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Abstract

Superconducting nanowire single-photon detectors (SNSPDs) have become
a mainstream photon-counting technology that has been used in various ap-
plications. So far, most multi-channel SNSPD systems, either reported in
literature or been commercially available, are polarization sensitive, that is,
the system detection efficiency (SDE) of each channel is dependent on the
state of polarization of the to-be-detected photons. Here, we report on an
eight-channel system with fractal superconducting nanowire single-photon
detectors working in the wavelength range of 930-940 nm that all feature
low polarization sensitivity. In a close-cycled Gifford-McMahon cryocooler
system with the base temperature of 2.2 K, we install and compare the per-
formance of two types of devices: (1) SNSPD, composed of a single, contin-
uous nanowire, and (2) superconducting nanowire avalanche photodetector
(SNAP), composed of 16 cascaded units of two nanowires electrically con-
nected in parallel. The highest system detection efficiency (SDE) among
the eight channels reaches 96+4

−5%, with polarization sensitivity of 1.02 and
dark-count rate of 13 counts per second. The average SDE for eight chan-
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nels for all states of polarization is estimated to be 90 ± 5%. We conclude
that both the SNSPDs and the SNAPs can reach saturated, high SDE at the
wavelength of interest, and the SNSPDs show lower dark- (false-) count rates
while the SNAPs show better properties in the time domain. Using this sys-
tem, we showcase the measurements of the second-order photon-correlation
functions of light emission from a single-photon source based on a semicon-
ductor quantum dot and from a pulsed laser. We believe that our work
provides new choices of systems with single-photon detectors combining the
merits of high SDE, low polarization sensitivity, and low noise that can be
tailored for different applications.

Keywords: Superconducting nanowire single-photon detector,
superconducting strip photon detector, fractal, quantum optics, photon
correlation

Introduction

Superconducting nanowire single-photon detectors (SNSPDs) [1, 2], or,
also referred to as superconducting strip photon detectors (SSPDs), have
played vital roles in many classical and quantum photonic applications [3,
4, 5, 6, 7, 8]. Different than most commonly-used, meandering SNSPDs [9,
10], fractal SNSPDs feature low polarization dependence of their detection
efficiency [11, 12, 13, 14, 15]. Up to now, all the fractal SNSPDs reported
in literature were packaged and configured into single-channel systems [12,
13, 14, 15]. On the other hand, to our knowledge, multi-channel SNSPD
systems, either reported in literature [16, 17, 18, 19] or been commercially
available [20], are all polarization sensitive, and the multi-channel systems
with SNSPDs that all feature low polarization-sensitivity remain unexplored.
Such a high-performance multi-channel system would be very useful for multi-
photon coincidence counting that is often used in experimental quantum
photonics to characterize nonclassical light sources [17, 21] and quantum
computation [3, 22, 23].

In this paper, we report on an eight-channel fractal SNSPD system in
the wavelength range of 930-940 nm. This spectral range overlaps with the
emission spectra of a category of single-photon sources based on III-V semi-
conductor quantum dots [24, 25, 26, 27]. In the system, we include 6 fractal
SNSPDs [12] and 2 fractal cascaded superconducting nanowire avalanche
photodetors (SNAPs) [14, 15]. By we carefully and strategically optimized
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the design and nanofabrication of the devices, the highest SDEmax for the
SNSPDs and the SNAPs are 96+4

−5% and 95 ± 5%, respectively, at the base
temperature of 2.2 K. The average SDE for eight channels for all states of
polarization is estimated to be 90± 5%. While both types of detectors show
high SDE, the SNSPDs exceed in low dark-count rates (DCR) and therefore,
low noise-equivalent power (NEP), whereas the SNAPs exhibit higher oper-
ating speed and better timing resolution. As a direct application, we use two
channels to measure the second-order correlation functions of light emission
from a single-photon source based on a semiconductor quantum dot and from
a pulsed laser, and compare the results with those measured by two silicon
single-photon avalanche diodes (SPADs).

