44)

where np refers to the outer unit normal to the closed polygon Gp and F a
new suitable vector field. The final formulas are then obtained by evaluating the
analytical solution for each resulting line integral equation. In the evaluation step,
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we introduce a one-dimensional local Cartesian coordinate line along each segment
Gpq whose origin is located at the orthogonal projection P

00 of P 0 and thus defines
the distance to each segment on Gp. Suppose that the point P

0 falls inside the plane
Sp or at any of the points defined on the line Gp. In that case, one can assume
that the second transition from surface to line integrals couples with the emergence
of singularities. One such case occurs when the position P

0 implies a zero division,
thus resulting in an undefined vector field entering the divergence formula. Tsoulis
and Petrović [21] present a method for overcoming these singularities, consequently
enabling the line integral formalism to be applicable everywhere in the considered
mathematical space, regardless of positions P and P

0. The approach leads to an
expression for calculating the full gravity tensor at an arbitrary point P , characterised
by transcendental expressions whose numerical values are dependent on the exact
position of P 0 on Gp and are necessary for the correct implementation of the analytical
formulas. The final expressions are defined as

V =
G⇢

2

nX

p=1

�php

"
mX

q=1

�pqhpqLNpq + hp
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�pqANpq + singAp

#
, (2.45)

Vxi = G⇢
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Vxixj = G⇢
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(2.47)

where i, j = (1, 2, 3), and both the gravitational constant G and the mass density
⇢ remain from Eqs. (2.34 - 2.36). In Eqs. (2.45 - 2.47), the outer summation acts
on the polyhedral faces p = 1, . . . ,m and the inner summation on the correspond-
ing q polyhedral edges defining the particular face. Thus, assuming a closed-surface
polyhedron S where each of the polyhedral planes Sp are triangulated, which will
be the basis for the mesh representing the target body in this thesis, it holds that
q 2 (1, 3) and m = 3. The value npq represents the normal to the edge q on face Sp,
pointing out from the flat surface. Here, �pq 2 {�1, 1} depending on whether npq

points at the half-plane that contains P
0 or not. The value hpq defines the distance

between the projected points P
0 and P

00. Furthermore, ANpq and LNpq denote the
aforementioned transcendental expressions and are defined as

LNpq = ln
s2pq + l2pq

s1pq + l1pq

, (2.48)

ANpq = arctan
hps2pq

hpql2pq

� arctan
hps1pq

hpql1pq

, (2.49)

where both quantities contain the distances l1pq , l2pq and s1pq , s2pq , as illustrated
in Fig. 2.2. The former distance pair expresses a three-dimensional distance between
the computational point P and each set of vertices defining the edge q on face p.
Then, assuming that P

00 is located at the origin of a one-dimensional local frame
on the edge segment pq, the latter distance pair defines the distance between the
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second projection P
00 and the corresponding two vertices. Moreover, depending on

the relative position of P 00 to the corresponding vertices, the sign of si and li must be
adjusted accordingly [38]. Finally, Eqs. (2.45 - 2.47) also introduces two singularity
terms, singAp and singBpj , that emerge for particular positions of P 00 with respect to
Gp in the transformation from surface to line integrals resulting in a zero division in
Gauss’ divergence formula. In detail, the two singularity terms are used to express the
specific analytical solution for the limiting values on the line integrals that appear in
the partial application of the transformation, specifically for a small circle containing
the singularity with a radius tending towards zero. The two terms take the conditional
values

singAp =

8
>>><

>>>:

�2⇡hp if condition (1) holds,
�⇡ if condition (2) holds,
�✓hp if condition (3) holds,
0 if condition (4) holds„

(2.50)

singBpj =

8
>>><

>>>:

�2⇡cos(Np, ej)�p if condition (1) holds,
�⇡cos(Np, ej)�p if condition (2) holds,
�✓cos(Np, ej)�p if condition (3) holds,
0 if condition (4) holds„

(2.51)

where the conditions are the following: (1) P 0
p

lies inside the polygon plane Sp, (2)
P

0
p

is located on edge Gpq but not at its corresponding vertices, (3) P
0
p

is located at
one of the vertices corresponding to the edge segment Gpq, and (4) when P

0
p

is located
outside the plane of focus Sp. Furthermore, the final expressions, presented in Eqs.
(2.45 - 2.47), are independent of the two subsequent coordinate transformations that
emerged when applying the Gaussian divergence theorem for each face. This is simply
a result of the two summations acting on the same transcendental expressions, LNpq

and ANpq, linking to the same polyhedral vertices for each segment pq. However, the
critical part for implementing these formulas lies in gaining information about the
position of the three different compute points for each face Sp on the closed surface
S representing the body of interest [39].

With a brief introduction to the analytical expressions for the potential V , grav-
itational attraction Vx and the spatial rate of change for the gravitational attrac-
tion, Vxixj , the advantages of the polyhedral method becomes evident. First, by
the closed-form expressions in Eqs. (2.45 - 2.47), truncation errors can generally
be avoided during computations, consequently relating most errors to the modelling
and bias of estimation for the shape model and density distribution. Therefore, the
method’s accuracy is mainly related to the resolution of the considered polyhedron,
that is, the number of defined faces and vertices. Second, the polyhedron’s precession
is independent of the distance to the considered body, which is uniformly effective
even in proximity to the body. Third, with knowledge of the specific positions of the
spacecraft, i.e. computing point P , and each of the defined faces on the shape model,
the polyhedral method allows for a quick determination of whether the position has
entered the closed surface or not, enabling a simple collision detection algorithm. In
addition, since the polyhedron is based on a general shape model, it is well suited for
practical missions where the body’s shape can be obtained and refined with earth-
based observations, onboard optical measurements and proximity flight data. Now,
with the expression for the gravitational attraction at hand, along with relevant ref-
erence frames and an understanding of the dynamics near rotating bodies, we can
formulate the specific equations of motion that will be used in this thesis.
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2.4 Equations of Motion

In this section, we will focus on defining a set of differential equations that can be
used to express the motion of a spacecraft in proximity to the considered body. We
will first specify a suitable state representation and then introduce the corresponding
control input.

2.4.1 State-Space Model

To formulate the equations of motion of a spacecraft, one should first introduce a
suitable state-space representation to express its position and motion relative to the
body of interest. Although numerous state representations are available with varying
benefits, ranging from computational performance to singularity-avoidance and more,
we limit the study to Cartesian elements for a simple implementation and avoiding
singularities altogether. Let r = [x, y, z]T and ṙ = [vx, vy, vz]T represent the space-
craft’s position and velocity, respectively. The state vector at time t can then be
defined as

x(t) =

2

4r(t)

v(t)

3

5 . (2.52)

The dynamical system constituting the mathematical laws explaining the evolution
of the state vector over time can subsequently be defined by the first-order differential
system

ẋ(t) =

2

4ṙ(t)

r̈(t)

3

5 =

2

4 v(t)

a(r(t))

3

5 , (2.53)

where v(t) is the inertial velocity of the spacecraft and a(r(t)) the gravitational
attraction acting on the spacecraft by the small body. In detail, we define the ac-
celeration as the partial derivative of the gravitational potential in each axis of the
body-fixed frame, where a(r(t)) = [FVx,

F
Vy,

F
Vz]T as provided by the analytical

expression for the polyhedral model in Eq. (2.46) in Euclidean space. Recall from
Section 2.2 that irregular gravitational fields and body-relative geometric constraints
are most realistically expressed in the small-body fixed frame. Hence, the polyhedral
model will be evaluated in F to account for the body’s side-real rotation about its
principal axis of inertia. To avoid the computational costs of rotating each vertex
defined on the polyhedron, we can simplify the transformation by considering the
corresponding quaternion rotation for a negative rotation angle �⇠. The equations of
motion presented in Eq. (2.53) can then be more accurately defined as

ẋ(t) =

2

4 v(t)

a(FQI(I “r(t),!, t))

3

5 . (2.54)



2.4. EQUATIONS OF MOTION 17

2.4.2 Impulsive Control

Optimising a trajectory based on an impulsive model is the traditional approach for
simulating spacecraft manoeuvres [44]. Impulsive manoeuvres are those in which
brief firings of onboard rockets result in an instantaneous change in the magnitude
and direction of the corresponding velocity vector. Employing an impulsive scheme
is, for that reason, an idealisation where one can avoid having to solve the equations
of motion with the rocket thrust included in the model. This form of control is
often satisfactory whenever the spacecraft’s position only changes marginally during
the period in which the rockets fire. In practice, this may be a feasible assumption
whenever the burn time is short compared to the coasting time of the spacecraft [33].
In mathematical terms, this is equivalent to considering the variation of control inputs
for a system

ẋ(t) = A(t)x(t) +B(t)u(t) (2.55)

to be zero at the time of each input, i.e. u̇(tm
i
) = 0, and the manoeuvre to be

a change in velocity increments �v during a burn time of �t = 0. The perturbed
velocity can be represented as a change in either magnitude, referred to as a pumping
manoeuvre, in direction, known as a cranking manoeuvre, or both. As such, thrust
arcs are simulated through isolated, singular events, as illustrated in Fig. 2.3, which
enables a segmentation of the continuous problem.

Figure 2.3: Impulsive manoeuvres as a segmentation scheme.

In this thesis, we employ a sequence of impulsive manoeuvres on the form u(t) =
�(t)û(t), where each manoeuvre is applied at discrete times TC = {ti : ti < ti+1, i =
0, 1, . . . , I}. The equations of motion presented in Eq. (2.54) can therefore be defined
as

ẋ(t) =

2

4 v(t)

a(FQI(I “r(t),!, t)) + ut|t2TC

3

5 . (2.56)



Chapter 3

Problem Definition

In this chapter, we will focus on formulating a suitable optimisation problem for the
considered small-body mission. In order to ensure continuity, the first section is de-
voted to the connection between the main objective of the thesis and mathematical
optimisation. The second section will briefly introduce the traditional formulation
of a spacecraft trajectory optimisation problem derived from optimal control theory.
The subsequent sections will then individually define each part of the considered op-
timisation problem, leading to the complete formulation presented in Section 3.6. As
we will see, following a discrete approximation of the space around the body natu-
rally enables a reformulation of the control problem into a more traditional nonlinear
program suited for direct optimisation strategies.

3.1 Mission Objective

As stated in Section 1.2, the main objective of this thesis is to formulate an opti-
misation problem that results in a set of trajectories corresponding to a spacecraft
swarm that maximises the jointly measured gravitational signal around some irreg-
ularly shaped, rotating body. With the introduction of impulsive manoeuvres and
a state-space model for the governing system dynamics, the mission objective trans-
forms into the determination of a control sequence that optimises the transition of
states according to some function representing the measured gravitational signal and
a set of constraints maintaining feasibility, such as the avoidance of collisions. To
formulate a problem solvable with global optimisation strategies, we emphasise the
prominent connection between the considered mission and a conventional trajectory
optimisation problem, thus enabling a mathematical definition based on the funda-
mental principles of optimal control.

3.2 Optimal Control Theory

Optimal control theory is a relatively young yet mature branch of mathematics which
mainly concerns controlling dynamical systems. The theory is rooted in the calculus of
variations and has several advantages; it provides systematic approaches for designing
optimal control inputs for problems that are generally hard to solve using ad-hoc tech-
niques and can efficiently reduce redundancy by identifying the best solutions given a
set of requirements and performance measurements [45]. Hence, a typical application
includes planning complex spacecraft missions that deal with similar problem formu-

18
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lations. In general, there are many ways to formulate trajectory problems; however, in
this thesis, we will limit the focus to single-phase continuous-time trajectory optimi-
sation problems with continuous dynamics throughout the considered time frame. To
accustom the reader to the theoretical formulation of these problems, we will briefly
describe each of its components and later relate these to the considered spacecraft
trajectory optimisation problem.

The objective function is, in general, represented by two C
1 continuously differen-

tiable functions: a terminal cost �(tf ,xf ) penalising the deviation from any desired
final states and an integral part defining the running cost along the continuous tra-
jectory. When defining an objective composed of both terms, we refer to it as being
in Bolza form. Similarly, we refer to an objective function with only a terminal cost
on Mayorform and an integral term on Lagrange form. On Bolza form, we define
the objective as

�(tf ,xf ) +

ˆ
tf

t0

f0(t,x(t),u(t)) dt. (3.1)

Generally, most optimal control problems are defined subject to several constraint
functions. One such constraint is the system dynamics, which is typically represented
by a set of nonlinear state space equations that describe the state transition over time

ẋ = f(t,x(t),u(t)) = A(t)x(t) +B(t)u(t). (3.2)

In this case, we assume the function f to be continuous with continuous partial
derivatives and refer to it as a vector field. The control, however, is assumed to be
a piecewise continuous function with a domain U ⇢ Rm. In spacecraft trajectory
optimisation, we often refer to the system dynamics as the equations of motion and
define the equations based on the natural and control forces acting on the spacecraft
in motion. Next, to enforce restrictions along the trajectory, such as keeping the
spacecraft close to the body, we introduce path constraints defined as

h(t,x(t),u(t))  0. (3.3)

Another form of constraint is the so-called boundary constraint that enforces the
initial and final states to satisfy x(t0) 2 Si and x(tf ) 2 Sf . An example could be fixing
the initial positions of the trajectory to represent a deployment from a mothership.
These boundaries are typically represented by smooth manifolds

S = {x 2 Rn : gk = 0, k = 1, . . . , p}, (3.4)

with linearly dependent gradients rgk. The last considered constraints are the box
constraints, which limit each decision variable’s domain, such as an interval in mag-
nitudes of thrust that the spacecraft can produce. Finally, the goal of the control
problem is to determine the decision variables that minimise the defined total cost.
In spacecraft trajectory optimisation, these variables often include the state x(t),
control u(t) and time-frame (t0, tf ). The final problem is formulated as

min
x,u,t0,tf

J(x(t),u(t)) = �(tf ,xf ) +

ˆ
tf

t0

f0(t,x(t),u(t)) dt

s.t. ẋ(t) = f(t,x(t),u(t)),

h(t,x(t),u(t))  0,

x(t0) 2 Si, x(tf ) 2 Sf ,

u(t) 2 U(x, t).

(3.5)
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Furthermore, it should be noted that the set of admissible controls, U(x, t), is pre-
sented here with a state dependency, which is generally uncommon for optimal control
problems but relevant for a spacecraft trajectory problem given how the use of ma-
noeuvres are reasonably related to the spacecraft’s position and motion. Another
characteristic of Eqs. (3.5) is the highly complicated nature of its dynamic con-
straints, which tends to induce several local optima, making more straightforward
numerical methods unsuitable and requiring more robust and accurate global opti-
misation techniques to cover the search space efficiently [46]. As a consequence, it is
generally of interest to further simplify the problem.

3.3 Objective Function

To model the measured gravitational signal, we introduce an objective function rep-
resenting the spacecraft’s spatial coverage throughout its trajectory. Measuring the
variations in gravitational acceleration is a continuous process most accurately ex-
pressed by integrating a continuous-time function. One approach is to employ spher-
ical harmonics equations to expand a harmonic function within the volume confin-
ing the body’s gravitational field. Nevertheless, given the convergence limitations of
spherical harmonics inside the Brillouin sphere, these equations would likely result in
an invalid representation of near-surface coverage. Moreover, the resulting algorithm
is also prone to be computationally expensive since the problem formulation would
depend on two separate integration schemes.

Another strategy involves considering a discrete approach, thereby coupling the
accuracy of coverage with the detail of discretisation. However, defining some dis-
cretised volume consistent with the gravitational field for a highly irregularly shaped
body is challenging, especially during the early stages of a mission where the geodesy
of the body remains unexplored. In this thesis, we consider a mission scenario char-
acterised by initial approaches and non-stable trajectories, where the available shape
model is derived from optical measurements, resulting in a polyhedral gravity model.
To avoid complicated discretisation procedures, we model the measurements of spa-
tial changes in gravitational acceleration using an indirect representation of coverage
in the body-fixed frame. In detail, we assume an encapsulating discrete spherical
structure where each cell represents a specific domain of approximately homogeneous
gravitational signal. By determining the total number of visited regions on the struc-
ture, which is analogous to feasible measurements gathered by the spacecraft, we can
formulate a performance measure that is representative of the coverage of the gravi-
tational signal. To define a suitable structure for the simulation, we will first compare
existing literature on spatial analysis and common classes of geodesic grids, focusing
on three spatial dimensions.

