

Multimodal Traffic Management 2

LiU: Anna Danielsson, David Gundlegård, Clas Rydergren, Rasmus Ringdahl KTH: Wilco Burghout, Matej Cebecauer, Erik Jenelius

Collaboration between LiU and KTH Funded by Trafikverket through CTR

Aim

The Multimodal Traffic Management 2 (MMTL2) project aims to improve the efficiency of transportation systems through improved multimodal traffic management.

- The project will
 - develop new methods to estimating multimodal demand as well as transport mode and route choice during incidents
 - Evaluate effects of multimodal traffic management
- Interesting questions related to incidents in the network are
 - What is the effect of the incident?
 - Which travelers are most affected by the incident?
 - Which multimodal alternatives are there for these travelers?

Project goals

- Compile a **dataset of incidents** related to traffic management to enable analyses related to modeling and actions during incident management.
- Use **statistical models and machine learning** to combine and analyze data related to multimodal traffic management during incidents.
- Develop and evaluate **new models for route and mode choice** during incidents
- Combine the developed route and mode choice models with a **mesoscopic traffic model** to analyze the impact of different multimodal traffic management measures
- Gain **long-term knowledge** about methods and data sources for effective traffic management

Public transport tap-in data

<u>Data sources for multimodal traffic management</u>

Incident data

Congestion charging portals

Inrix trips

Mobile network data

Exploratory analysis: multimodal network and sensors

Exploratory analysis: multimodal network and sensors

Exploratory analysis: multimodal network and sensors

Traffic sensorscharging stations

- MCS sensors
- MEDY sensors

Exploratory analysis: incident data

Results from MMTL 1

MCS flow day-types cluster analysis 2017 Sun 💋 🛛 Sat Fri Thu > 0 Wed 0 (Tue) 0 0 Mon Feb Mar May Sep Oct Nov Dec Jan Apr Jun Jul Aug 6 14000 11 9 12000 7 ---14 10000 4 15 Flow 8000 13 8 6000 12 2 4000 10 2000 5 10 12 14 16 18 20 22 6 8 3 Time of day

Route choice estimation for traffic management

Route choice Stockholm

South to North

• Large proportion continues through the city center

Trip count 5 weeks: 5 391 Average daily trip count (weekdays): 270 Linkflow [1-100%] Inflow link 0 10 20 km

Multimodal analysis of travel patterns during incidents

Example incident

- Blue incident Uppsalavägen
 - 2019-10-18 (Tuesday)
 - Private car standing still in right lane
 - Duration 49 min
- Red incidents Essingeleden
 - 2019-10-01 (Tuesday)
 - Accident truck and private car 6:15
 - Truck in left lane 8.00
 - Stationary private car + assistance 8.30

Identification of alternative routes

- 1. Start with spider plot/route flows for incident link
- 2. Traverse spider tree up- and downstream until threshold value of link flow
- 3. Calculate alternative routes for all nodes that are traversed
- 4. Add only routes that are not too similar and within travel time threshold

Route choice during incident on Essingleden

Route choice during incident on Uppsalavägen

Example OD pair affected by incident on Essingeleden

Routes example OD

Number of routes used per day

Route traveltimes during red incident

Blue = Normal traveltimes Orange = Incident traveltimes

Multi-modal impact of road traffic incident

- Route choice in OD-pair changes
- Number of public transport journeys increases

Road linkflow in affected OD-pair

Public transport journeys Incident day (a) (b)

Difference between Incident and Normal day Effects on bus delays

----- 20 min

10 min	1 - 1 min	10 - 20 min
5 min	- 1 - 5 min	20 min

Difference between Incident and Normal day Effect on public transport ridership

< -500

500 >

-500 - -200 -200 - -50 -50 - -2 -2 - 2 2 - 50 50 - 200 200 - 500

Difference between Incident and Normal day

Effect on toll portals observations – flow IN and OUT of the city

Difference between Incident and Normal day

Effect on total out-going zone flow

Absolute difference of originating flow

Difference between Incident and Normal day

PT mode share of out-going zone flow Incident day No

PT mode share of originating zone flow [%] = (PT / TELIA) * 100% 0 - 10 20 - 30 40 - 50 60 - 70 80 - 9010 - 20 30 - 40 50 - 60 70 - 80 90 - 90 PT share difference [%]

Next steps

- Multimodal analysis of historic road incidents and PT disruptions
- Multimodal route sets (both for normal conditions and during incidents)
- Route and mode choice models adapted for incidents
- Multimodal anomaly detection
- Multimodal demand prediction with mode and route choices

Project web page:

Thank you!

anna.a.danielsson@liu.se matej.cebecauer@abe.kth.se