Design and nanofabrication of the devices

We designed the detectors to the arced fractal geometry similarly to what
have been reported previously [15] but with several important improvements
to pursue extremely high SDE in the wavelength range of 930-940 nm. (1)
We expanded the photosensitive area of each detector to allow more toler-
ance of the misalignment between the fiber and the detector and to ensure
close to 100% coupling efficiency. To this end, the photosensitive areas of the
SNSPDs and the SNAPs were designed to be 13.7 µm × 13.7 µm and 15.2 µm
× 15.2 µm, respectively. We note that the fractal design of the SNAPs does
not support an arbitrary size of the photosensitive area so that we cannot
make the sizes of two types of detectors identical. (2) The thickness of the
NbTiN film was still 9 nm [14], but we increased the width of the nanowire
from 40 nm to 50 nm to reduce the difficulty in patterning and to increase the
yield. Our consideration is that as the targeted wavelength is 930-940 nm, the
energy of a single photon is larger than the energy of a photon in the telecom-
munication wavelength range of 1550 nm, a wider nanowire than what we
used in the past [14, 15] could probably yield saturated detection efficiency.
Fig. 1a and c present the false-colored scanning-electron micrographs (SEM)
of the resulting fractal SNSPD and SNAP, respectively, and Fig. 1b and d
present their equivalent circuitries. The process of nanofabrication is pre-
sented in METHODS. (3) For further enhancing optical absorptance, we
increased the number of the pairs of the dielectric layers in the bottom DBR
from 6 [14] to 8 pairs. Fig. 1e presents the designed microcavity composed of
SiO2 and Ta2O5 dielectric layers. The thicknesses of each SiO2 layer in the
DBR, each Ta2O5 layer in the DBR, and the SiO2 defect layer are 152 nm,
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106 nm, and 296 nm, respectively. The simulated intensity distribution of
the light intensity along the yD direction, assuming no NbTiN nanowires, is
shown as the red line in Fig. 1e. Each detector was fabricated into the keyhole
shape for self-aligned packaging with optical fiber [28] for top illumination.
The photosensitive regions of the two types of detectors were designed and
fabricated to be larger than the optical spatial modes, giving some tolerance
of misalignment to ensure efficient optical coupling.

FIG1
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Fig. 1 Device structures of the fractal superconducting nanowire single-photon
detector (SNSPD) and the superconducting nanowire avalanche photodetector
(SNAP). a, False-colored scanning-electron micrograph of the fabricated SNSPD. The
nanowire is designed and made into the arced fractal pattern, with the photosensitive
area of 13.7 µm by 13.7 µm and the nanowire width of 50 nm. b, Equivalent circuitry of
the SNSPD. c, False-colored scanning-electron micrograph of the fabricated SNAP. The
detector is designed and made into a 16 cascaded 2-SNAP with the photosensitive area
of 15.2 µm by 15.2 µm and the nanowire width of 50 nm. d, Equivalent circuitry of
the SNAP. e, Schematics of the optical cavity structure, which is composed of the top
distributed Bragg reflector (DBR) made of three pairs of alternating SiO2 and Ta2O5

dielectric layers, the bottom DBR made of eight pairs of alternating dielectric layers, and
the defect layer in between. The red line presents the simulated distribution of the light
intensity in the microcavity, assuming the absence of the nanowire. The NbTiN nanowire
is located at the position of the maximum intensity.
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Characterization

All the measurements were performed by cooling the detectors to 2.2 K
in a 0.1-W close-cycled Gifford-McMahon (G-M) cryocooler. For this partic-
ular cryocooler, we purchased the bare cryocooler and the compressor unit
from Sumitomo, and designed and implemented the vacuum system with
feedthroughs for optical fibers and electronic cables, the plate for mount-
ing the chip packages as well as the radiation shields. The cooling curves
are presented in Fig. 2. During the cooling process, we used power supply
with the frequency of 60 Hz to increase the power of the compressor, and
made the cooling process faster [29]. Specifically, we presented the cooling
curves of the system with a single channel and eight channels configured, as
shown in Fig. 2a. Additionally, zoom-in views are presented in Fig. 2b. The
cooling speed of the system configured with a single channel is much faster
than that of the eight-channel system, and it also reaches a lower minimum
temperature due to the lower heat load. The single-channel system reaches
a minimum temperature of 2.0 K after 3 hours of the cooling process, while
the eight-channel system reaches a minimum temperature of 2.2 K after 6
hours.
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Fig. 2 Cooling-down curves of the Gifford-McMahon (G-M) cryocooler.
a, Cooling-down curves of the G-M cryocooler with one channel and with eight chan-
nels. b, Zoom-in view of the curves in a.

We first measured the SDE and DCR/FCR of individual representative
devices of the two types. For measuring SDE, we used the method based
on time-correlated single-photon counting (TCSPC) [30] and used a Su-
perK with a monochromator as the light source [full width at half maxima
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(FWHM) spectral width: 2 nm]. Low-noise RF amplifiers working at room
temperature were used in this work. The schematic diagram of the experi-
mental setup is presented in Fig. 3a.