3.3.1 Discrete Spherical Grids

The applications of computational grids are many and include, for instance, con-
structing geodesic grids for meteorological systems and atmospheric modelling [47],
geophysical modelling of magnetic fields [48], and simulations in both solid mechanics
and fluid mechanics. When modelling spatial systems, the literature presents two
conventional strategies for addressing the geographic space: to treat the experimental
space as a whole or divide it into various cells for more precise computations. The
most commonly applied numerical techniques for simulating dynamical systems in-
clude partial differential equations (PDE), lattice Boltzmann method (LBM) and cell
automata (CA). For instance, LBM is a discrete alternative often applied to simulate
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propagation and collision processes over discrete lattice grids of fictive particles in
fluid systems [49]. In contrast, finite element (FEM), finite volume (FVM), and finite
difference methods (FDM) are more commonly applied when a discretised grid rep-
resents the computational domain. We generally refer to the gridding of a spherical
structure as the subdivision of its domain into cells of polygonal volumes with ei-
ther regular or irregular shapes. In three dimensions, these cells are typically defined
as tetrahedrons, pyramids, tri-prisms or hexahedrons (see Fig. 3.1), where each unit
could be associated with several variables, such as pressure and temperature [50].

(a) Tetrahedron (b) Pyramid (c) Tri-Prism (d) Hexahedron

Figure 3.1: General shapes on cells in a 3D computational grid.

Furthermore, discrete grids are generally divided into four categories: structured,
unstructured, hybrid and Chimera grids. Each category offers a unique set of advan-
tages contributing to the efficacy of grid-based methods in various applications. To
motivate the choice of a suitable structure for simulating coverage, we will begin by
presenting a concise summary of each category.

Structured Grids: A structured grid is defined by an ordered arrangement of
its cells in both vertical and horizontal directions. It then follows naturally that each
cell will have a fixed number of first-order neighbours tangent to its edges and ver-
tices, which enables a relatively easy implementation. In applications that focus on
solving volumetric problems, structured grids are often designed with a hexahedral
cell structure since it naturally enables an embedded tensor product structure, a more
considerable tolerance for anisotropy - where either the cell or the model has different
physical properties dependent on directions, which then affects numerical stability
and accuracy of the simulation - and generally low numerical stiffness [50]. Provided
their benefits, various structured grids can be employed depending on the specific
computational tasks. For instance, cubed spheres (see Fig. 3.2) are typically applied
to model solar wind problems, whereas longitude-latitude grids (LLG) are generally
more favoured in global crust modelling and for simulating wave velocities in Earth’s
mantle [51].

Figure 3.2: A collocated cubed sphere grid [51].
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Unstructured Grids: An unstructured grid is defined by arbitrarily shaped cells,
where each node and cell can be placed freely to more accurately fit the boundary
of the computational domain. However, the flexibility and accuracy often come with
the drawback of defining more cells and nodes in random data structures, resulting
in a greater demand for computational resources. In three dimensions, unstructured
grids are usually constructed with either tetrahedrons, tri-prisms or pyramids as the
general cell shape. The resulting grid is therefore well suited for modelling complex
geometrical domains with little distortions and often applied in problems such as 3D
object modelling, convection of Earth’s mantle [52] and electric field modelling [53].

Figure 3.3: Scattering of a plane wave modeled by a coated spherical object
with view of (a): an unstructured grid, and (b): electric scattered field [53].

Hybrid Grids: In contrast to the previously mentioned categories, Hybrid grids
decompose the computational domain into subregions of independent and adjacent
grid structures. The combinations of grid structures are generally classified as ei-
ther structured-unstructured mixed grids or unstructured mixed grids [50]. As such,
three-dimensional hybrid grids are often applied in contexts where properties of the
computational domain may differ greatly from one subregion to another. One exam-
ple of a hybrid grid is the Spheroid-Degenerate Octree Grid (SDOG), first proposed
by Yu and Wu in 2009 [54]. With a near-volume preserving property, this grid is
highly suitable for ensuring consistent spatial resolutions when projecting the three-
dimensional model on a two-dimensional plane for further analysis. However, when
applying different grid structures at different subregions, it is equally important to
adopt special care regarding data matching across each boundary to account for vary-
ing requirements on computational techniques.

Figure 3.4: One octant of SDOG with four sub-divisions,
plotted from three observation angles. [55].
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Chimera Grids: Finally, Chimera grids comprise a set of overlapping structured
grids called overset grids. Each subgrid is independently adapted for the domain of
interest, resulting in an accurate grid system readily available for various numerical
techniques. With such qualities, Chimera grids are typically applied in structural op-
timization [50]. Although this grid offers excellent accuracy and geometrical flexibility
for complex domains, interpolating data that stretches over multiple grid structures
often becomes challenging since it requires the conservation of physical variables be-
tween different sub-regions. One example of an overset grid is the Yin-Yang-Zhong
grid, consisting of two overlapping latitude-longitude grids for 90 degrees in latitude
and 270 degrees in longitude, a so-called Yin-Yang grid, and some inner decoupled
grid. However, provided the structure of the Yin-Yang grid, this method often causes
cells to overlap near their borders, resulting in redundancy and ambiguity when as-
signing data to each of these cells.

Figure 3.5: Yin-Yang-Zhong overset grid for a spherical
shell with a central cuboid [56].

With a brief introduction to each of the four common categories of computational
grids, we can now identify the most suitable structure for the simulation of coverage.
First, recall that the purpose of the discretization is not to model the gravity field
directly but to divide some bounded spherical domain into cells representing regions
where the rate of change in gravitational acceleration is small enough to be accu-
rately measured by a visiting spacecraft. Since the gravitational acceleration varies
with an inverse relation of the distance to the body, the cells should follow a similar
ordered structure in size. Consequently, there is no need for defining subregions with
varying structures, as used in hybrid grids. Moreover, following the order of sizes,
unstructured grids would not provide any improved accuracy over the more compu-
tationally efficient structured grids. Finally, since a polyhedral gravity model already
represents the body of interest and is therefore decoupled from the discretization of
coverage, it also follows that a multi-structured Chimera grid is unnecessary for this
use case. Although both cubed spheres and longitude-latitude grids are suitable for
the particular application, we will proceed with the latter since it enables a compu-
tationally efficient and easy-to-manipulate data structure with smooth transitions for
trajectories crossing multiple cells of varying sizes.
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3.3.2 Defining a Longitude-Latitude Grid

We first introduce two new spherical boundaries depicting a non-convex computa-
tional domain to define the longitude-latitude grid structure around the body of inter-
est. The inner bounding sphere, SI , represents a region with greater risk for colliding
with the body and is defined by a safety radius rI . The radius rI can be chosen
arbitrarily since the grid is decoupled from the polyhedral model. For smaller bodies,
a feasible assumption is to consider an inner radius rI comparable with the exterior
Brillouin sphere since travelling within this region is likely to be risky and should not
result in any gain for the objective, even though a near ground-truth signal likely
characterises the region. For larger non-spherical bodies, one can instead consider an
inner ellipsoidal boundary to reduce the cut-off space. Next, the outer sphere SO is
defined with radius rO > rI and represents the space of interest for carrying out mea-
surements. The non-convex region constituting the grid, i.e. the measurable space, is
then defined by the manifold on Sf = {(r, ✓,') | r 2 [rI , rO], ✓ 2 [�⇡

2 ,
⇡

2 ],' 2 [�⇡,⇡]}
representing a spherical shell between the two concentric spheres SI and SO. A dis-
crete approximation of Sf in terms of a longitude-latitude grid G will then comprise
several evenly spaced points p 2 G such that G ⇢ Sf . Utilising the tensor structure,
we can associate each point by its position, expressed in spherical coordinates, and
a numerical value which we refer to as its weight, such that p = (rp, ✓p,�p, wp). As
a result, each set of eight adjacent points on G defines a curvilinear hexahedron, or
tesseroid, that is bounded by six differential surfaces as depicted in Fig. 3.6a.
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(a) A tesseroid defined on a LLG.
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(b) Trajectory crossing multiple tesseroids.

Figure 3.6: Isolated components defining a LLG.

In order to ensure stability in the simulation of coverage and produce accurate
results, the spacing between the points on the grid must be defined such that each
tesseroid satisfies the Courant-Friedrichs-Lewy (CFL) condition, which states that
the total numerical space of dependence should include the corresponding physical
domain of dependence [57]. In other words, we must ensure that a spacecraft can not
cross multiple tesseroids within one local time step. This is done by considering a fixed
measurement period corresponding to a local time step �t and a length interval �L

defining one of the edges for the corresponding tesseroid. By introducing a courant
number CCFL, the condition implies an upper limit on the local time step such that

�t  CCFL

�L

Ivmax

. (3.6)
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where I
vmax is the local maximal inertial velocity for a spacecraft travelling inside

a tesseroid. However, considering only local quantities does not guarantee that the
condition remains satisfied. In fact, for this application, we will consider trajectories
that originate from somewhere else on the physical domain but still reach the current
tesseroid in time �t. In order to ensure that the condition is satisfied for all trajec-
tories, we will instead consider a global fixed time step and an upper limit on inertial
velocity, which is likely to occur along the contour of the inner bounding sphere where
the signal is expected to be maximal. Assuming that the courant number equals one,
the condition results in the maximal size for the innermost set of tesseroids and a
linear scaling of its outer regions.

Figure 3.7: A LLG around the comet 67P/Churyumov-Gerasimenko,
with one quadrant removed for visibility.

3.3.3 Computing Coverage

With the requirement of using a global fixed time step, we evaluate the coverage
of the grid for a given trajectory sampled on the set TT = {t0  t  tf : tn+1 �

tn = �t, n = 0, . . . , f, t0 � 0}, ensuring proportionality between the discretisation
and the grid spacing. With appropriately chosen values on �t and (I)

vmax, the
coverage, Vc, is defined as the weighted ratio of grid points visited by the spacecraft
along its trajectory. First, we identify the set of points, PG ⇢ G, that minimises the
distance to each spacecraft position on the set PT defined by the trajectory, and thus
represents visited regions. For simplicity, we assume that visiting any point on the
grid once represents measuring the gravitational signal in that region. The scoring
will, therefore, not acknowledge any revisits to specific grid points. Next, in order
to ensure that each point represents a signal strength inverse to the radial distance
to the body, each point on the grid p 2 G is assigned a weight defined by its radial
component, wp = 1/rp. To avoid ruggedness in the objective, we will instead consider
the corresponding normalised weights

ŵp =
wp

|w|
=

wpP
p2G

wp

, where ŵp 2 (0, 1). (3.7)
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The coverage score is then computed as the sum of weights associated with the
grid points visited by the spacecraft, that is

Vc =
X

p2PG

ŵp, Vc 2 [0, 1]. (3.8)

In addition, since the spherical tensor grid is used to represents measurements of
the gravitational field, it should also be consistent with the body’s sidereal rotation.
However, to avoid the computational cost of rotating the points defined on the grid,
the coverage will instead consider evaluating the trajectory adjusted for the body-fixed
reference frame (see Eq. (2.24)).

3.4 Path Constraints

In trajectory optimisation, path constraints represent essential conditions that the
spacecraft must satisfy throughout its mission duration to ensure compliance with
physical, operational, and safety requirements, such as avoiding collisions or meeting
specific mission objectives. These constraints are therefore pivotal in guiding the
optimisation process to find feasible and efficient trajectories. We will now introduce
the two path constraints considered in this thesis, one relating to the coverage and
the other to collisions with the body.

3.4.1 Bounded State Space

In this study, we have considered the coverage measurements to be strictly bounded
by a longitude-latitude grid. A representative illustration of the shell-like structure
can be seen in Fig. 3.7. To maximise the coverage, it then follows that the domain of
state variables related to the position should coincide with this region. In practice, this
would be equivalent to enforcing a path constraint restricting the radial component
of a spacecraft’s position expressed in spherical coordinates throughout the entire
mission duration:

rI  r(t)  rO, 8t 2 [t0, tf ]. (3.9)

However, as an effect of considering a system with particularly complex dynamics
and a celestial body with a relatively small mass, it follows by intuition that some
solutions could become hyperbolic and highly non-periodic, resulting in positions de-
fined outside Sf depending on its extent. To avoid over-constraining the problem,
we employ penalty methods that relax the constraint functions, transforming the
objective into a sum of the previous one and several penalty functions accounting
for constraint violations. Since the penalty functions only penalise the objective at
an active violation, we refer to the new objective as a cost function. Consequently,
we can avoid discarding solutions with good coverage and only slight violations that
could potentially guide the search process in finding efficient and mission-compliant
solutions. To define suitable penalty functions, we must carefully consider their bal-
ancing effect. For instance, too-weak penalties will likely benefit unfeasible solutions,
whereas too-strong penalties may prevent finding good solutions. To account for these
properties, we will divide the path constraint into two separate functions, one consid-
ering positions near the body, where collisions are likely, and one considering those
outside the region of interest where the rate of change in gravitational acceleration is
minimal.
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The former function relates the risk of colliding with the body by defining a penalty
based on the normalised squared distance from the most critical position to the safety
radius, excluding positions precisely on the safety radius as seen in its range depicted
in Fig. 3.8a. The risk penalty is defined as

PI =


|r

2
critical

� r
2
I
|

r2
I

� 1
4

. (3.10)

For positions defined outside the outer bounding sphere, the cost function is pe-
nalised by the average squared distance from rO. In contrast to the other compo-
nents of the cost function, the relevance penalty can generate penalties larger than
one for trajectories deviating too far from the grid, thus enabling quick identification
of greatly inefficient trajectories during the optimisation process. However, to avoid
omitting trajectories that only momentarily leave the region of interest, the penalty
assumes a smoother shape near the grid (see Fig. 3.8b). The relevance penalty func-
tion, PO, is defined as

PO =

"
1

r2
O

1

||PT{r>rO}
||

X

r2PT

r>rO
(r2 � r

2
O
)

# 1
4

. (3.11)

To avoid ruggedness in the cost function, we introduce lagrangian multipliers
to secularize the objectives by proper weighting. We will hereafter refer to these
multipliers as penalty scaling factors. Finally, we define the complete cost function as

J(·) = �Vc + �IPI + �OPO. (3.12)

(a) Close distance penalty. (b) Far distance penalty.

Figure 3.8: Two plots depicting the weighted range of the two
considered functions penalising risky and distant trajectories.
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3.4.2 Collision Avoidance

The second path constraint ensures the safety of the trajectory by excluding collisions
with the body. As such, we define a constraint function with a binary output taking
a value of zero when there is a presence of a collision between the spacecraft and the
celestial body at some point along the trajectory and one otherwise:

C(rx(t), ry(t), rz(t)) =

(
0, when collision detected,
1, otherwise,

8t 2 [t0, tf ]. (3.13)

3.5 Boundary Constraints

By introducing boundary values for the state transition, the equations of motion in
Eq. (2.56) can effectively be solved as a boundary value problem, resulting in a
deterministic trajectory. In this case, we will assume a fixed initial state to simulate
a deployment from a mothership and a free final state to focus the optimisation on
maximising coverage more freely. In detail, we will assume a given initial position
and an optimised initial velocity to avoid collisions during swarm deployment, thus
allowing the spacecraft to proceed in different directions.

3.6 Problem Formulation

With the definitions presented in Sections 3.3 to 3.5, the optimal control problem of
maximising the measured gravitational signal can be simplified to solving the following
continuous minimisation problem

min
v0,v̂0,�0,...,�I ,û0,...,ûI

� Vc + �OPO + �IPI

s.t. C(rx(t), ry(t), rz(t)) = 1, t 2 [t0, tf ]

�min  �i  �max, i = 0, . . . , I

||û(ti)|| = 1, ti 2 TC

||v̂(t0)|| = 1,

vmin  v0  vmax,

r0 2 Sf ,

rf ,vf 2 R3
free.

(3.14)



Chapter 4

Optimisation

In previous chapters, we have focused on thoroughly introducing the considered prob-
lem through a concise discussion on related spacecraft dynamics and problem charac-
teristics. The outcome was a definition of a suitable trajectory optimisation problem
that, when solved correctly, results in an optimised initial state and control sequence
for maximising coverage. In this chapter, we will focus on deriving a sufficient opti-
misation strategy for solving the proposed problem.

4.1 Trajectory Optimisation

In Section 3.2, we presented the fundamental properties associated with a traditional
trajectory optimisation problem. In the subsequent sections, each characteristic was
then related to the problem definition to derive a suitable formulation for the con-
sidered problem. The next step is to develop a strategy for solving the suggested
problem. Since trajectory optimisation is known for its extensive research and ref-
erences, we focus the analysis on concepts sufficient to acquaint the reader with the
field and motivate the choices for selecting an appropriate solution method. We begin
by making a distinction between the terms approaches, methods and techniques, and
design the introduction accordingly.

