Automated driving in microscopic traffic simulation

Ivan Postigo CTR Day - 2024

vti

Background

- Automated driving systems (ADS) are expected.
- Road authorities concerns about traffic performance.

Research questions

- How to model automated driving in microscopic traffic simulation?
- How will mix traffic affect transportation systems?

Modeling

Impacts

Why mixed traffic?

FIGURE 1: Estimated automated vehicle share on roads.

Source: Calvert et al. (2017) – Will automated vehicles negatively impact traffic flow? In: Journal of Advanced Transportation

State of the practice - Modeling

State of the practice - Impacts

AV PenRate vs. Throughput - Section C Aepicle Throughout [veh/hour] Vehicle Throughout [veh/hour] 2000 1500 1500 AV penetration [%]

• Wiedemann 99 car-following model

Microscopic driving models

Perception errors

Postigo et al. (2023) – Modeling perception performance in microscopic simulation of traffic flows including automated vehicles 2023 IEEE 26th International Conference on Intelligent Transportation Systems

Simulation experiment - IDM

	P1 – Human [1]	P2 – ADS [2]
Desired acceleration – a	1.0 m/s2	1.0 m/s2
Desired deacceleration – b	2.75 m/s2	2.75 m/s2
Desired time gap – T	1.2 s	1.2 s
Free accel exponent – delta	4	25
Min. gap – So	2.0 m	2.0 m
Desired speed - Vo	25 m/s	25 m/s
Error Correlation – Tw	20s	500s

$$\dot{v} = a * \left(1 - \left(\frac{v}{V_o}\right)^{\delta} - \left(\frac{S^*}{S}\right)^2 \right)$$

$$S^* = S_o + max\left\{\left(0, vT + \frac{v\Delta v}{2\sqrt{ab}}\right)\right\}$$

References:

[1]: Zhu et al. 2018, Pourabdollah et al. 2017, Treiber et al. 2000,
[2]: De Souza et al. 2020, Gunter et al. 2019

Effects on traffic flow dynamics (I)

Effects on traffic flow dynamics – Free crusing

Effects on traffic flow dynamics – Cut in (I)

Effects on traffic flow dynamics – Cut in (II)

Lane changing

Conclusions and next steps

Modeling

- The perception performance is a key point of difference between automated and human driving.
- The simulation experiment shows that the common assumption of perfect perception misses potential drawbacks such as a reduced road capacity or reduced traffic safety.
- The explicit modeling of the perception enables a wider range of assumptions to study mixed traffic in microscopic traffic simulation.

Impacts

- Next is to study the impacts of mixed traffic using the proposed modeling approach.
- Heterogeneity of human and automated vehicles to be included in a motorway environment.

Thanks for your attention!

Ivan Postigo

ivan.postigo@liu.se ivan.Postigo@vti.se

Accuracy (i)

$$f^{\Omega}(d,v) = \frac{\boldsymbol{\varepsilon}^{\Omega}(\boldsymbol{d})}{\boldsymbol{\varepsilon}^{\Omega}(\boldsymbol{d})} + W_{trans} * (\sigma^{\Omega}(\boldsymbol{d}) + \sigma^{\Omega}(v))$$

 $oldsymbol{arepsilon}^{\Omega}(oldsymbol{d})$ - Parameters :

 $\varepsilon^{\Omega}_{sys}$: Systematic, persistent or minimum error

CTR

- $\varepsilon_{max}^{\Omega}$: Error at maximum detection range
- *D*_{opt} : Optimal operational range
- D_{max} : Maximum detection range

Accuracy (ii)

$$f^{\Omega}(d,v) = \frac{\boldsymbol{\varepsilon}^{\Omega}(d)}{\boldsymbol{\varepsilon}^{\Omega}(d)} + W_{trans} * (\sigma^{\Omega}(d) + \sigma^{\Omega}(v))$$

linear

quadratic

ellipse

Precision (i) $f^{\Omega}(d,v) = \varepsilon^{\Omega}(d) + \frac{W_{trans}}{W_{trans}} * (\sigma^{\Omega}(d) + \sigma^{\Omega}(v))$

 $W_{trans} \in [-1, 1]$

$$W_{trans} = \frac{2}{1 + \exp(-W)} - 1$$

 $W(t + \Delta t) = \begin{cases} \eta, & initial\\ \exp\left(-\frac{\Delta t}{\tau}\right) * W(t) + \eta \sqrt{\frac{2\Delta t}{\tau}}, otherwise \end{cases}$

 $\eta \in N(0,1)$ τ : Time-window correlation

Precision (ii)

 $f^{\Omega}(d,v) = \boldsymbol{\varepsilon}^{\boldsymbol{\Omega}}(\boldsymbol{d}) + W_{trans} * (\sigma^{\Omega}(\boldsymbol{d}) + \sigma^{\Omega}(v))$

- $X = \{d, v\}$ $\sigma^{\Omega}(X)$ - Parameters :
- σ_{minX}^{Ω} : Minimum variation or noise
- r_X^{Ω} : variation increase rate
- *X_{opt}* : Optimal operational range

Accuracy and precision

Parameters :

$arepsilon_{sys}^{\Omega}$: Systematic, persistent or minimum error
$\mathcal{E}_{max}^{\Omega}$: Error at maximum detection range
D _{opt}	: Optimal operational range
D _{max}	: Maximum detection range
σ^{Ω}_{minD}	: Minimum distance variation or noise
r_d^{Ω}	: Distance variation increase rate
σ_{minV}^{Ω}	: Minimum speed variation or noise
r_v^Ω	: Speed variation increase rate
V _{opt}	: Optimal operational speed
τ	: Time-window variation correlation

 $f^{\Omega}(d,v) = \varepsilon^{\Omega}(d) + W_{trans} * (\sigma^{\Omega}(d) + \sigma^{\Omega}(v))$

Intelligent driver model (IDM) sensibility

$$\dot{v} = a \cdot \left(1 - \left(\frac{v}{V_o}\right)^{\delta} - \left(\frac{S^*}{S}\right)^2\right)$$
$$S^* = So + \max\left\{\left(0, vT + \frac{v\Delta v}{2\sqrt{ab}}\right)\right\}$$

a = 1 m/s2 S = 65 m v = 25 m/s Vo = 25 m/s Delta V = 5.55 m/s

Change in fundamental diagram (IDM)

Vo = 19.45 m/s

$$S = Se(v) = \frac{so + vT}{\sqrt{1 - \left(\frac{v}{Vo}\right)^{\delta}}}$$
$$\rho = \frac{1}{S}$$
$$Q = \rho * V$$