Fig. 3b presents SDEmax, SDEmin and DCR for the SNSPD (channel C2).
The switching current, Isw, was 13.2 µA, and when Ib > Isat = 8.1 µA, the
SDE-Ib curves show saturated plateaus. We determined Isat by fitting the
measured SDEmax-Ib with an error function, taking a derivative that yielded
a bell-like function, and finding the smallest Ib on the right of the peak mak-
ing the normalized derivative less than 0.01. This Ib was treated as Isat.
DCR drops swiftly as decreasing the bias current from Isw. As shown in
Fig.3c, at the bias current of 9.4 µA, where NEP (calculated from SDEmax

and DCR, NEP= hν
SDEmax

√
2DCR, where hν is the photon energy [31, 32])

gets minimized, SDEmax=95 ± 5%, SDEmin=93 ± 5%, polarization sensitiv-
ity (PS)=1.02, and DCR=1.25 cps. The minimum NEP is 0.36 × 10−18

W · Hz−1/2.The relative error of the SDE measurement was estimated to be
5.3%, following the detailed analysis of various sources of uncertainties as
in Ref. [15, 33]. We had corrected SDE by taking into account the optical
reflection from the fiber facet when measuring optical power; the uncorrected
values were SDEmax=98% and SDEmin=96%.

In comparison, Fig. 3d presents SDEmax, SDEmin and FCR for the SNAP
(channel C4). The false counts include the dark counts and the afterpulses [34,
35, 14]. The switching current was 25 µA, and when Ib > Isat = 19.7 µA, the
SDE-Ib curves show saturated plateaus. FCR decreased as we decreased the
bias current from Isw, but when 13.8 µA< Ib <20.0 µA, and when further
decreasing Ib, the detector was operating in the unstable regime and the FCR
increased dramatically because of excessive afterpulses [34, 35, 14]. There-
fore, As shown in Fig.3e, at the bias current of 20 µA, NEP (calculated from
SDEmax and FCR, NEP= hν

SDEmax

√
2FCR) gets minimized, SDEmax=94± 5%,

SDEmin=93 ± 5%, PS=1.02, and FCR=25.8 cps. The minimum NEP is
1.61 × 10−18 W · Hz−1/2. Therefore, the lowest FCR of the SNAP is a bit
higher than the DCR of the SNSPD at the appropriate operating bias cur-
rent.

We note that recent studies illustrated that the constrictions and bends
are prone to generating dark counts [36, 37], however, here, the fractal
SNSPD and the fractal SNAP containing plethora of bends in their pho-
tosensitive regions did not show excessive dark or false counts even fully
biased. These observations indirectly evidenced the uniformity of the curved
nanowires we patterned and fabricated. On the other hand, because the
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Fig. 3 Measured system detection efficiency and dark- or false-count rate.
a, Schematic diagram of experimental setup. NDF, neutral density filter, TAC, time-to-
amplitude converter. b, System detection efficiency and dark-count rate, as a function of
the bias current, of a representative SNSPD (channel C2). c, Noise-equivalent power of
the SNSPD. d, System detection efficiency and false-count rate, as a function of the bias
current, of a representative SNAP (channel C4). e, Noise-equivalent power of the SNAP.
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fractal geometry includes many U-turns and L-turns in the pattern of the
nanowire, which is a key difference with the most commonly used meander
SNSPDs, we think that the mechanism of the dark and false counts of the
fractal SNSPDs and SNAPs is still quite elusive, and needs more detailed
research.
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Fig. 4 Time-domain properties of the SNSPD and the SNAP. a, Output voltage
pulses of the SNSPD (channel C2) and the SNAP (channel C4), after being amplified by
a room-temperature RF amplifier. The exponential fittings of the falling edges show time
constants of 18.0 and 7.9 ns for the SNSPD and the SNAP, respectively. b, Simulated
output pulses of the SNSPD and the SNAP, without the RF amplifier, by thermoelectrical
simulation. c, Measured timing jitter of the SNSPD and the SNAP, as functions of the
bias current.