4.1.1 Numerical and Analytical Approaches

Although trajectory optimisation involves many solution approaches, they are gen-
erally of either an analytical or numerical nature, simplifying the taxonomy into a
binary classification. In the former case, the goal is to define an exact solution using
purely analytical or semi-analytical strategies employing various ad-hoc techniques
and intuitive formulations. Common applications include low-thrust orbit raising
and Hohmann orbit transfers. However, analytical solutions generally become un-
achievable when the problem is characterised by more complex dynamics and difficult
constraints, resulting in challenging domains and problem formulations. Another
strategy is to employ a numerical approach, which allows for determining efficient
solutions by discrete approximations. Thus, given the particularly complex nature of
the problem considered in this thesis, we will focus on the latter.

29
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4.1.2 Direct and Indirect Methods

Like the approaches, most numerical methods employ one of two strategies. In the
former, known as the indirect method, the problem considers the dualised form of
equations, including state and co-state variables. Although these methods benefit
from exceptional accuracy and reliable error estimates, they introduce several chal-
lenges. First, as part of the dualisation, the problem requires analytical expressions
of the necessary and sufficient optimality conditions. These include formulating the
Hamiltonian, co-state differential equations and transversality conditions, which are
seldom trivial for black box models [45]. Another challenge includes managing the
increasing problem size following the introduction and discretisation of co-state vari-
ables. However, the major disadvantage is generally related to robustness. In detail,
to solve the new dynamic equations, the user must provide a guess on the initial co-
state variables, which is often difficult due to their non-physical nature. In fact, even
with good initial guesses, the equations still risk becoming ill-conditioned.

In contrast, direct methods attempt to solve a discrete approximation of the con-
trol problem through transcription, parametrising its state and control vectors. By
integrating the dynamics step-wise, one can obtain a set of nonlinear constraint equa-
tions that must be satisfied by the parameters representing state and control values
over time. Thus effectively converting the original problem into a traditional nonlin-
ear programming problem suitable for a new domain of techniques. As such, direct
methods allow for greater flexibility in finding efficient solutions without requiring
analytical derivations of optimality conditions, but at the cost of losing verifiability
unless other optimality criteria are introduced. The method is generally robust since
it only requires initialisation on the physical state variables, which are easier to guess
than co-state variables. Besides their ease of implementation, direct methods gener-
ally reduce dimensionality and retain a larger domain of convergence resulting from
the globalised strategy for minimising the objective [25, 44].

From Sections 3.3.3 and 3.4, it should be noted that both the cost and constraint
functions assume a discrete approximation of the candidate trajectory. Thus, it fol-
lows naturally to employ a direct method for determining the decision variables that
maximise coverage and minimise constraint violations. Furthermore, considering a
direct method is also favourable given the use of a polyhedral force model, where
deriving analytical expressions for the derivatives of the system dynamics is demand-
ing. Finally, when further expanding the problem to consider a swarm scenario, it is
essential to minimise the dimensionality to avoid potential combinatorial challenges.
Therefore, it is wise to avoid introducing a dual formulation as well.

4.1.3 Numerical Techniques

In this section, we will briefly introduce several traditional numerical techniques for
solving the suggested trajectory optimisation problem using direct methods. The
first technique is differential inclusions, which use inequality constraints on the state
derivatives to ensure that the equations of motion are satisfied at every discrete time.
These inequality constraints can be obtained by substituting the control vector in the
dynamic system with its defined boundary values. The main benefit of the technique
is that it removes the explicit dependence on control values at each node but at the
risk of becoming numerically unstable. For that reason, differential inclusions will not
be considered in this thesis.

In contrast, collocation techniques enforce the system dynamics using quadrature
rules or interpolation. The goal is to find a reasonable interpolant that matches the
state values and derivatives at the nodes spanning some subset of the time interval. At



4.2. GLOBAL OPTIMISATION 31

each collocation point, i.e. the points defined between the nodes at which we evaluate
the interpolant, an equality constraint is formed, equating the interpolant derivative
to the state derivative function and thus ensuring that the dynamics hold (approxi-
mately) true across the time interval. The technique is based on a segmentation of the
considered trajectory and a near-uniform discrete approximation of thrust directions
by a set of thrust profiles and inequality constraints for each segment. The problem is
then to minimise the total characteristic velocity with terminal conditions. Hence, the
technique can be considered a sequential nonlinear programming algorithm defined by
three steps. The first step is transforming the dynamic system into a problem with a
finite set of variables. The second step is solving the finite-dimensional problem using
a parameter optimisation method (i.e., the nonlinear programming subproblem). Fi-
nally, the third step is to check the accuracy of the finite-dimensional approximation
and, if necessary, repeat the transcription and optimisation steps.

The last considered technique is the direct shooting method, which works by pa-
rameterising the control vector and integrating the motion equations with a time-
marching algorithm, effectively reducing the required number of constraints. One
can then ensure consistency between the objective and the numerical integrator by
determining the corresponding cost function using a quadrature approximation. Con-
sequently, the method results in a problem of minimising a specific cost function
subject to any path and interior constraints, as well as a reduced problem size.

Since both the coverage and constraint functions assume the simple form of evenly
spaced evaluation points along the trajectory, where the integration occurs segment-
wise between manoeuvres, we draw inspiration from the shooting method as the
fundamental principle of the selected optimisation strategy. The final stage of the
optimisation process is to formulate a global solution method based on the suggested
approach, method and technique.

4.2 Global Optimisation

With computational power and resource management in constant development, pow-
erful direct global optimisation techniques have lately gained a prominent role within
trajectory design, given their ability to solve large-scale numerical problems remark-
ably cheaply and online [44]. Generally, we speak of two categories of algorithms: de-
terministic and stochastic. Deterministic algorithms avoid randomness in their search
process by instead using readily available gradient information of the problem, which
enables a well-defined convergence criterion for a global solution. Although these
methods allow for a rigorous search process, they typically require an initial guess on
the decision parameters, which can be challenging depending on the complexity of the
problem. Since the problem considered in this thesis involves particularly complex dy-
namics and swarming spacecraft, traditional nonlinear programming algorithms will
generally become difficult to initialise.

An alternative is a stochastic algorithm, which roots its search process in the
random generation of decision parameters, consequently treating the problem as a
black-box model which imposes fewer constrictions for selecting appropriate numer-
ical techniques and approaches. A common trait of most stochastic methods is that
they employ a metaheuristic: an iterative master process that directs the operations
of auxiliary heuristics to efficiently cover a complex search space and determine a
high-quality solution [44]. As such, these methods provide a robust tool for obtaining
qualitative solutions in complex domains when considering reasonable time horizons
and computational resources. However, given their use of randomness instead of gra-
dient information, they naturally lack the theoretical foundation for verifying global
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convergence. On the other hand, given their proven robustness in rugged search
spaces and the advantage of self-initialising decision variables, stochastic methods are
generally favoured for solving trajectory optimisation problems.

Heuristic methods generally employ one of two strategies: a single solution, such
as local search, simulated annealing and greedy heuristics, and population-based tech-
niques, such as evolutionary algorithms. Since the latter category tends to be par-
ticularly suitable for problems considering impulsive control [44], it will be of focus
from here on. Among notable evolutionary algorithms (EA), we distinguish between
the most common methods applied to trajectory optimisation, namely Genetic Algo-
rithms (GA), Particle Swarm Optimisation (PSO), Differential Evolution (DE) and
Ant Colony Optimization (ACO). During the last two decades, the European Space
Agency (ESA) has conducted extensive research on the application and sufficiency of
these methods for solving trajectory optimisation problems, where DE traditionally
has demonstrated promising results [58]. However, in recent years, the Ant Colony
Optimiser has been shown to outperform most of these algorithms in several bench-
mark trajectory problems, making it an interesting candidate algorithm to be consid-
ered in this thesis as well [59–62].

4.3 Ant Colony Optimisation

With recent refinements of the ant-based metaheuristic showing promising results for
several benchmark trajectory optimisation problems, including missions with impul-
sive control strategies, we will employ a single-objective ant-colony optimiser (ACO)
to solve the problem presented in Eq. (3.14). In detail, we will specifically implement
the extended ant-colony optimiser (EACO) first presented by Schlüter et al. [63] and
later modified by Acciarini [62]. Apart from its proven performance, the motivation
for choosing an ant-based algorithm is also related to the structure of the considered
problem. First, recall that we aim to find optimal paths through constrained yet large
multidimensional spaces. To counter such challenges, ACOs typically use sophisti-
cated large-search exploration mechanisms, hybridising local and stochastic methods.
These methods are essential for refining the solution, accelerating convergence and
avoiding local optima, which is crucial for finding global or near-global solutions in
complex landscapes. As such, EACO becomes particularly efficient for solving large
combinatorial problems where the search includes selecting discrete events such as
impulsive manoeuvres. Finally, EACO also possesses a computational advantage of
a high level of parallelisation, making it suitable for optimising trajectories involving
great computational effort. Since each suggested solution results in a deterministic
boundary value problem when considering the dynamics, we can use parallelisation
to evaluate large quantities of candidate solutions, consequently reducing computa-
tional time and enabling a more extensive search process. Due to the high level of
relevance for the chosen optimisation strategy in this thesis, we will now introduce
the fundamental principles of the optimiser on a practical level. To better understand
these techniques, we will first introduce the original ACO algorithm and then further
expand the description to the modified version of EACO.
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4.3.1 Single-Objective Ant Colony Optimiser

The core concept of ACO is to imitate the natural behaviour of ants searching for
food. To find food, ants typically explore their surroundings in a random manner,
starting from their nest. Successful ants then return to the nest, leaving a chemical
pheromone trail to mark its path, which attracts colony members to follow the same
path. However, as time passes, the pheromones gradually start to evaporate, leaving
only well-updated paths appealing and eventually only the shortest path. Using the
ant-based indirect communication strategy as a heuristic to cover complex search
spaces was first introduced to mathematical optimization by Dorigo et al. in 1992
[64]. At that time, ACO was primarily applied to combinatorial problems using
artificial ants to traverse a graph to find an optimal path based on factors like length
or other defined costs, much like the travelling salesman problem. By employing a
parameterized probabilistic model, a pheromone table, the artificial ants select a path
across a fully connected graph G(C,L) of vertices C and connecting edges L. The set
of vertices C stands for the solution’s components, incrementally chosen by each ant
to construct its path. Each pheromone value, ⌧i, representing the pheromone strength
of path i, then guides the colony in choosing subsequent paths with the probability

pi =
⌧iP
i
⌧i
, i = 1, 2, 3, . . . (4.1)

By adjusting the pheromone values according to information gathered during the
search process using the update rule �⌧i +

Q

li
for some positive model parameter Q,

the search process will eventually lead to the discovery of the shortest path due to
dominant probability. Furthermore, to avoid favouring the early discovered paths
through greater aggregate probabilities, each pheromone trail is assumed to decrease
over time according to an evaporation rule (1�⇢)⌧i considering an evaporation speed
⇢ 2 (0, 1].

4.3.2 Extended ACO for Non-Convex MINLP

Although the example of ants traversing through a graph-like domain is generally
adapted for combinatorial problems, it can also be extended to continuous domains
without changing its conceptual principles. The extension to mixed-integer search
domains was first proposed by Schlüter et al. [63] and has been tested extensively
on various benchmark space applications since then [59, 65]. To properly convey the
functional principles of EACO and its differences compared to ACO, we will first
recall a set of necessary mathematical definitions.

In general, EACO assumes the problem to be in the form of a mixed-integer
nonlinear program (MINLP), which includes the nonlinear program considered in Eq.
(3.14). A MINLP problem can effectively be formulated as

min f(x, y)

s.t. h(x, y) = 0, i = 1, . . . ,meq

g(x, y)  0, i = meq + 1, . . . ,m

x 2X, y 2 Y .

(4.2)

where X ✓ Rnc is a convex compact set of continuous values, Y 2 Zni is a polyhedral
set of integer points, where both sets have given bounds, f : Rnc+ni ! R and where h

and g are the corresponding constraint functions. Now, in contrast to ACO, the EACO
framework considers probability samples from both a continuous probability density
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function (cPDF) P : R ! R0 and a discrete probability density function (dPDF)
Q : Z ! R0 for the two set of variables as the guiding probabilistic during the path
selection. In detail, we adopt a n multi-kernel Gaussian probability density function
G

h=1,...,n where n = nc+nd since it allows for making use of its fast sampling property
while also overcoming issues of retaining focus on several promising disjoint areas of
the search space. The multi-kernel function can be formulated as a weighted sum
of K one-dimensional Gaussian density functions corresponding to each dimension of
the domain, that is

G
h(t,!, µ,�) =

KX

k=1

w
h

k
· g

h

k
=

KX

k=1

w
h

k

1

�h

k

p
2⇡

e

�(t�µh
k )2

2(�h
k
)2

, h = 1, . . . , n. (4.3)

The continuous and discrete probabilities can then be sampled from their respec-
tive density functions, where the discrete function considers the cumulative probability
of the multi-kernel function around some integer d:

P
i(t) = G

i(t,!, µ,�), i = 1, . . . , nc, (4.4)

Q
i(d) =

ˆ
d+1/2

d�1/2
G

nc+j(t,!, µ,�)dt, j = 1, . . . , nd. (4.5)

The pheromone triplets (wh

k
,�

h

k
, µ

k

h
) are thus central for the path selection pro-

cess. To update each pheromone, we use information from a solution archive S :=
{(x, y)1, . . . , (x, y)K} of the previously K most promising n-dimensional solution vec-
tors sk. We will now define each of the three triplets in the suggested order. The first
parameter, wh

k
, indicate the importance of an individual ant by weighting the multi-

kernel PDF accordingly, thus establishing a linear order of priority of the solution
archive where s1 and sK are the most and least promising solution vectors, respec-
tively. For every new solution value found, its penalty function value, or attraction,
is compared to each vector in the archive. If the new solution vector is more promis-
ing than sk, we identify its position in S and shift the subsequent solution vectors
backwards with one index, discarding the least promising solution. The process can
be compared to the phenomenon of evaporation of a trail. As such, the individual
weights are computed by linear proportion

!
h

k
=

K � k + 1
P

K

j=1 j
, where

KX

k=1

!
h

k
= 1. (4.6)

The mean value µ
h

k
can be directly obtained from the single solution components

in the solution archive, that is

µ
h

k
=

(
x
h

k
, h = 1, . . . , nc,

y
h�nc
k

, h = nc + 1, . . . nd.
(4.7)

The standard deviations �h

k
can be computed using the maximal and minimal

distance between all variable dimensions in the solution archive:

�
h

k
=

Dmax(h)�Dmin(h)

nG

,

(
Dmax(h) = max{|s

p

h
� s

q

h
| : p, q 2 [1, . . . ,K], p 6= q},

Dmin(h) = min{|s
p

h
� s

q

h
| : p, q 2 [1, . . . ,K], p 6= q},

(4.8)
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where h = 1, . . . , nc, nc + 1, . . . , nd + nc and nG is the number of generations passed
so far. To avoid zero-valued standard deviations, which can occur when all of the
solution vectors stored in the archive have converged for the same integer values,
thus resulting in the sampling at the explicit means stagnating the improvement, we
introduce two new lower bounds for the integer case:

�
h

k
= max

⇢
Dmax(h)�Dmin(h)

nG

,
1

nG

, (1�
1
p
ni

)/2

�
, if h = nc + 1, . . . , nc + nd.

(4.9)
In summary, the evolutionary process begins with creating the first generations

of ants based on a sampling from two uniform continuous and discrete PDFs. We
refer to the colony as a population and each candidate solution vector as a chromo-
some. After individually evaluating the objective function and constraint violations,
we select the K most promising chromosomes to define the ordered solution archive
S. Since each evaluation is inherently independent, we can parallelise the operation
on multiple processing threads to improve the computational performance. We define
the next generation by choosing the mean value µ

h

k
for every h in the archive. The

choice is not completely random as it depends on the corresponding weight wh

k
, which

ensures the linear priority established in the solution archive. New chromosomes are
then effectively created by sampling new random numbers for each dimension’s mean
value and standard deviation. As such, we have defined a new variable combina-
tion dependent on the previously most promising set of chromosomes, thus forming
the new generation. The selection and sampling process then repeats until we have
reached a specific stop criterion, which in this case will be the number of generations.