Figure 4 presents the time-domain properties of the SNSPD and the
SNAP. Fig. 4a presents the oscilloscope traces of the output voltage pulses.
The exponential-decay fittings show e−1 time constants of 18.0 and 7.9 ns for
the SNSPD and the SNAP, respectively. Fig. 4b presents the traces simu-
lated by thermo-electrical simulation, without considering the RF amplifier
(See METHODS). The simulation reproduced the voltages pulses in terms
of the relative amplitudes and the shapes. The simulated e−1 time constants
were 14.5 and 4.4 ns for the SNSPD and the SNAP, respectively. The dif-
ferences between the simulated and measured results are due, mainly, to the
electronic filtering effect of the RF amplifier that was not taken into account
in the simulation and the value of kinetic inductivity taken from Ref. [38],
which may be slightly different than kinetic inductivity of the actual super-
conducting film used in our experiment. Fig. 4c presents the timing jitter
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(FWHM of the time-delay histogram) as functions of Ib for the SNSPD and
the SNAP. Timing jitter was measured with a low-noise RF amplifier work-
ing at room temperature and an oscilloscope with a real-time bandwidth of
4 GHz. Note that the measurements were conducted at 1560-nm wavelength
using a femtosecond pulse laser and a high-speed photodetector with the
bandwidth of 40 GHz. For the measurement of timing jitter, all detectors
were pigtailed with SMF-28e optical fibers. The lowest timing jitter for the
SNSPD and the SNAP were 63 and 41 ps, respectively.

We installed eight detectors in the cryocooler and performed complete
characterization. Fig. 5a presents a photograph of the cold head with eight
fiber-coupled packages installed on the self-designed stage. We measured the
SDEmax and SDEmin of the eight detectors. Fig. 5b presents the measured
SDEmax as functions of the wavelength of the incident light, with all the
detectors biased at 97% of each Isw. SDEmax of C3 peaked at 930 nm, and
SDEmax of the remaining channels peaked at 940 nm. After determining
the peak wavelength of each channel, we measured the SDEmax as functions
of the Ib normalized to each Isw at their peak wavelengths, as shown in
Fig. 5c. All channels show saturated plateaus, and C4 and C8 are SNAPs,
with relatively small bias region for the plateaus due to the unstable regime
at low Ib. Fig. 5d summarizes the measured SDEmax and SDEmin of each
channel. SDEmax of five channels exceed 90%, and all the channels’ SDEmax

exceed 80%. Each error bar represents 5.3% relative error. The average SDE
for all states of polarization of the eight channels is estimated to be 90± 5%,
which is the average of the sixteen values of SDEmax and SDEmin. Fig. 5e
presents the measured DCR or FCR at the Ib corresponding to the lowest
NEP of each channel. Fig. 5f presents the e−1 time constant of the falling
edges of output pulses. The lower kinetic inductance of the SNAPs, due
to the parallel configuration of the nanowires, resulted in smaller e−1 time
constants. Fig. 5g presents the measured timing jitter of each channel at
99% of its switching current. Among eight detectors, SNAPs showed better
timing resolution (lower timing jitter) than SNSPDs.
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Fig. 5 Eight-channel fractal SNSPD system and the performance metrics.
Channels C1, C2, C3, C5, C6, and C7 are SNSPDs, and Channels C4 and
C8 are SNAPs. a, Photograph of the cold-head with eight packaged detectors installed.
b, Measured SDEmax of eight channels as functions of the wavelength, λ. Each detector is
biased at 97% of its switching current. c, Measured SDEmax of eight channels as functions
of bias current normalized to each switching current. d, SDEmax and SDEmin. In c and
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lowest timing jitter using a femtosecond pulse laser with a central wavelength of 1560 nm,
the detectors were coupled with SMF-28e optical fibers when measuring timing jitter.
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Measurements of photon-correlation functions
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Fig. 6 Experimental setup for measuring second-order photon correlations,
g2(τ ), of a single-photon source and a pulsed laser. TAC, time-to-amplitude con-
verter.

As a demonstration of applications, we used two channels (C1 and C4) to
measure the second-order correlation functions, g2(τ), of the emission from a
In(Ga)As/GaAs quantum dot (QD) and from a pulsed laser. Fig. 6 presents
the experimental setup. The sample containing the quantum dots were cooled
down to 3.7 K in another close-cycled cryostat. An individual quanutm dot
was selected and excited by a picosecond pulsed laser and by longitudinal-
acoustic (LA) phonon-assisted excitation scheme [39, 40]. The emission wave-
length was centered at 887.1 nm, the excitation laser was blocked by a home-
made grating-based spectral filter.