Oracle Penalty Method

A common strategy for managing difficult constraints is to replace the objective with
a new penalty function defined as a weighted combination of the original objective
function and constraint violations. This strategy is notably similar to the relaxation
of the domain-restricting path constraint in Section 3.4. In general, simple penalty
methods, like death and static, are often favoured for their ease of use but may not
always perform well on more challenging problems. In contrast, advanced methods
such as annealing offer improved performance but at the condition of intricate param-
eter selection. Hence, focusing on high-potential methods with minimal parameter
needs is of interest to avoid these shortcomings. In this case of EACO, we assume a
single-term high-potential penalty method based on the oracle parameter ⌦ represent-
ing the estimated preferred objective function value. Predicting a reasonable value
for ⌦ is a non-trivial task due to the inherent complexity of the trajectory problem.
To ensure robustness, we initialise this variable with a random estimate and refine it
using insights from an initial optimiser test run. Let z := (x, y) denote a vector of the
considered continuous and discrete decision variables, x and y, representing an ant.
The oracle selection method is then based on a `1-norm function, or residual, over all
violations of the given meq equality constraints h(z) and mineq inequality constraints
g(z) in the considered optimisation problem:

||z||1 =

meqX

i=1

|hi(z)|�

mineqX

j=1

min{0, gjz}. (4.10)
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The penalty p(z) is specifically defined as

p(z) =

(
↵ · |f(z)� ⌦|+ (1� ↵)||z||1 � �, if f(z) > ⌦ or ||z||1 > 0,

� |f(z)� ⌦|, if f(z)  ⌦ and ||z||1 = 0,
(4.11)

where the parameter ↵ balances the weight between the objective function and
the residual, and � acts as a dynamic bias term, which increases over the generations.
Thus, both terms enable the penalty method to balance the search process towards
either the objective function or the residual. The parameters have conditional defini-
tions depending on the relation between the objective value f(z), residual ||z||1 and
oracle ⌦. For further details on the definitions of ↵ and �, we refer to the paper
presented by Schlüter et al. [63]. Moreover, since the oracle is selected as either
the best, equal to or slightly improved optimal objective value, finding a good oracle
value is analogous to solving the original problem to its global optimum. Thus, a
good value can efficiently be determined using the self-tuning property by updating
the oracle dynamically with the knowledge gained from several consecutive runs of
the given optimisation problem. With the algorithm’s structure in mind, EACO can
be applied to both box-bounded single-objective, constrained and unconstrained op-
timisation problems with continuous and integer variables. As such, it is also suitable
for the problem presented in Eq. (3.14), which in this case can be considered as a
box-bounded single objective optimisation problem when the collision constraint is
decoupled from the problem formulation and instead implemented as an infeasible
solution marker during the integration process.

4.3.3 Modified EACO

Even with the boundaries introduced in Eq. (4.9), related studies have shown a ten-
dency for EACO to converge prematurely at local optima for several simpler bench-
mark problems. To counter this shortcoming, Acciarini [62] presents three novel
modifications demonstrating promising results. The first modification relates to the
computation of standard deviations. When using the original formulation presented
in Eqs. (4.8-4.9), the standard deviation values were observed approaching a zero
value, resulting in a convergence characterised by sampling near the explicit means.
To avoid the issue of rapidly diminishing deviations, a new standard deviations con-
vergence speed parameter NGenMark is introduced, replacing the previous number
of generations nG. The new parameter works much similarly to nG, but for a defined
upper limit. Once this limit has been reached, the value of NGenMark resets to
one, and the process continuous. Consequently, as long as Dmax(h) � Dmin(h) 6= 0
for the set of continuous variables, �h

k
can be ensured to not reach small values by

instead choosing a low NGenMark value. We can then ensure a suitable magnitude
of NGenMark by introducing two new parameters to monitor the spread of chromo-
somes in the solution archive. In detail, these two parameters describe the flatness
in each dimension for the variables, dx, and the penalties, dp, when considering the
respective best and worst chromosomes, s1 and sk, in the solution archive for each
generation:

dx =
nX

i=1

(|xK,i � x1,i|), (4.12)

dp = |pK � p1|. (4.13)
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The second modification concerns how each weight is computed and allows adjust-
ing the focus of the chromosome selection by introducing a new convergence speed pa-
rameter q regulating the convergence towards a local minimum. As such, the weights
are reformulated as

!
h

k
=

1

qK
p
2⇡

e
�

(k�1)2

2q2K2
, k = 1, . . . ,K. (4.14)

If q is then chosen to be relatively large, the weights will become more uniform. In
contrast, if q is chosen to be small, the weights will instead favour the best individuals,
similar to the original formulation in EACO. As such, the sampling of new offspring
will be done considering only the k:th singular Gaussian function in Eq. (4.3) with
the probability

p
h

k
=

!
h

kP
K

k=1 !
h

k

. (4.15)

The process of sampling the chosen Gaussian function g
h

k
begins with each chromo-

some first being assigned its respective cumulative value from the computed prob-
ability p

h

k
. Then, by sampling a number from a uniform distribution U(0, 1), the

specific Gaussian function can be chosen accordingly. In order to begin with a broad
search process and then focus on a subset of the solution archive after an increasing
number of generations, the value of q is adjusted dynamically after a certain thresh-
old number of generations. Finally, the last modification includes the addition of an
accuracy parameter ↵, which ensures that the considered penalty functions in the
solution archive remain diverse enough. This is done by enforcing the criteria de-
manding the new chromosomes to outperform the K:th solution in the archive and
to have a penalty function value with the minimal difference of ↵.



Chapter 5

Methods and Software

In order to simulate and determine optimal trajectories for the considered high-
dimensional problem, we must first define a suitable model that can efficiently exploit
the available computational resources. The model should include both the propa-
gation of the state through numerical integration, a sufficient method for detecting
collisions and a general optimisation scheme for considering both single and multi-
spacecraft settings. In this chapter, we will therefore focus on presenting the numerical
methods, techniques, and software used to account for these considerations.

5.1 Numerical Methods

Recalling from Chapter 4, we know that each generation of the extended ant colony
optimiser (EACO) results in a population representing a set of chromosomes, or can-
didate solutions, for the considered trajectory problem. In this case, these solutions
present numeric values for the initial velocity v0 and a complete control sequence
U(x, TC) over the considered mission duration. For a given initial position r0, we can
subsequently define the initial state of the problem as x(t0) = [rT0 vT

0 ]
T . Under the as-

sumption of an impulsive control scheme, the equations of motion consequently result
in a series of coupled non-stiff initial value problems (IVP) defining a segmentation
of the complete trajectory as seen in Fig. 2.3. For each segment i, the corresponding
IVP takes the form

ẋ(t) = f(t, x, u), x(ti0) = x
i

0 (5.1)
where f : R ⇥ RN

! RN is a sufficiently smooth function such that each time
t
i
0 2 R+ and initial state x(ti0) 2 RN yields in a unique trajectory x(t) : [ti0, t

i

f
]! RN .

Given the complex nature of these equations, which use impulsive controls, a poly-
hedral gravity model and quaternion rotations, finding a closed-form expression of
an integral solving the differential system remains challenging. Therefore, we will
approach solving Eq. (5.1) using numerical approximation where the state is propa-
gated using Cartesian elements. Although numerous other alternatives may improve
the computational efficiency and accuracy of the approximation, we favour Cartesian
elements given their simplicity and lack of singularities.

When selecting an appropriate numerical method, we recognise that the integra-
tion should balance two different objectives. First, to accurately capture the dynamics
of the problem, we aim at minimising the residual error ✏ = x̄(t) � x(t) between the
analytical solution x(t) and the numerical approximation x̄(t). Second, since the op-
timiser will employ the integrator for each defined chromosome and generation, it

38



5.1. NUMERICAL METHODS 39

should also reduce the computational complexity as far as possible. Among the com-
monly favoured numerical integrators in dynamical astronomy and spacecraft trajec-
tory optimisation, two prominent options emerge: Adams-Bashforth integrator and
embedded Runge-Kutta methods. Here, it should be noted that the former method
naturally favours smaller step sizes during the integration process, thus preventing it
from accurately capturing the dynamics of highly eccentric trajectories [66]. Given
that we have relaxed the constraint bounding the states to the spherical grid, possible
solutions will likely range from circular trajectories where e = 0 to even hyperbolic
trajectories where e > 1. As such, we omit the Adams-Bashforth integrator from the
study leaving the Runge-Kutta embeddings for further investigation.

5.1.1 Embedded Runge-Kutta Methods

The conventional embedded Runge-Kutta scheme uses two formulae of orders p and
q to solve the considered initial boundary value problem [67]. In most cases, these
orders hold the property that q > p and q = p+1. Adopting a standard notation, let
x̂n+1 and xn+1 represent two estimates of the state x(tn+1) where the state update
equation is given as xn+1 = xn + hn. Then, the two formulae can be defined as

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

x̂n+1 = x̂n +
SX

i=1

b̂iki,

xn+1 = x̂n +
SX

i=1

biki,

k1 = hnf(tn, x̂n),

ki = hnf(tn + cihn, x̂n +
i�1X

j=1

aijkj),

(5.2)

where i = 2, 3, 4, . . . , S are the number of stages used to indicate the q:th order
formula and hn the current step size [68]. The coefficients aij , bij , b̂ij , cij =

P
i�1
j=1 aij

(for i > j and i, j = 1, 2, 3, . . . , S) are chosen such that they satisfy the corresponding
equations of condition obtained from Taylor expansions of order k

⌧
k

j
= 0, k = 1, 2, . . . , p (5.3)

⌧̂
k

j
= 0, k = 1, 2, . . . , q (5.4)

j = 1, 2, . . . , rk. (5.5)

Considering smaller rotating bodies as the major component exerting a gravita-
tional attraction on the spacecraft, it follows by the corresponding low mass and
rotating motion that the irregular body will result in varying complexity of dynamics
for the equations of motion, with smaller variations further away from the body and
maximal dynamics at some point inside the inner bounding sphere. As such, using
an adaptive step integrator is advantageous to save computational time where the
dynamics are low and greater steps can be taken without losing accuracy. To control
the adaptive step, we use the estimate �n+1 = xn+1 � x̂n+1 of the local error ✏n+1 in
the p:th order formula presented by Hull et al. [69]

hn+1 = 0.9hn


Etol

||�n+1||1

� 1
p+1

. (5.6)
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The step size control presented in Eq. (5.6) is used even if ||�n+1||1 exceeds the
tolerated local error Etol or not, thus representing both the re-computation of some
previously rejected step and the prediction of a new successive step, respectively [68].

5.1.2 Dormand-Prince 8(7)-13M

Among the different orders of Runge-Kutta formulae, Dormand-Prince 8(7)-13M has
consistently demonstrated a preferable balance between reliable, accurate and compu-
tationally competitive performance considering a diverse set of problems with complex
spacecraft dynamics [70–72]. With extensive research on its convergence properties
and computational complexity [68, 73], we refer to previous work to motivate it as a
suitable integrator.

The algorithm extends the popular fourth-order Runge-Kutta formulae by utilis-
ing S = 13 stages and formulae equations of orders q = 8 and p = 7. As a result,
it efficiently combines the benefits of high-order polynomial accuracy and dynamic
error control using the adaptive step size formula presented in Eq. (5.6). By intro-
ducing these two elements, the integrator becomes particularly proficient at managing
challenging ordinary differential equations, including those that mix stiff and non-stiff
behaviour. However, due to the higher order of q and p, the formulae equations must
satisfy a total of 285 equations of condition for both orders. To reduce the number of
equations, Dormand and Prince introduce in their original paper the following extra
relations

ai2 = 0, i = 4, . . . , 13 (5.7)
ai3 = 0, i = 6, . . . , 13 (5.8)

b̂i = bi = 0, i = 2, . . . , 5 (5.9)
13X

i=1

b̂iaij = b̂j(1� cj), j = 1, . . . , 13 (5.10)

12X

i=1

biaij = bj(1� cj), j = 1, . . . , 12 (5.11)

12X

j=1

aijc
k

j
=

c
k+1
i

k + 1
, k = 1; i = k + 2, . . . , 13, k = 3; i = 6; . . . , 13 (5.12)

13X

j=1

b̂i(1� ci)aij = 0, j = 4, 5 (5.13)

13X

i=1

b̂ici(1� ci)aij = 0, j = 4, 5 (5.14)

13X

i=1

12X

j=1

b̂i(1� ci)aijajk = 0, j = 4, 5 (5.15)

13X

i=1

(bi � b̂i)(1� ci)aij = 0, j = 4, 5 (5.16)

resulting in ten degrees of freedom through a84, b12, b̂13, c2, c3, c6, c10 and c11 [68].
Finally, the coefficients used to construct the two formulae equations are presented in
butcher form as seen in Fig. A.1 in the Appendix.
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5.1.3 Continuous Extension

Since the Dormand-Prince 8(7)-13M algorithm uses an adaptive step size control, the
resulting trajectory will remain limited to the sequence of time steps chosen during the
integration process. In order to correctly evaluate the cost function and correspond-
ing path constraints, the trajectory must be re-sampled for each measurement time
defined on the set TT . Therefore, we define a continuous extension between each state
determined by the high-order integrator to obtain the required measurement points.
A continuous extension between two times [tn, tn+1] is, in fact, a polynomial function
Pn(t) that approximates the state transition throughout the considered time interval
[74]. When we reduce the step multiple times, we refer to the continuous extension as
the so-called dense output. The next step is determining an appropriate order for the
continuous extension. Given the use of a high-order formula to advance the integra-
tion, we can employ a lower-order polynomial function to estimate the intermediate
states while still maintaining the global order of accuracy from the integrator, thus
saving the computational costs of additional high-order approximations. In this case,
we assume a cubic Hermite spline for the interpolation scheme since the two states
a x(tn), x(tn+1) and their corresponding derivatives m(tn, xn), m(tn+1, xn+1) are
readily available by the integrator [75]. As such, interpolating the state x(t) in the
arbitrary interval (xn, xn+1) can be done by mapping the interval to [0, 1] through an
affine change of variables. The interpolation polynomial function can then be defined
as

P (t) = �0(k)xn + 0(k)(tn+1� tn)mn + �1(k)xn+1 + 1(k)(tn+1� tn)mn+1, (5.17)

where t 2 (tn, tn+1), mn and mn+1 are the tangent values, k = (t�tn)/(tn+1�tn)
and �0,�1, 0, 1 are the expanded Hermite basis functions

�0 = 2k3 � 3k2 + 1, �1 = �2k3 + 3k2,

 0 = k
3
� 2k2 + k,  1 = k

3
� k

2
.

5.2 Collision Detection

In Section 3.4, we presented a path constraint to ensure that no feasible solution would
result in a collision between a spacecraft and the body of interest. The function is
defined for each state along a continuous trajectory and has a binary output. In this
case, we assume the trajectory to be valid up until the point of an active collision
event. As such, an event is said to occur at time t

⇤ if C(t⇤, x(t⇤)) = 0 for the given
constraint function. To avoid bypassing collisions that occur at an intermediate time
step to TT , we incorporate an Event-Detection Algorithm already in the numerical
integrator. In this section, we will first present the basic idea of managing collision
events and then provide further details on the detection of collisions using the readily
available polyhedral shape model presented in Section 2.3.

5.2.1 Event-Detection

In order to accurately locate a discrete event, we require an approximation of the
state x(t) for a sufficient discretisation of the mission duration [t0, tf ], which is not
always known in advance. However, with a continuous extension between each state
defined by the numerical integrator, we can instead monitor a binary output event
function E(·) = {0, 1} by following its change of sign between two arbitrary states
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x(tn) and x(tn+1). Suppose an event occurs on the interval [tn, tn+1]. In that case,
we can use the dense output defined by Eq. (5.17) to accurately pinpoint the time of
an event by solving

E(x(t⇤)) = 0 (5.18)

as a root-finding problem using the bisection method defined in Alg. (1) [74]. By
implementing the continuous extension between every consecutive step of the adap-
tive integrator, the event detection algorithm can effectively be configured to either
interrupt or monitor the integration process. In the former case, one could let the
event function represent the collision constraint directly, that is, E(x(t)) = C(x(t)),
and consequently terminate the integration at infeasible solutions. However, to avoid
repeatedly evaluating a demanding collision detection function during the integration
process, we favour the latter approach by monitoring the event of any spacecraft po-
sitions being defined inside the inner bounding sphere SI . Consequently, we define
the event function as

E(r(t)) =

(
0, if ||r(t)|| < rI ,

1, otherwise,
(5.19)

where r(t) is the spacecraft’s position vector expressed in Cartesian coordinates
and rI the radius of the inner bounding sphere. In this case, we assume that a sign-
change method retains sufficient precision for identifying r(t) 2 SI . The accuracy
follows using a high-order integrator, which will inherently advance the state with
minimal steps near the body to account for the increasing dynamics. After the inte-
gration process has terminated, we proceed by evaluating the stored events using a
collision detection function representing the path constraint C(r(t)). In this work, we
identify collision using Möller-Trumbore’s Ray/Triangle Intersection method.

Algorithm 1 Bisection Method for Root Finding
Require: Polynomial Pn(t), interval [tn, tn+1], Event function E(x(t))
Ensure: Approximation of root xroot
1: tlow  tn

2: thigh  tn+1

3: troot  
tlow+thigh

2
4: while E(Pn(t)) = 1 do
5: if E(Pn(tlow)) = 1 and E(Pn(troot)) = 0 then
6: thigh  troot
7: else
8: tlow  troot
9: end if

10: troot  
tlow+thigh

2
11: end while

return troot
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5.2.2 Möller-Trumbore Ray/Triangle Intersection

Provided a polyhedral gravity model, we may utilise the knowledge of the specific
computing point corresponding to a spacecraft’s position and the location of each
tetrahedral face on the polyhedron’s surface to determine whether the spacecraft has
entered the closed surface. Thus effectively representing a collision with the body.
To verify the position relative to each face, we adopt the efficient Möller-Trumbore’s
Ray/Triangle Intersection method [76]. Since the method only utilises the individual
vertices of the faces, which are readily available in the polyhedral shape model, it
reduces the computational storage significantly compared to similar algorithms that
often require storing triangle-plane equations.

First, let R(t) be a ray representing the Cartesian position vector r(t) of a space-
craft at time t with origin O at the small-body centre of mass. The ray can then be
deconstructed for a normalized direction D such that

R(t) = O + `D. (5.20)

Next, let V0, V1 and V2 denote the vertices corresponding to the three line segments
defining a tetrahedral face on the polyhedron. The goal is to perform a transformation
at the ray’s origin such that the resulting vector contains information about the inter-
section coordinates u, v and the distance to the intersection, `. Provided knowledge
of the location of the three vertices corresponding to a face, we define the location of
some arbitrary point, T (u, v), on the triangular plane using barycentric coordinates
where

T (u, v) = (1� u� v)V0 + uV1 + uV2, u, v � 0, u+ v  1. (5.21)

Thus, computing the intersection between the ray and a face is equivalent to
solving the system of equations resulting from R(t) = T (u, v). Rearranging the terms,
we can separate the solution for the intersection vector

[�D V1 � V0 V2 � V0]

2

6664

`

u

v

3

7775
= O � V0, (5.22)

where M = [�D V1�V0 V2�V0]. Notably, solving the system in Eq. (5.22) is
equivalent to translating an arbitrarily positioned face in space to a state where the
vertex V0 is defined at origin O, and then transforming the face into a unit triangle
defined on the y-z plane, perpendicular to the ray defined along the x-axis in the
Cartesian frame. A geometric perspective on the translation and the subsequent
change of basis is provided in Fig. 5.1. Introducing a more simple notation where
E1 = V1�V0, E2 = V2�V0 and T = O�V0, we solve Eq. (5.22) using Cramer’s rule

2

6664

`

u

v

3

7775
=

1

|�D E1 E2|

2

6664

|T E1 E2|

|�D T E2|

|�D E1 T |

3

7775
. (5.23)
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Using the scalar triple product for vectors defined in Euclidean space, as well as
the corresponding commutative property of the product, that is assuming |X Y Z| =
�(X ⇥ Z) · Y = �(Z ⇥ Y ) ·X, we may simplify Eq.(5.23) into

2

6664

`

u

v

3

7775
=

1

(D ⇥ E2) · E1

2

6664

(T ⇥ E1) · E2

(D ⇥ E2) · T

(T ⇥ E1) ·D

3

7775
=

1

P · E1

2

6664

Q · E2

P · T

Q ·D

3

7775
, (5.24)

where Q = T ⇥ E1 and P = D ⇥ E2. As such, one can use the information on
the distance to the intersection, `, to determine the spacecraft’s position relative to
the considered face. Furthermore, by iterating the process for all defined faces on the
polyhedral shape model, we can identify whether or not the spacecraft is outside the
bounded surface of the body and subsequently evaluate the condition of a collision-free
state.

Figure 5.1: Translation and change of basis of the ray R(t) origin [76].
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5.3 Optimisation Models

Finally, after having presented and discussed the full problem, including selecting ap-
propriate methods of optimisation and numerical techniques for simulating spacecraft
trajectories, we can proceed by completing an optimisation model that integrates the
aspects mentioned above to solve the problem in Eq. (3.14). For simplicity, we begin
by introducing a simpler setting consisting of only a single spacecraft and then extend
the model to consider a swarm.

5.3.1 Minimal Model

The first step of the optimisation procedure is to set up the correct parameter envi-
ronment. As presented in Fig. 5.2, the simulation input requires the initialisation of
the three different modules, including the creation of rotation quaternions for each
measurement time, a longitude-latitude tensor with normalised weights and a poly-
hedral gravity model of the studied body. The fourth group of simulation input is
related to providing values for the hyperparameters corresponding to the optimiser,
integrator and problem definition.

Quaternion Module LLG Module

Mesh

Polyhedral-Gravity
Module

Parameters

Optimizer Integrator

NLP

Simulation Input

Figure 5.2: Initialisation of simulation input.

Once the parameters have been initialised, we can continue constructing the simu-
lation architecture representing our optimisation model, as depicted in Fig. 5.3. The
architecture is primarily based on the structure of EACO, with the addition of an
integration module. The first step of the model is to initialise a pool of randomly
sampled candidate solutions, referred to as the population. We can effectively ensure
feasibility by sampling the solutions within the limits defined by the provided box
constraints. For a single spacecraft architecture, we define the chromosome as

chromosome = [x0, TC ,U(x, t 2 TC)]

= [r0,x, r0,y, r0,z, v0, v0,x, v0,y, v0,z, t1,�1, ux,1, uy,1, uz,1, . . . ,

ti,�i, ux,i, uy,i, uz,i, . . . , tI ,�I , ux,I , uy,I , uz,I ],

(5.25)

where t1, . . . , tI = TC are the control times and �(t) the control magnitudes corre-
sponding to each impulsive manoeuvre u(t) = �(t)û(t) on the set U , r0 is the initial
position and v0 the initial velocity. On that note, both the initial velocity and se-
quence of control vectors have been divided into parts of magnitudes and unit vectors
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to increase the robustness and stability of the search process. The quality of the
individual chromosome is then determined using the resulting trajectory to compute
a fitness score according to Eq. (3.12) and by evaluating the collision constraint in
Eq. (3.13) to verify its feasibility. The algorithm then modifies the population with
subordinate operations, improving each member according to an ant-based search
heuristic and re-iterating the process until a maximum number of generations has
been reached.

Simulation
Input

Initialize
Population

Return
Best Individual

Improve
Population

(For each chromosome in population)

Numerical
Integration

Re-sampling
(Dense-Output)

Update
Solution Archive

Evaluate
Population

Event
Detection

Max
Gen.

Figure 5.3: Flowchart of global optimization architecture.
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5.3.2 Extended Model

To study the performance of a swarm relative to a single spacecraft, the problem is
now expanded to consider optimising a set of trajectories simultaneously instead. For-
mally, this is done by introducing a new notation depicting a set of J active spacecraft,
SA = {s1, . . . , sj , . . . , sJ}. In this work, we primarily consider the fitness function to
account for the joint performance of the spacecraft constituting the swarm. As such,
we impose a new condition that visiting any specific region on the longitude-latitude
grid will only generate a gain for the fitness function once. Similarly, the risk of the
corresponding swarm is related to the spacecraft closest to the body at any point on
the J simultaneously considered trajectories. The far distance penalty will assume
the total average deviation from the region of interest for all spacecraft. With these
aspects in mind, the optimisation problem presented in Eq. (3.14) can be further
expanded to cover the whole set SA by introducing the extended chromosome

chromosome swarm = [x1
0, T

1
C
,U(x1

, t 2 T
1
C
), . . . ,

x
j

0, T
j

C
,U(xj

, t 2 T
j

C
), . . . , xJ

0 , T
J

C
,U(xJ

, t 2 T
J

C
)],

(5.26)

which represents a concatenation of decision vectors for each spacecraft j 2 SA.

5.3.3 Guided Local Search

By considering an extended chromosome representation, it follows that the number
of dimensions of the problem will scale accordingly with the number of considered
manoeuvres and spacecraft:

nvariables = J · (ninitial state + 5 · nmanouvres). (5.27)

To evaluate the robustness and performance of the global optimisation strategy,
we will compare it to an iterative local optimisation model as illustrated in Fig. 5.4.
The main distinction from the global model is the introduction of a new loop pass-
ing the longitude-latitude tensor to the population initialisation process. In detail,
we approach the problem by considering the original optimisation architecture for a
single spacecraft. However, once an optimal trajectory has been found, we store the
best chromosome and update the weights on the tensor grid with a zero value for
any visited regions. In that way, the optimisation of the subsequent spacecraft will
naturally inherit the results of the previous spacecraft and actively favour measuring
new regions without requiring additional path constraints. Thus, the number of vari-
ables associated with each optimisation process is instantly reduced to the number
of variables in the original chromosome considering only a single spacecraft, which
allows for a more manageable optimisation landscape. However, it should be noted
that using the serial optimisation approach inherently removes the capability of find-
ing the global optimal solution. For that purpose, we recall that the objective was
not necessarily to find the best solution but rather a robust solution sufficient for
improving the gravity field model using methods such as GeodesyNets.
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- Spacecraft i -
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Gen.
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Numerical
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Figure 5.4: Flowchart of guided local optimization architecture.
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5.4 External Software

In this work, we integrate several external software packages to build an efficient
simulation model. These packages are mainly related to optimisation, quaternions,
integration and the polyhedral gravity model. For that reason, we will provide a brief
introduction to each software:

PyGMO

The modified extended ant colony optimiser was implemented using the PyGMO li-
brary [77]. PyGMO (Python), or PaGMO (C++), is a scientific library for massively
parallel optimisation and is built around providing a unified interface to several op-
timisation algorithms and problems. Consequently, it makes the integration with
massively parallel environments straightforward. The library has been extensively
utilised for several space applications and offers numerous optimisation algorithms
and benchmark problems for users to interact with [78]. PyGMO is typically used
to solve constrained, unconstrained, single or multi-objective optimisation problems
with either continuous or integer variables. The library is developed in a fully Free,
Libre and Open-Source Software (FLOSS) philosophy, and thus allows for external
contribution. However, it is actively maintained by the Advanced Concepts Team
(ACT) at ESA and employs several tests and verification steps before integrating any
new contributions.

DESolver

To solve the equations of motion, we have mainly used DESolver1 which is a python
package for solving initial value problems using various numerical integrators. The
library was created and is primarily maintained by Ekin Ozturk, a previous researcher
of the ACT at ESA, and comprises several integration routines ranging from fixed step
to symplectic and adaptive integrators.

Polyhedral-Gravity-Model

To compute the gravitational attraction by the considered celestial body, we have used
the Polyhedral-Gravity-Model package as created and maintained by Jonas Schuh-
macher in a collaborative project between the Technical University of Munich and
ACT at ESA [43]. The package implements the analytical solution for the model via
the line integral approach presented by Tsoulis et al. [39] and relies on an efficient
and parallelized backbone in C++, vectorizing expensive computations.

quaternion

To construct the required quaternions we have used the quaternion2 library which is
based on an original code written by Martin Ling and Mark Wiebe and is currently
maintained by Mike Boyle (Cornell University) supported in part by the Sherman
Fairchild Foundation and by NSF Grants No. PHY-1306125 and AST-1333129. The
library remains one of the most popular choices in Python when working with quater-
nions.

1
DEsolver library: https://github.com/Microno95/desolver (Accessed: 23-02-2023)

2
quaternion library: https://github.com/moble/quaternion (Accessed: 08-03-2023)

https://github.com/Microno95/desolver
https://github.com/moble/quaternion
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5.5 Validation and Verification

In this thesis we validate the presented framework by motivating the choice of opti-
miser, methods and numerical techniques based on previous rigorous studies and the
current problem structure. Hence eliminating the need for explicit model validation by
using already verified sources for methods and optimisation strategies. Furthermore,
as a step of verification, we ensure that all implemented software, including mod-
ules, algorithms and techniques, works correctly and produces the expected results.
To achieve this, we introduce several test functions aimed at maintaining continuity
during the development of the code base. For example, for penalty functions, alter-
native objectives, integration procedures, and the addition of control, we implement
multiple tests to ensure that each function yields the expected trajectories and values
throughout the code development process.

To ensure a correct implementation of quaternion rotations, we compare the
output of ten randomly generated examples to the results of a conventional Euler-
Rodrigues rotation formula assuming the rotation of a vector v̂ by an angle ✓ about a
unit axis of rotation k̂ = [kx, ky, kz]T [79]. To define the latter formula, we introduce
four real-valued numbers

a = cos(
✓

2
), b = kxsin(

✓

2
), c = kysin(

✓

2
), d = kzsin(

✓

2
), (5.28)

that satisfy Euler’s four-square identity. Let !̂ = [a, b, c]T , we can then express the
rotation of v̂ on the compact form

v̂rot = v̂ + 2a(!̂ ⇥ v̂) + 2(!̂ ⇥ (!̂ ⇥ v̂)). (5.29)

Furthermore, to ensure a correct implementation of the tensor structure represent-
ing the longitude-latitude grid, presented in Section 3.3, and subsequent computation
of coverage, we introduce three test functions. The former test ensures a consistent
and functioning evaluation of large samples of positions, in this case being ten million
positions. The second test ensures that evaluating all possible grid points results in
a coverage equal to one. Finally, for the last test we set the weights in one of the two
hemispheres representing the grid to equal zero and ensure that the computation of
coverage results in either a correct marginal gain or no gain when adding a position
in either hemisphere.



Chapter 6

Numerical Results

In this chapter, we present the numerical results obtained with the optimisation mod-
els proposed in Chapter 5. Specifically, we focus on solving the optimisation problem
considering two settings, the former using a single spacecraft and the latter using a
swarm of four spacecraft. The results are then reviewed according to several per-
formance measures, such as the quality of measured signals through the evolution of
coverage, execution time, distance to the region of interest and fitness convergence
rate. To consider a more realistic mission scenario, we use the comet 67P/Churyumov-
Gerasimenko as the target small body since its complex shape allows for a challenging
search process to define an optimal control law.

6.1 67P/Churyumov-Gerasimenko

The comet 67P/Churyumov-Gerasimenko, often abbreviated 67P/C-G, is a Jupiter
family comet believed to originate from the Kuiper Belt and follows an elliptical orbit
around the Sun. The comet’s aphelion (farthest point from the Sun) is approximately
5.68 astronomical units (AU), and its perihelion (closest point to the Sun) is about 1.24
AU. It primarily orbits in the same direction as the planets, that is, counterclockwise
when viewing the solar system’s plane from above, and with a slight inclination to
the plane. The body has recently gained significant attention due to its visit by the
European Space Agency’s Rosetta mission between March 2004 and September 2016,
which ended with a controlled collision. The purpose of the mission was mainly to
perform observation of the comet’s nucleus and coma by orbiting around it with the
rosetta spacecraft, as well as to deploy the lander Philae, thus making the mission
the first of its kind to orbit and land on a comet successfully.