Figure 7 presents g2(τ) measured by two SNSPDs and two silicon SPADs
(purchased from Excelitas). For the emission from the QD, as presented in
Fig. 7a and b, clear anti-bunching was observed and g2(0) = 0.0587 measured
by the SNSPDs. In comparison, g2(0) = 0.0609 measured by the SPADs. For
the pulsed laser, as presented in Fig. 7c and d, g2(0) = 0.968 measured by the
SNSPDs and g2(0) = 0.996 measured by the SPADs. While the measured
g2(τ) were quite consistent by using the SNSPDs and by using the SPADs,
from Fig. 7d, we can clearly see better timing resolution of the SNSPDs than
that of the SPADs. In Fig. 7d, the full widths at half maxima of the g2(τ)
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Fig. 7 Second-order photon-correlation functions, g2(τ ), of the light emission
from a QD and a pulsed laser measured by two SNSPDs and two silicon SPADs.
a, g2(τ) of light emission from of the single-photon source, showing clear anti-bunching.
b, A zoom-in view of a. c, g2(τ) of light emission from of a pulsed laser with a FWHM
of 6 ps. d, A zoom-in view of c.

peaks centered at τ = 0 are 125 and 500 ps measured by the SNSPDs and
the SPADs, respectively.

Conclusions

In conclusion, we have demonstrated an eight-channel system installed
with fractal SNSPDs in the wavelength range of 930-940 nm that all feature
low polarization sensitivity. The highest SDE is 96+4

−5%, with 13 cps DCR.
While both of the SNSPDs and the SNAPs achieved high SDE, the com-
parisons between them illustrate the strengths of each type – the former has
lower DCR and therefore, lower noises, and the latter shows better properties
in the time domain. Further improvement in the nanofabrication process can
further enhance the yield of devices with high SDE and therefore, the com-
prehensive performances of the system. A better understanding of the dark
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and false counts of the fractal SNSPDs and SNAPs is also needed. We believe
that such a system would be useful in many quantum photonic applications
involving multi-photon coincidence detection.

Methods

Nanofabrication of the chips: The steps of nanofabrication are similar to
what were reported in Ref. [14]. Briefly, we deposited 8 pairs of SiO2/Ta2O5

alternating layers and a half of SiO2 defect layer by ion beam-assisted de-
position (IBD) on a 4-inch, 300-µm-thick, double-side-polished silicon wafer.
We sputtered a 9-nm thick NbTiN film by a reactive co-sputtering process
at room temperature. Then we diced the wafer into dies with a dimension of
20 mm by 19 mm for the following process. We made the metallic contact
pads and markers for alignment by optical lithography, followed by deposit-
ing a 10-nm-thick titanium and 100-nm-thick gold by e-beam evaporation.
We lifted off unwanted metal by immersing the chip in acetone for 2 hours.
We patterned the nanowires by scanning-electron-beam lithography, and a
50-nm-thick layer of hydrogen silsesquioxane (HSQ) was used as the negative-
tone electron-beam resist. We transferred the pattern from the HSQ layer
to the NbTiN layer by CF4 and O2 reactive-ion etching. We patterned the
top reflector by optical lithography, followed by depositing another half SiO2

defect layer of the micro-cavity, and 3 pairs of Ta2O5/SiO2 bi-layers using
IBD. Then, we did lift-off by immersing the chip in acetone for 2 hours. Fi-
nally, we etched the chip into the keyhole shape for self-aligned packaging. A
10-µm-thick layer of AZ 4620 was used as the photoresist. After patterning,
we used inductively-coupled plasma etching to transfer the pattern to the
stack. Finally, we removed the residual photoresist by immersing the chip in
hot N-Methyl Pyrrolidone (NMP) at 95 ◦C for 1 hour.

Thermo-electrical simulation: We used one-dimensional thermo-electrical
model to numerically simulate the transient responses of the SNSPD and the
2-SNAP by absorbing a single photon [41]. The values of kinetic inductance,
normal-state resistance, bias current and switching current used in the sim-
ulation are 716 nH, 5.35 MΩ, 13.0 µA, and 13.2 µA, respectively, for the
SNSPD, and are 220 nH, 2.43 MΩ, 24.8 µA, and 25.0 µA, respectively, for
the 16 cascaded 2-SNAP. The switching current and the normal-state resis-
tance were measured. The kinetic inductance Lk was calculated by Lk = lk

L
wd

,
where lk, L, w, and d are kinetic inductivity, length, width, and thickness,
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respectively. The value of the kinetic inductivity is from Ref. [38]. The length
of the SNSPD and the 2-SNAP are calculated from the photo-sensitive area
and the fill factor. The width and the thickness of the nanowires are 50 nm
and 9 nm for both devices. The critical temperature is 9 K for both devices.
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