The nucleus of the body consists of two lobes fused by a narrow neck, where the
large lobe is of dimensions 4.10 ⇥ 3.52 ⇥ 1.63 km and the small lobe of dimensions
2.50 ⇥ 2.14 ⇥ 1.64 km, thus representing a relatively small comet. Furthermore, it
has a mass of 1.0 ⇥ 1013 kg, a volume of 18.7 km3 and a density of 533 kg/m3 [80].
As 67P/C-G approaches the Sun on its highly elliptical orbit, the increasing solar
radiation causes the comet’s ice to sublimate, turning directly from a solid to a gas.
This sublimation process creates a visible coma (a cloud of gas and dust) and a tail
that always points away from the Sun due to solar winds and radiation pressure.
The sublimation of different ices gives rise to various jets and features on the comet’s
surface, which are visible in some of the images featured in Fig. 6.1.
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Figure 6.1: Images of 67P/Churyumov-Gerasimenko processed from the ROSETTA Mission.
(Accessed: 06-09-2023, Max Planck Institute for Solar System Research,

https://www.mps.mpg.de/en/Rosetta)

One of the most notable features of 67P/C-G is its non-uniform rotation compared
to perfectly symmetrical objects. The temporal evolution of its rotational parameters
is generally believed to be governed by its outgassing torque, irregular shape, varying
mass distribution across its bi-lobate nucleus and moments of inertia, resulting in a
natural precession. However, after carefully examining the data collected during the
Rosetta mission, scientists have concluded that the direction of the rotation axis only
changes marginally during its orbit, except for its rotation period rapidly dropping
during the perihelion passage. Thus, by considering a relatively short mission duration
with prograde motion near its aphelion, we can safely assume the rotation axis to be
fixed in the Equatorial direction of approximately 69� in right ascension and 64� in
declination. Similarly, we assume a constant rotation period of TB = 12.06 [81–83].
Furthermore, to model the gravitational field using a polyhedral gravity model, we
introduce polyhedral mesh consisting of v vertices resulting in f faces as presented
in Fig. 6.2. In detail, we adopt a low-poly version of the mesh to minimise the
computational cost of the simulation model and as a proof of concept. However, a
higher resolution mesh can also be used to retrieve more precise measurements for
the training of geodesyNets.

(a) High resolution mesh. (b) Low resolution mesh (1%).

Figure 6.2: Plot of comet 67P/C-G depicting a) a high resolution mesh with 9149 vertices
and 18294 faces and b) a low resolution mesh with 93 vertices and 182 faces.

https://www.mps.mpg.de/en/Rosetta
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6.2 Simulation Input

In this section, we present values for a standard set of hyperparameters used to
initialise the considered optimisation models. For coherence, we refer to the hyper-
parameters as the simulation input (see Fig. 5.2). However, it should be noted that
the values remain arbitrary and can later be refined depending on either simulated
results or targets for assessing isolated computational properties. Furthermore, we
assume 67P/C-G to be at its prograde state with a fixed rotation period when deter-
mining properties relating to the body’s orientation. In addition, for the optimiser,
we initially assume a standards set of parameters provided by PyGMO [77].

Table 6.1: Numerical values for the hyperparameters defined in the simulation input.

Parameter Description Value Unit

t0 Mission start time 0 s

tf Mission end time 604800 s

↵ Right ascension 69 deg

� Declination 64 deg

TB Small-body rotation period 12.06 h

⇢ Small-body mass density 533 kg

m3

nv Number of vertices 93 �

nf Number of faces 182 �

✏rel Relative error tolerance 1e�12
�

✏abs Absolute error tolerance 1e�12
�

�t Measurement period 100 s

K Solution archive size 63 �

q Convergence speed parameter 1.0 �

⌦ Oracle parameter 0 �

↵ Accuracy parameter 0.01 �

threshold Threshold parameter 1 �

NGenMark q-Standard deviation parameter 7 �

focus Focus parameter 0 �

memory Memory parameter false �

npop Population size 200 �

nG Number of generations 1000 �

nthreads Number of threads 200 �
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Problem Definition

For the nonlinear programming (NLP) module, we assume the two penalty scaling
factors to equal �I = �O = 0.1 in order to ensure a well-balanced cost function.
Furthermore, we solve the original problem three consecutive times assuming a single
spacecraft, several fixed initial states and no manoeuvres to study reasonable magni-
tude domains for the initial velocity and impulsive manoeuvres. Due to the relatively
low mass of 67P/C-G, the spacecraft rarely reached a velocity above 1 m/s. Hence,
we assume a fixed domain of u 2 [0, 2.5] m/s and v0 2 [0, 4.5] to ensure a stable initial
trajectory. The chosen ranges are notably comparable to that of a CubeSat, which
could represent a feasible assumption on a vehicle architecture for the prospective
mission [14, 15].

Longitude-Latitude Grid

In the longitude-latitude grid (LLG) module, the feasible region Sf is defined, as
illustrated in Fig. 6.3, with fixed radii of rI = 4 km and rO = 12.5 km, roughly 0.6
km and 9.1 km above the comet’s surface, respectively. These values were primarily
chosen for continuity with previous work on the robustness of GeodesyNets [31].

Figure 6.3: A feasible region Sf around 67P/C-G.

Furthermore, to choose a sufficiently large vmax, we recall that its magnitude
should ensure that the CFL condition holds for the considered LLG. Since the dy-
namics increase near the body’s surface, where the gravitational signal is considered
maximal, the greatest velocity should naturally occur near the radius of the inner
bounding sphere. To obtain a feasible estimate on vmax, we sample the largest ve-
locity that occurs on a trajectory that minimises a smooth function representing the
average squared distance to the safety radius:
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The new sub-problem was solved assuming a shorter mission duration of only 12
hours, or 43200 s, a variable initial position x0 2 Sf and a singular spacecraft with no
impulsive manoeuvres resulting in maximal velocity of vmax ⇡ 1.14 m/s. However,
to guarantee that the problem maintains the CFL condition even with the addition
of manoeuvres and to avoid defining a too-sparse LLG, we initialise vmax as

vmax = 2 · (vmax, sample + umax). (6.2)
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6.3 Scaling Analysis

Many parallel applications can operate with various thread counts, yet the specific
application’s relative performance may also decline with an increasing numbers of
thread. For instance, while a calculation might experience a nearly twofold speedup
as the thread count doubles, another application might deviate more extensively from
the anticipated speed increase. Such deviations from expected results are common,
implying the necessity of carefully deciding on the number of threads to use for the
simulation. Since the appropriate thread count may vary between large and small
applications, measuring the relative performance for several problem sizes is essential.
In this case, since the parallelisation directly relates to the number of chromosomes
that can be evaluated in parallel, where a larger population enables a broader search,
it is of interest to assess the simulation model’s scaling performance. Hence, we
will consider two conventional measurements of scalability: weak and strong scaling.
Before assessing any of these measurements, we introduce the two concepts of ideal
performance and efficiency. The ideal run time on n threads, In, is defined as

In =
Tnmin · nmin

n
, (6.3)

where Tnmin is the measured run time at the lowest thread count nmin. The ideal
computation time can then be used to evaluate the efficiency, En, as the ratio of the
measured run time using n threads to the expected ideal time:

En =
In

Tn

. (6.4)

For that reason, the efficiency can be used to determine an appropriate number of
threads for the problem. As a general rule of thumb, we aim at achieving a minimum
of 80% efficiency. Since the serial part of the simulation only accounts for a fraction
of the total simulation time, we will assume it to be negligible relative to the parallel
part and continue with a predominant focus on the latter. Furthermore, in this work,
we perform all simulations and tests on two AMD EPYC 7702 CPUs at 2.0 GHz with
a total of 128 cores and 256 threads.

6.3.1 Strong Scaling

Strong scaling refers to the simulation’s performance when the problem size is kept
fixed and the number of utilised threads varies. For this test, we consider the sim-
ulation input defined in Section 6.2 and formulate a problem considering a single
spacecraft with one manoeuvre, an optimised initial state, a total mission duration
of 12 hours and an optimisation process over ten generations. The test problem is
then evaluated twice considering a smaller and a larger population size of 256 and
512 chromosomes, respectively.

The results show a nearly ideal strong scaling given how the number of simulated
trajectories directly relates to the number of chromosomes, where each thread is
assigned a single chromosome at the time. Consequently, resulting in a near-linear
speedup as observed in Fig. B.1a. In addition, the two problem sizes also display
remarkably similar results. However, whenever the number of threads approaches
the population size, the computational time per generation becomes notably more
sensitive to differences in integration time between chromosomes, resulting in the
deviation seen in Fig. 6.4 for larger thread counts. The varying integration time is
a direct consequence of the adaptive step method, which will naturally take smaller
steps near the body where the dynamics are higher.



56 CHAPTER 6. NUMERICAL RESULTS

(a) Strong scaling run time. (b) Strong scaling efficiency.

Figure 6.4: Strong scaling test considering two test cases with 256 and 512 chromosomes.

6.3.2 Weak Scaling

To complement the strong scaling analysis, we consider a weak scaling test where
the problem size increases relative to the number of threads. Consequently, we
can study the effects of communication overhead when considering a larger prob-
lem size and thread count. In detail, we consider the following population sizes
npop 2 {20, 40, 80, 160, 320, 640, 1280, 2560, 5120}. Finally, it should be noted that
the notion of ideal time in weak scaling directly relates to the fixed value of required
computational time when using the lowest possible thread count.

(a) Weak scaling run time. (b) Weak scaling efficiency.

Figure 6.5: Weak scaling test.

The results presented in Fig. 6.5 show an expected near-linear decrease in efficiency
and an approximately exponential increase in simulation time. However, judging by
the results from both Fig. 6.4 and 6.5, it is evident that the computational perfor-
mance exhibits a trade-off between efficiency and chromosome count. Since a larger
population size favours exploration, we will henceforth use a population size of 200.
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6.4 EACO Configuration

Until now, we have assumed a principal implementation of the modified EACO con-
sidering a standard set of input parameters provided by PyGMO. In this section, we
will focus on a tuning process to adapt the optimiser for the specific problem, thus
enabling a more robust search process. Although we will later consider a varying
number of spacecraft and manoeuvres, we assume an initial broad tuning process to
be sufficient for evaluating the optimisation models’ general performance. Since the
optimiser has moderately few hyperparameters, we proceed with a parameter-sweep
tuning strategy to pinpoint the contribution of each parameter [62]. In detail, we
solve the problem using the minimal optimisation model presented in Section 5.3.1
for a mission scenario with a single spacecraft and one manoeuvre. The procedure
is repeated three consecutive times for each hyperparameter to compare its best and
average performance. We implement control seeds for each simulation to omit ran-
domness from the initial population and guarantee both comparable and reproducible
results.

In Section 6.2, we introduced several input parameters that could be adjusted to
tweak the modified EACO. Some pertain to the width of the search process (ker, ↵),
whereas others relate to its convergence properties (q, NGenMark, Threshold). To
begin with, we recall that the focus parameter relates to the greediness of the search
using local refinement. Selecting a larger value thus implies an increased focus on ex-
ploring the local environment for the current best solutions. For a high-dimensional
problem, the focus parameter must be tuned cautiously to ensure a broad initial
search and to avoid converging prematurely at any local optima. Hence, we assume a
standard value of zero. Furthermore, with particularly complex dynamics characteris-
ing the considered problem, obtaining an intuition for any optimal solutions becomes
increasingly challenging. Therefore, we choose a sufficiently large oracle parameter,
⌦ = 109, as suggested by Schlüter [59].

(a) Best fitness. (b) Average fitness.

Figure 6.6: Best and Average fitness for five different solution archive sizes
considering 200 chromosomes and a 1000 Generations.

For tuning the number of kernels, K, we benchmark for the values 10, 50, 100,
150 and 200. Reviewing the results in Fig. 6.6, we found that the best and average
solutions were achieved with relatively few kernels. However, establishing a specific
winner is not straightforward. Since a lower value promotes the exploitation of current
solutions, it follows naturally that such values would result in a faster convergence
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rate. To address the challenges posed by more complex optimisation landscapes in-
volving a greater number of spacecraft and manoeuvres, we prioritise exploration and
therefore choose K to equal the population size.

(a) Best fitness. (b) Average fitness.

Figure 6.7: Best and Average fitness for two different values of accuracy
considering 200 chromosomes and a 1000 Generations.

For tuning the accuracy parameter, ↵, we analyse whether or not it would be
beneficial to maintain a distance between the penalty functions in the solution archive
by comparing ↵ = 0 and ↵ = 0.01. We can directly identify a similar convergence
behaviour for the two examples without any evident benefit of the larger value. Thus,
we favour the former value’s quicker convergence and marginally improved solution
according to the results presented in Fig. 6.7.

(a) Best fitness. (b) Average fitness.

Figure 6.8: Best and Average fitness for three different values of convergence
speed considering 200 chromosomes and a 1000 Generations.

Next, we focus on the convergence speed parameter q and compare results for
values of 0, 0.5 and 1. As seen in Fig. 6.8, we obtain comparable performance for each
value. However, given that the optimiser will dynamically reset to q = 0.01 once it
reaches the threshold value, consequently accelerating the convergence from there on,
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we favour a slower initial convergence rate to balance exploration and exploitation.
Thus, we select q = 0.5.

(a) Best fitness. (b) Average fitness.

Figure 6.9: Best and Average fitness for seven different values of threshold
considering 200 chromosomes and a 1000 Generations.

In this work, we study several threshold values ranging from 1 to 1000 generations.
As seen in Fig. 6.9, the optimiser converges first for smaller values, which is the
expected outcome of increasing the convergence speed at an earlier stage. However,
among the larger values, 250 generations seem to provide comparable performance
while maintaining an initial broad search. Therefore, we select it as the standard
threshold value.

(a) Best fitness. (b) Average fitness.

Figure 6.10: Best and Average fitness for four different values of NGenMark
considering 200 chromosomes and a 1000 Generations.

Finally, we study the effects of NGenMark. Recall that the goal of the parameter
is to ensure that the standard deviations do not converge too quickly towards the
explicit means in the solution archive. Among the four suggested values in Fig. 6.10,
NGenMark = 100 generated the best solution and, notably, the best fitness through-
out the tuning process. As such, we select it as the standard deviation convergence
speed value for all subsequent simulations.
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6.5 Optimisation Scenarios

In this section, we present the numerical results obtained from three different op-
timisation scenarios using the models presented in Section 5.3, including a global
search for both a single spacecraft and a swarm, and a complementary local search
for the latter case. To ensure comparability between each example, we consider the
simulation input presented in Section 6.2 and the tuning results in from Section 6.4.

6.5.1 Scenario I: Single Spacecraft

For the first scenario, we simulate a single spacecraft deployed at a certain position
defined within the region of interest, Sf . To identify a reasonable starting posi-
tion, we set up an initial test case considering a single spacecraft with no impulsive
manoeuvres. The problem was then solved for numerous starting positions to iden-
tify any resulting near-periodic or partially stable trajectories without added control.
From these results, we proceed under the assumption of a fixed initial position at
r0 = [�135,�4090, 6050]T . To analyse the effects of the control and an increasing
problem dimension, we simulate the first mission scenario for several manoeuvres
ranging from one to ten. However, it should be noted that even if we permit ten
manoeuvres, the corresponding box constraints still allow for the optimiser to choose
any smaller number if it yields a better solution. Consequently, there is an evident
trade-off relation between the disposable number of manoeuvres and the problem size.
The results corresponding to the first scenario can be seen in Table 6.2.

Table 6.2: Numerical results for a single spacecraft with varying number of manoeuvres nm.

nm tsim [min] fbest Vc �IPI �OPO dim �v [m/s]

1 48.19 0.0608 0.026 0 0.086 9 0.055

2 53.49 0.0423 0.041 0 0.083 14 0.149

4 61.09 0.0109 0.051 0 0.062 24 0.479

6 64.03 0.0189 0.043 0 0.062 34 1.358

8 67.67 0.0104 0.058 0 0.069 44 2.137

10 67.64 -0.0167 0.071 0 0.055 54 3.263

From Table 6.2, we note that increasing the number of manoeuvres generally in-
duces longer simulation times tsim and an improved fitness fbest (smaller fitness value
is better). Another interesting development is the total consumed �v, which increases
nearly exponentially when considering adding two control points. Nevertheless, no
spacecraft used more than 13% of their disposable �v. Studying the control distri-
bution in detail, we observe that the optimiser favours minor correction manoeuvres
when considering more control points. As a result, the spacecraft starts to bounce
between the two spherical boundaries to ensure positions inside Sf . However, as the
number of dimensions grows, we can also identify a pattern demonstrating the com-
plexity of finding optimal solutions in a high-dimensional space. This effect becomes
evident when reviewing the evolution of coverage and penalty values, which vary more
unpredictably for larger problem sizes. To infer general system characteristics, one
should therefore consider simulating each scenario multiple times with controlled pop-
ulation seeds to avoid randomness and isolate averages. For future work, we suggest
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performing a correlation analysis and investigating the robustness of the model by a
sensitivity analysis using, for instance, a large scale Monte-Carlo search.

To focus the analysis, we use the example considering four manoeuvres. For
this case, the optimisation process converged for a tolerance level of 1e-6 after 289
generations, resulting in the trajectory observed in Fig. 6.11. Throughout the mission
duration, the spacecraft visited 399 regions out of 6358 defined on the LLG, resulting
in a ratio of 6.27%. In Figs. 6.11a and 6.11b, each manoeuvre is represented by a
red arrow in the thrust direction. Immediately, it is noticeable that even though the
spacecraft occasionally deviates from Sf , it tends to use its impulsive manoeuvres
at its most distant positions to redirect its path towards the body. However, this
behaviour is expected given the weak gravitational field at these distances, resulting
in particularly linear dynamics. The spacecraft can also be seen following a near zig-
zagging course in the vertical plane, which is likely the result of the rotating motion
of the body, enabling a hoovering-like strategy to cover a significant part of the LLG.
Figs. 6.11c and 6.11d present the corresponding trajectory in the body-fixed frame,
which follows the expected circular motion around the body.

(a) Inertial frame (side view). (b) Inertial frame (top view).

(c) Body-fixed frame (side view). (d) Body-fixed frame (top view).

Figure 6.11: Single spacecraft optimisation results with four manoeuvres depicting
a)-b) side and top view of the trajectory in the inertial frame and c)-d) side and top
view of the resulting trajectory in the body-fixed frame. (Deployment at the cross).
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Recall that minimising the fitness function defined in Eq. (3.12) maximises the
coverage and minimises the two penalties. Fig. 6.12a illustrates that the close dis-
tance penalty remains at zero, indicating that the spacecraft never enters the inner
bounding sphere. The coverage increases monotonically over the mission duration,
with only brief pauses whenever the spacecraft exits the region of interest. A similar
behaviour can also be seen in Fig. 6.12b, which shows a resonating distance evolution
to the comet’s centre of mass. Furthermore, the far distance penalty stagnates at a
moderately low value after five days, indicating that the spacecraft maintains a close
but steady distance to the body over the mission duration. In detail, by comparing
with the distance evolution in Fig. 6.12b, we can identify that the spacecraft tends to
move in proximity to the radius of the outer bounding sphere and rarely toward the
inner parts of the LLG, except for the last day.

(a) Evolution of fitness components. (b) Distance to origin.

Figure 6.12: Single spacecraft optimization results depicting a) evolution of fitness
components over the mission duration where the two penalties are minimised and

the coverage is maximised, and b) distance from the body’s centre of mass over time.

6.5.2 Scenario II: Swarming Spacecraft

For the second scenario, we consider an equivalent setup to Section 6.5.1 with an initial
position at r0 = [�135,�4090, 6050]T . However, we will now expand the problem by
considering a global search for the optimal trajectories corresponding to a swarm, thus
adopting the extended chromosome structure presented in Eq. (5.26). Furthermore,
we select one of the examples previously considered in the first scenario to ensure
comparability between each optimisation model. In detail, to keep the number of
dimensions reasonable, we use a setup of four spacecraft with four manoeuvres each,
resulting in a chromosome with a total of 96 decision variables.

The simulation finished after 186.69 minutes and converged for an acceptable
tolerance level of 1e-6 after 526 generations. Compared to the single spacecraft case,
optimising for a swarm resulted in a 24% faster per spacecraft simulation time. The
cause for this reduction is likely twofold. First, since each thread is now considering
solving the equations of motion for four spacecraft consecutively, it should effectively
reduce the total per spacecraft overhead communication between threads. The second
cause is likely related to the integration time, where trajectories further away from
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the body generally result in larger step sizes to account for the near-linear dynamics.
In terms of the quality of the solution, the swarm achieved a total fitness value of
fbest = 0.0154 with PI = 0, PO = 0.1098 and Vc = 0.0945. When compared with
the single spacecraft case, it is evident that the swarm obtained a worse total fitness
due to the increased far distance penalty now considering the deviations of all four
spacecraft at once. The coverage, however, remarkably achieved only slightly less
than twice the single spacecraft score, which was unexpected. When considering
four times the number of spacecraft, the relative decline in coverage is likely due to
the more complex search space characterised by 96 dimensions, resulting in a more
challenging combinatorial problem. However, throughout the mission duration, the
four spacecraft jointly visited 702 regions out of 6358 defined on the LLG, resulting
in a coverage ratio of approximately 11%, almost twice that of a single spacecraft in
Section 6.5.1 which yielded a ratio of 6.27%.

(a) Spacecraft 1 & 2
(side view).

(b) Spacecraft 1 & 2
(top view).

(c) Spacecraft 3 & 4
(side view).

(d) Spacecraft 3 & 4
(top view).

Figure 6.13: Multi-spacecraft optimisation results depicting a) - b) resulting trajectories for
Spacecraft 1 and 2 in the inertial reference frame, and c)-d) the corresponding

representation for Spacecraft 3 and 4. (Deployment at the cross).
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Fig. 6.13 illustrates the four trajectories corresponding to each spacecraft in the
swarm. Immediately, it is noticeable that the four spacecraft tend to travel further
away from the body than in the case of optimising only a single trajectory. In detail,
both Spacecraft 1, as depicted in blue, and Spacecraft 2, in orange, seem to utilise
their impulsive manoeuvres with the target of returning to the body from distant
positions. Although neither succeeds after their last manoeuvre, it is likely due to
the particularly weak gravitational attraction at these distances. Spacecraft 3, in
brown, and 4, in purple, seem to follow a similar pattern without deviating to an
equally large extent at the end of their respective trajectories. However, by studying
the evolution of radial distances to the body’s centre of mass presented in Fig. 6.13,
one can gain a more detailed insight into the performance of each trajectory. For
instance, only the first spacecraft successfully remains within Sf after the second
day, generating coverage for most of the mission duration. Likewise, only the fourth
spacecraft successfully returns to Sf during the last day of the mission.

(a) Evolution of fitness components. (b) Distance to origin.

Figure 6.14: Global Multi-spacecraft optimisation results depicting a) evolution of fitness
components over the mission duration where the two penalties are minimised and

the coverage is maximised and b) distance from the body’s centre of mass over time.

In Fig. 6.14a, we observe that �IPI remains at zero, indicating the absence of
collisions, �OPO changes only marginally after day four, and that Vc increases almost
monotonically over the entire mission duration. Furthermore, we also observe that
the swarm achieved comparable coverage to that of a single spacecraft after only three
days. Finally, Table 6.3 presents the distribution of �v across each spacecraft and
the corresponding set of manoeuvres.

Table 6.3: Distribution of �v [m/s] for each spacecraft in a swarm (extended model).

SA �v1 �v2 �v3 �v4
P

�v

1 2.303 0.016 0.918 0.233 3.470

2 0.052 0.979 0.760 2.739 4.530

3 0.095 0.074 1.292 0.292 1.753

4 0.889 1.733 0.006 0.032 2.660
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6.5.3 Scenario III: Guided Local Search

For the last scenario, we assume an equivalent setup to that of Section 6.5.2, including
simultaneous deployment from position r0 = [�135,�4090, 6050]T using four space-
craft and four disposable manoeuvres each. In contrast to Scenario II, we consider
the local search model defined in Section 5.3.3. The optimisation process finished
after 246.10 minutes and converged for an acceptable tolerance level of 1e-6 after 175
generations. We identify an increased simulation time of nearly 31% compared to
the global approach in Section 6.5.2, consequently almost proportional to the results
presented for a single spacecraft in Section 6.5.1. The prolonged simulation time is
likely due to overhead communication between threads, which are now solving a sin-
gle trajectory at a time, resulting in greater sensitivity to solutions characterised by
complex dynamics.

(a) Spacecraft 1 & 2
(side view).

(b) Spacecraft 1 & 2
(top view).

(c) Spacecraft 3 & 4
(side view).

(d) Spacecraft 3 & 4
(top view).

Figure 6.15: Local Multi-spacecraft optimisation results depicting a)-b) resulting
trajectories for Spacecraft 1 and 2 in the inertial reference frame, and c)-d) the

corresponding representation for Spacecraft 3 and 4. (Deployment at the cross).
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In Fig. 6.15, we observe a general improvement over the global approach, with each
trajectory now appearing to maintain a closer distance to Sf over the mission duration.
In detail, Spacecraft 1, as depicted in blue, generally employs a strategy similar to
hoovering in the inertial frame. In contrast, the second spacecraft, in orange, utilises
its manoeuvres to achieve a resonating trajectory in the vertical plane. Spacecraft 3
(in brown) and 4 (in purple) follow a similar pattern, with shorter travel distances in
the vertical plane. Nevertheless, to maximise coverage, it follows naturally to favour
these characteristics as they take advantage of the rotating motion of the body.

In terms of the quality of the solution, the swarm achieved a total fitness value of
fbest = �0.0809 with PI = 0, PO = 0.0679 and Vc = 0.1488. When comparing the
fitness performance to previous models, it becomes evident that the local approach
achieved an overall improved score, with only the far distance penalty being compa-
rable to that of a single spacecraft. The increased performance is likely a result of
the problem size now being reduced from 96 variables to only 24 for each iteration,
resulting in a more manageable problem space. Throughout the mission duration,
the four spacecraft jointly visited a total of 1193 regions out of 6358 defined on the
LLG, resulting in a ratio of approximately 19%, almost three times that of a single
spacecraft and slightly less than twice the performance of the global solution for a
swarm.

(a) Evolution of fitness components. (b) Distance to origin.

Figure 6.16: Local Multi-spacecraft optimisation results depicting a) evolution of fitness
components over the mission duration where the two penalties are minimised and

the coverage is maximised and b) distance from the body’s centre of mass over time.

Furthermore, we observe a smaller far-distance penalty compared to the global
solution considering a swarm by studying the fitness evolution in Fig. 6.16a. How-
ever, these results are expected given how the local solution is able to maintain a
general proximity to Sf . Similarly, we acknowledge how the coverage surpasses the
performance of a single spacecraft already before the mission’s second day, thus scal-
ing well with the now four times as many spacecraft. In addition, the local solution
also surpasses the global solution in Section 6.5.2 during the fifth day.
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Studying the evolution of the radial distance to the body’s centre of mass, we
observe that only the second and third spacecraft successfully reach the inner parts
of the LLG, with all four spacecraft mainly considering the outer regions of the grid
during the first six days. However, this behaviour is expected due to the dynamics
being more complex near the body’s surface and the general sparsity of LLG points
near the outer bounding sphere. As such, most spacecraft can efficiently measure the
inner regions in a shorter time, given the general LLG structure and conservation of
angular momentum.

Table 6.4: Distribution of �v [m/s] for each spacecraft in a swarm (local search).

SA �v1 �v2 �v3 �v4
P

�v

1 0.104 0.095 0.026 0.012 0.237

2 0.061 0.036 0.417 1.230 1.744

3 0.092 0.220 0.008 0.274 0.594

4 0.024 0.005 0.136 0.067 0.232

Finally, the �v distribution for each spacecraft is presented in Table 6.4. From
these results, we observe that the local search converged to a solution requiring less
�v for each spacecraft compared to the solution obtained in Scenario II using a global
search. In this case, the smaller control magnitudes represent marginal adjustments
and reorientation of the vehicle rather than high-energy redirection manoeuvres, which
are required when deviating too far from the region of interest. For the sake of coher-
ence, Table 6.5 presents a comparison of key performance markers for each considered
scenario, including problem dimension dim, simulation time tsim, total fitness value
fbest, ratio of visited grid points, and total consumed �v. In addition, it should be
noted that the maximal amount of control, �vmax, is 10 m/s for Scenario I, consid-
ering only one spacecraft, and 40 m/s for the swarm consisting of four spacecraft in
Scenario II and III.

Table 6.5: Comparison of key performance markers for each considered scenario.

Scenario dim tsim [min] fbest Coverage ratio [%] �vtot [m/s]

I 24 61.09 0.0109 6.27 0.479

II 96 186.69 0.0154 11.04 12.413

III 96 246.10 �0.0809 18.76 2.807



Chapter 7

Discussion

In this chapter, we present a concise discussion and analysis of the diverse properties
characterising the studied optimisation models and the obtained numerical results.
The first section analyses several method considerations and their validity for mod-
elling coverage and swarming spacecraft. The second section assesses the model’s
computational properties and performance by studying convergence rates, execution
times and scalability. Finally, the third section discusses the efficiency and usefulness
of a swarm compared to a conventional single spacecraft setting.

7.1 Method Considerations

In this work, we present the formulation of a trajectory optimisation problem that
results in an initial state and control sequence maximising the measured gravitational
signal around an irregularly shaped rotating body when considering either a single
spacecraft or a swarm. In detail, we assume a discrete approximation of a bounded
space around the body to model the coverage of its gravitational field as the ratio
of visited partitions. Using discrete spherical grids for these applications is typically
beneficial since they provide a comprehensive and efficient data structure for man-
aging the numerical properties of each resulting tesseroid representing the partition.
However, discrete grids also require tuning in order to be sufficient for numerical
simulations. For instance, defining a too-sparse grid will likely result in inaccurate
simulations, whereas a too-dense grid would become computationally expensive. To
adapt the approximation for the specific dynamics characterising the problem, we use
the CFL condition and information gained from an initial test presented in Section
6.2. Nevertheless, the coverage is an inherently continuous process and would thus
be more accurately defined by the numerical integration of some continuous function.
As such, one should also consider the trade-off between accuracy and computational
efficiency for a discrete and continuous approach when reviewing the numerical results.

Moreover, to improve the representation of the quality of the measured signal, we
assign a weight to each grid point defined by the inverse relation of its radial distance
to the body’s centre of mass. However, this definition merely simplifies the measure-
ments where we assume an inner homogeneous distribution of gravitational signal
and that a single visit at any point inside the tesseroid is sufficient for modelling the
specific region. Hence, a new question emerges: to which size of a tesseroid can we
feasibly assume a single measurement to be adequate? This is a complex question
given the limited knowledge of the body’s geodetic properties during the approaching
stages of a small-body mission. However, one extension could consider an additional
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weighting depending on the distance from the spacecraft to the centre point of the
tesseroid, which is well-defined along the trajectory, and the number of measurements
therein. In that way, one can effectively relate the gravitational coverage to the time
spent inside a region and the volumetric quality of the measurement. Nevertheless,
studying the numerical results and the presented trajectories in particular (see Section
6.5), we note that the current weighting results in a good dispersion of measurement
when considering the rotation of the grid. However, due to the particularly weak grav-
itational field of 67P/Churyumov-Gerasimenko, it becomes increasingly challenging
to maintain positions near the body, resulting in the observed tendency for defining
trajectories in the outer regions of Sf . To motivate selecting paths closer to the body,
one could also consider studying the results of varying the weighting more intensively
according to the importance of each region.

Focusing on the grid structure, we apply a conventional longitude-latitude grid
(LLG) and motivate its validity in Section 3.3. To complete the analysis, we will also
briefly discuss its limitations. For instance, as seen in Fig. 3.7, the LLG will inherently
define smaller tesseroids near its poles, thus creating denser regions with diminutive
weights and disproportionate sizes compared to neighbouring tesseroids close to the
outer bounding sphere. On the other hand, given the objective of maximising the
gravitational signal, the optimiser will intrinsically favour trajectories that visit as
many regions as possible. Similarly, it prioritises positions near the body where the
CFL condition is guaranteed and the signal approaches ground truth. In fact, by
studying the numerical results in Section 6.5, we cannot distinguish any peculiar
behaviour near the two poles along the z-axis, thus showcasing the minimal effects of
the size inconsistency. However, to ensure that the CFL condition holds everywhere
and to define a more realistic order of partitions, one could also consider alternative
grid structures such as cubed-spheres and Yin-Yang-Zhong overset grids, which share
many qualities with the LLG without introducing additional complexity.

In order to obtain trajectories, we solve the equation of motion using the Dormand-
Prince 8(7)-13M numerical integration scheme. The major benefits of the algorithm
are its general robustness, ability to manage mixed stiff and non-stiff differential sys-
tems, high-order approximation and the use of an adaptive step method to improve
computational time without forfeiting significant detail. However, it remains of in-
terest for future studies to further benchmark integrator schemes and their relative
performance for the problem in terms of accuracy and computational time. Exam-
ples include lower order runge-kutta embeddings and Taylor methods such as Heyoka,
which has lately shown promising results for space applications and trajectory opti-
misation [84].

In this work, we aim to determine trajectories based on impulsive manoeuvres.
The optimisation strategy draws inspiration from a direct-shooting method where
we compare the performance of several candidate trajectories with defined control
sequences and a one-week fixed mission duration. However, in the context of small-
body missions (see Rosetta [5] and HERA [14, 15]), one week typically represents a
relatively short time frame for carrying out scientific measurements, which we observe
by the low count of visited regions on the grid in the presented solutions. However, ex-
tending the time frame and number of manoeuvres is not trivial as it couples with the
complexity of the problem. An alternative for extending the mission without adding
complexity is to consider a multiple shooting method where we instead solve a series
of optimisation problems considering subsequent time intervals with the condition of
connected boundary states to ensure continuity.
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To find optimal trajectories, we rely on a modified version of the extended ant
colony optimiser (EACO). The chosen solution method is well motivated in Chapter
4, which highlights several benefits of evolutionary algorithms, particularly EACO.
However, with the current chromosome structure, the problem quickly results in a
large decision vector. For instance, in the second scenario, where we study the appli-
cation of four spacecraft with four manoeuvres each, our aim is to solve the problem
with 96 decision variables. Consequently, expanding the optimisation space makes it
increasingly difficult for EACO to sample the state space adequately, resulting in an
evident combinatorial challenge and possibly sub-optimal solutions. This behaviour
can also be observed in Appendix D, which presents the convergence rates for the fit-
ness value of each optimisation scenario. To mitigate the effects of adding spacecraft,
we adopt an alternative model solving a series of optimisation problems. The results
in Section 6.5.3 display a general increase in performance for the local approach but
at the cost of losing the global solution. To further improve the conditions for solving
the problem, one should consider tuning the hyperparameters related to the search
process, integration accuracy and various problem characteristics. In this work, we
have limited ourselves to only considering tuning the parameters of EACO, where
we use a parameter-sweep strategy to acclimate the search strategy for the consid-
ered problem dynamics and fitness function. However, the performance can likely be
further improved by considering a case-by-case optimisation of all hyperparameters
through a probabilistic Bayesian model.

7.2 Computational Properties

Reviewing the computational properties of the optimisation process, it becomes evi-
dent that propagating the state using a polyhedral gravity model results in a compu-
tationally expensive task. In fact, evaluating positions to obtain acceleration values
at each time step defined by the integrator constitutes almost a third of the total
simulation time. For comparison, the second and third most time-consuming tasks,
being interpolation and quaternion rotations, make up for less than 10% of the total
simulation time, respectively. In order to reduce the time for solving the problem,
one can instead use a polyhedral model with a reduced number of vertices, resulting
in a faster evaluation process. However, deciding on the appropriate resolution of the
mesh should be done considering the effects on accuracy for modelling the gravita-
tional field [31]. Apart from the polyhedral model, fine-tuning parameters such as the
tolerance level for integrating the equations of motion and the kernel size for the ant
colony optimiser could improve performance both computationally and qualitatively.
The effects of these parameters should therefore be studied further in more extensive
testing.

Furthermore, we note that the search width can be adjusted by varying the popu-
lation size. Even though the problem is solvable for smaller workstations, the robust-
ness will likely improve by considering a large initial population favouring exploration,
which naturally results in longer simulation times for a limited number of processing
threads. However, based on the scaling results, we observe that the problem scales
well with the addition of threads. With appropriate resources, future work could also
consider benchmarking the convergence for larger populations.
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7.3 Efficiency of Swarming Spacecraft

Based on the numerical results in Section 6.5, it is evident that the optimiser often
converges to solutions that utilise energetic manoeuvres to rapidly change the space-
craft’s course, favoring larger control magnitudes applied outside the region of interest
to redirect its path. In the first scenario, the total �v used was 0.479 m/s, which
was evenly distributed over four impulsive manoeuvres and defined within a realistic
magnitude range. For the second scenario considering a global approach for a swarm,
the four spacecraft utilised a total of 12.413 m/s. Here, Spacecraft 3 used the least
amount of �v which is likely an effect of its proximity to the body, hence being able
to utilise the gravitational acceleration and smaller correction manoeuvres to remain
on a beneficial trajectory. However, in the case of Spacecraft 2, which traveled far-
thest away from the body, we also note the most significant use of �v. Finally, in the
third scenario considering a local approach, we observe a rapid decrease in total �v

to 2.807 m/s, with only the second spacecraft deviating from the average use with
its last manoeuvre. We generally observe comparable performance regarding mini-
mal control between the first and third scenarios, resulting in similar trajectories and
control magnitudes mostly below the escape velocity. To motivate the use of more
controlled path corrections, one can either increase the number of available manoeu-
vres or decrease the corresponding magnitude range. However, increasing the number
of manoeuvres also comes with the cost of increasing the search space, affecting the
algorithm’s convergence rate and ability to find good solutions. For this reason, we
evaluated several test cases with larger chromosomes than those considered in the
second scenario, which generally resulted in less coverage for a global approach, most
likely due to the increasing complexity of the combinatorial problem.

Furthermore, comparing the fitness of the three test scenarios, we observe that
the swarm was more effective than a single spacecraft, obtaining a coverage ratio
of 11% (extended model) and 19% (local search) compared to a single spacecraft of
6.27% over an equal mission duration. However, the individual performance of the
single spacecraft in the first scenario was greater than the individual coverage for the
swarm. The behaviour is particularly evident in Figs. 6.11 and 6.15, which show more
stable trajectories compared to Fig. 6.13. The results are likely an effect of the sec-
ond scenario optimising four trajectories simultaneously in a high-dimensional space,
thus leading to rapid growth in complexity. In contrast, the relative per spacecraft
simulation time was much shorter in the second scenario, where the communication
overhead between threads and simulation software is reduced. Although it remains
difficult to either convey or deduce any direct improvement in the quality of the mea-
surements, we note that using a swarm scales well for reducing mission time and
expanding coverage. In terms of flexibility, the simulation demonstrate promising
results for a swarm where smaller spacecraft with less fuel requirements can be fitted
with various technologies to simultaneously carry out a diverse set of tasks, including
modelling the gravitational field. Finally, in this work, we consider an early stage
of the mission where the information on the geodetic properties of the body remains
limited. Hence, being able to efficiently cover a large proportion of the body in less
time is essential for collecting data to quickly update the gravity field model and
determine trajectories for any subsequent mission objectives.



Chapter 8

Conclusions and Outlook

8.1 Conclusions

In view of the rising interest in studying the geodesy and mass-density configuration
of smaller solar system bodies, this thesis proposes a model leading to a set of tra-
jectories representing a spacecraft swarm aimed at jointly maximising the measured
gravitational signal. One of the most significant contributions from this study includes
formulating a trajectory optimisation problem suitable for evolutionary algorithms.
In detail, we focus on using a modified extended ant colony optimiser representing a
versatile and robust solution method for solving high-dimensional problems in com-
plex dynamical environments. To model the coverage of a spacecraft, we introduce a
discrete approach based on a longitude-latitude grid and present several modifications
that could further improve the accuracy of measurements. In addition, we adopt a
vectorised open-source implementation of the polyhedral gravity model to represent
the gravitational field and demonstrate its considerable performance in a large-scale
optimisation scenario.

Moreover, we demonstrate the method and present numerical results based on a
prospective mission to the comet 67P/Churyumov-Gerasimenko using a detailed tri-
angulated mesh and an initial assumption of homogeneous mass density. The results
show improved coverage over a shorter mission duration when comparing a swarm to
a single spacecraft. However, optimising the trajectory for a single spacecraft signif-
icantly reduces the search space, leading to a more efficient solution. It is therefore
motivated to further study how the dimensionality of the problem can be reduced for
more complex scenarios and to generate more efficient swarm solutions. Neverthe-
less, the numerical results suggest the feasibility of employing smaller spacecraft in a
swarm setting adapted for dispersed operations to maximise scientific returns, offering
reduced costs and enhanced flexibility for pursuing multiple objectives simultaneously
and for realising missions to smaller solar system bodies. Finally, the codebase devel-
oped for this thesis was designed with modularity in mind, allowing for its application
to a broader range of objectives in the context of evaluating the benefits associated
with the use of spacecraft swarms.
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8.2 Future Research

A fundamental tenet of the scientific methodology involves identifying model inade-
quacies and opportunities for future work to reiterate and refine the presented solution
method. This section is therefore dedicated to underlining areas of improvement for
both the model and solution method. The recommendations for future research are
divided into three varieties: those that pertain to the dynamical model, those that
relate to the optimisation framework and general improvements.

Extended Dynamical Model

A particularly relevant matter for the simulation of trajectories involves defining a
dynamical model that captures the principal system characteristics for the considered
context. In this thesis, we assume a simplification of reality by a dynamical model
based solely on a constant fixed-axis body rotation, gravitational attraction and im-
pulsive control. Hence, future work should extend the model to account for other
considerable perturbations to simulate more realistic trajectories. In particular, we
recommend that future work consider the following aspects:

• As presented in Section 6.1, most solar system asteroids and comets experience
a relatively complex rotational motion. Thus, a reasonable extension includes
a model of the body’s precession by variables related to its torque, such as sub-
limation, outgassing, solar radiation pressure and external gravitational forces.
These elements would most realistically be introduced using a Hill frame where
the precession of the rotation axis is represented by a set of Euler equations
similar to the work of Kramer, T. et al. [83].

• Regarding the motion of each spacecraft, we note the existence of several promi-
nent external forces acting on the spacecraft apart from the body of interest.
Principal examples include solar radiation pressure, solar tides and gravita-
tional forces exerted by neighbouring solar system bodies. These forces can
effectively be added to the equations of motion individually and represented
in a spacecraft-specific inertial reference frame. Introducing such a frame also
enables a model of attitude, which can be essential for maintaining additional
objectives of communication and telemetry.

• Finally, this work assumes a simple model of instantaneous thrusts to control
the spacecraft’s motion, including variables related to execution time, magni-
tude and direction of each manoeuvre. A natural progression is extending the
control to account for the evolution of the spacecraft’s wet and dry mass through
the Tsiolkovsky rocket equation. When considering a shorter mission duration,
a feasible addition is to include each engine’s firing time representing the im-
pulsive manoeuvre. An alternative approach is to adopt continuous low-thrust
manoeuvres which may simplify the implementation and dynamical equations.
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Optimisation Framework Considerations

Concerning the optimisation framework, we recommend future work to take the fol-
lowing aspects into account:

• This thesis primarily focuses on global models to find optimal solutions, in-
cluding a heuristic algorithm incorporating steering laws to improve the search
process. Nonetheless, it would be interesting to review how local optimisation
methods can be coupled with the suggested global scheme to improve the final
solution. For this task, PyGMO already provides several appropriate methods
which simplify implementation. However, to motivate using a local method, one
can also perform an initial sensitivity analysis to acquire a general insight into
the current solution’s performance. A simple yet efficient method is Monte Carlo
sampling, where we study the resulting fitness by varying each decision variable
within a specific confidence interval. Since each evaluation is independent, it
allows for a similar parallel structure used for the presented optimisation mod-
els. One can then distinguish the contribution of each variable by an analysis
of variance, ANOVA.

• Tuning problem parameters is essential for adapting any optimisation framework
to a specific problem domain. It can enable faster convergence rates, minimally
required resources, and an improved quality of the final solution. In this thesis,
we present a simple parameter-sweep strategy for tuning parameters related
to the optimiser, which resulted in an improved solution. However, since it
was only an initial tuning process for a general problem structure, we could
not conclude that the selected values represented the optimal parameter group.
Additionally, the study also lacks problem-specific tuning for hyperparameters
related to the objective, constraints, and numerical techniques. For these values,
we referred to previous work. Hence, we advise future work to adopt an efficient
strategy for tuning any hyperparameter in the optimisation framework when
considering new problem characteristics. Prominent examples of such methods
include genetic algorithms, neural networks and Bayesian procedures. Given
the current computational complexity of the framework, the last option is likely
to represent the most efficient and practical approach.

• In this thesis, we have only considered comparing a limited number of disposable
manoeuvres and spacecraft. Therefore, it would be interesting to consider an
additional optimisation procedure to determine the best-performing set. Given
the integer nature of the two additional variables, the problem is now suitable
to be solved as a mixed-integer nonlinear program coupled with the non-integer
solution strategy presented in this work. However, given the computational com-
plexity of the presented framework, it remains of interest to further improve the
computational properties of the optimisation process. Potential improvements
include, for instance, tuning hyperparameters to speed up the convergence of
the optimiser and the numerical integrator, redefining the control strategy and
dynamical equations, selecting a faster propagator and using a more vectorised
code structure.
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General Considerations

Finally, we present some general considerations for continued analysis and improve-
ment of the presented work:

• To motivate the choice of suitable numerical techniques and optimisers, we have
mainly focused on identifying prominent problem characteristics and referencing
the findings of previous work. It is therefore of interest to benchmark the per-
formance of several integrators and optimisers for the specific problem scenario.
To accomplish this, DEsolver and PyGMO offer a diverse set of readily available
candidate algorithms, simplifying the implementation process given the current
modularised state of the codebase.

• Another prominent feature of this work is the polyhedral gravity model. Al-
though it provides a detailed initial gravity field representation and uses a partic-
ularly fast vectorised structure, it is evident that the polyhedral model remains
one of the most time-consuming components of the considered algorithms and
techniques. In order to reduce the simulation time, an alternative is to limit the
use of the polyhedral model to inside the Brillouin sphere and adopt a spherical
harmonics expansion elsewhere. In other words, minimising computational com-
plexity while maintaining proper convergence close to the body. Furthermore,
by assuming a model based on spherical harmonics inside the region of interest
Sf , we can now benchmark the resulting precision error between a continuous
model of coverage and the discrete approximation presented in this thesis.

• In this work, we assess the quality of the solution by its coverage, relevance in
measurements and the risk of collisions with the central body. However, future
work should consider expanding the objective to simulate a more realistic sce-
nario. For instance, minimising the total magnitude of control can effectively
represent the minimisation of most fuel-related costs. Next, when considering
a swarm, maintaining a line of sight representing communication windows is
essential to allow for inter-spacecraft cooperation. In practice, we can efficiently
represent a line of sight using the algorithm presented in Section 5.2.2 by study-
ing the intersection between inter-spacecraft rays and the polyhedral model.
Moreover, since most of these objectives may be competing, a way forward is to
adopt a multi-objective optimisation strategy leading to a Pareto optimal solu-
tion. For this purpose, PyGMO provides several suitable optimisers, including a
Multi-Objective Hypervolume-Based Ant Colony Optimiser (MHACO), which
extends on the optimiser considered in this thesis [61]. In order to acknowledge
additional operation constraints, we recommend studying how the optimisa-
tion framework can take advantage of available software such as PAseos, which
simulates the environment for operating multiple Spacecraft [85].

• Lastly, considering that one of the outcomes of the thesis relates to the work
on geodesyNets, it would be interesting to evaluate how the experienced ac-
celerations resulting from the considered trajectories affect the robustness and
accuracy of the predicted mass-density distribution.
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Figure A.1: Butcher Tableu for Dormand-Prince 8(7)-13M
(Credited to Dormand and Prince [68]).



Appendix B

Scaling Test Speedup

Considering both strong a weak scaling, we define the speedup as the improvement
of the computational time on n threads when compared to the minimal thread count
nmin. Hence, speedup is formulated as

speedup =
Tnmin

Tn

(B.1)

where Tnmin is the required computational time when considering the minimal
number of computational threads, which in this case equals to one, and Tn the mea-
sured simulation time when using n threads. For further study on the speedup perfor-
mance of the presented simulation software, we recommend including measurements of
the serial part and adopting both Amdahl’s law of strong scaling [86] and Gustafson’s
law of weak scaling [87].

(a) Strong scaling speedup. (b) Weak scaling speedup.

Figure B.1: Scaling test speedup performance.
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Appendix C

Results in the Body-fixed Frame

(a) Spacecraft 1 & 2
(side view).

(b) Spacecraft 1 & 2
(top view).

(c) Spacecraft 3 & 4
(side view).

(d) Spacecraft 3 & 4
(top view).

Figure C.1: Global Multi-spacecraft optimisation results depicting a)-b) resulting
trajectories for Spacecraft 1 and 2 in the body-fixed reference frame, and c)-d) the
corresponding representation for Spacecraft 3 and 4. (Deployment at the cross).
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(a) Spacecraft 1 & 2
(side view).

(b) Spacecraft 1 & 2
(top view).

(c) Spacecraft 3 & 4
(side view).

(d) Spacecraft 3 & 4
(top view).

Figure C.2: Local Multi-spacecraft optimisation results depicting a)-b) resulting
trajectories for Spacecraft 1 and 2 in the body-fixed reference frame, and c)-d) the
corresponding representation for Spacecraft 3 and 4. (Deployment at the cross).



Appendix D

Optimiser Convergence Rates

Figure D.1: Convergence rate: Single spacecraft with four manoeuvres.
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Figure D.2: Convergence rate: Four spacecraft with four manoeuvres each (extended model).

Figure D.3: Convergence rate: Four spacecraft with four manoeuvres each (local search).
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