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Long-range quantum communication requires the development of in-out light-matter interfaces to
achieve a quantum advantage in entanglement distribution. Ideally, these quantum interconnections
should be as fast as possible to achieve high-rate entangled qubits distribution. Here, we demonstrate
the coherent quanta exchange between single photons generated on-demand from a GaAs quantum
dot and atomic ensemble in a 87Rb vapor quantum memory. Through an open quantum system
analysis, we demonstrate the mapping between the quantized electric field of photons and the
coherence of the atomic ensemble. Our results play a pivotal role in understanding quantum light-
matter interactions at the short time scales required to build fast hybrid quantum networks.
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The main goal of quantum communication is to trans-
fer quantum states over arbitrarily long distances in a
quantum network. Several proposals exist to use quan-
tum repeater schemes to generate high entanglement
rates between remote nodes. An attractive approach to
achieve the latter is the use of high-rate entangled photon
pair sources [1] interfaced with fast quantum memories,
capable of receiving and storing entangled states at high
speed [2]. A possible pathway to implement this scheme
is the creation of hybrid quantum networks, in which
high repetition rate, quantum dot-based sources of on-
demand entangled photon pairs [3–7] with high purity
[8, 9], and indistinguishability [10–12], are interfaced
with fast low-noise, high-fidelity atomic vapor quantum
memories [13–19].

The key challenge to constructing these fast hybrid
quantum networks [20, 21] remains to demonstrate the
quanta exchange between large-bandwidth single photons
generated in quantum dots and atomic quantum memo-
ries. This mapping between quantized electric fields and
atomic coherence has only been shown for narrow band-
width photons [22, 23]. A series of experiments have
demonstrated the interaction of quantum dot-generated
single photons with atomic vapor [24–30]. However,
all these experiments rely on the dispersive off-resonant
slow-down effect generated by placing a photon enve-
lope in between two absorption resonances [31]. This
effect can be explained using a steady-state semi-classical
framework, without the need for a density matrix treat-
ment [32].

In this paper, we experimentally demonstrate and the-
oretically verify the coherent quanta exchange between
the single-photon field generated by a quantum dot and
the atomic ensemble of a room-temperature quantum
memory. As we could not directly probe the state of the
ensemble during the light-matter interaction, we devel-
oped an indirect method to obtain the quantized atomic
response. Fig. 1 shows a schematic of the experimental
concept, where a solid-state quantum light source emits
pairs of photons and one is interfaced with an atomic
quantum memory.

We first produce on-demand photon pairs from a tun-
able GaAs quantum dot, where one photon of the pair
is tuned to the 87Rb D1 line F = 1 ↔ F ′ = 1 transi-
tion. Secondly, we interact the photons with an atomic
ensemble following a resonant excitation process. Lastly,
we compare the spectral manipulation of the photon’s
temporal wave function after atomic interaction, to a
Maxwell-Bloch equations simulation, from which we ob-
tain the spatio-temporal evolution of the density matrix
elements describing the coherent mapping between the
quantized electrical field and the atomic populations and
coherence. The complete hybrid quantum network used
for these experiments is depicted in Fig. SM1.

The photon generation follows the following procedure.
The picosecond(ps) pulses of an optical parametric os-
cillator laser are shaped into 10 ps long pulses to be
used in a two-photon resonant excitation scheme [33, 34].
This procedure excites the quantum dot which is lo-
cated in a closed-cycle helium cryostat (5 K sample tem-
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Figure 1. Hybrid quantum light-matter interfaces. (Left) A tunable solid-state quantum dot photon source. The quantum dot
emits entangled photon pairs with different frequencies via its biexciton-exciton cascade. The biexciton transition is strain-
tuned to emit at atomic transition wavelengths. (Right) A 87Rb-based room temperature quantum light-matter interface with
D1 line ground states F = 1, 2 (labeled as |1〉, |2〉) coupled to two excited states F ′ = 1, 2 (labeled as |3〉, |4〉).

perature). The excitation laser is filtered using cross-
polarization as well as a narrow-band notch filter. The
cross-polarization is aligned to the principle axis of the
quantum dot to reject one of the exciton fine-structure
components. The exciton and biexciton transition are
separated via a transmission spectrometer with an end-
to-end efficiency of 70 %.

To achieve the required tunability, we use GaAs quan-
tum dots grown by molecular beam epitaxy with an s-
shell biexciton (XX) resonance designed to be close to
the D1 line of rubidium at 795 nm. We can precisely
tune the XX emission wavelength by applying stress to
the quantum dot structure via a piezo-electric substrate.
The quantum dot is excited with a two-photon resonant
process in a confocal microscopy setup. Fig. 2 (a) shows
color-coded photoluminescence spectra of the biexciton-
exciton cascade as a function of the excitation laser pulse
area. The Rabi oscillations verify the coherent control of
the quantum dot system and all further measurements
are performed with an excitation laser pulse area corre-
sponding to a π-pulse. Fig. SM2 shows the reversibility
of the tuning process.

To verify the correct tuning with respect to the desired
rubidium absorption lines we employ a high-resolution
photoluminescence spectroscopy (HRPL) setup consist-
ing of a tunable fiber-coupled Fabry-Pérot interferome-
ter with a resolution of 70 MHz and free spectral range
(FSR) of 20 GHz. Fig. 2 (b) displays our HRPL mea-
surements. Two FSR orders of a laser locked to the
F = 1 ↔ F ′ = 1 and one FSR order of a laser locked to
the F = 1 ↔ F ′ = 2 are shown as a reference to deter-
mine the absolute detuning of the quantum dot XX tran-
sition to the desired Rb resonance. Two biexciton HRPL
spectra are shown for different piezo tuning (∆Vp = 11
V), highlighting our achieved tuning precision. For clar-
ity, only one spectral order of the XX emission is plotted.
The tail at the right (low energy side) of the XX transi-
tion corresponds to the phonon sideband.

The biexcitonic single photon emission of our
coherently-driven quantum dot is sent to a Hanbury
Brown and Twiss setup to measure the spectral correla-

tions between subsequently emitted photons using time
tagging. Fig. 2 (c) depicts the histogram after correlat-
ing the time-tagged data to reassemble a pulsed second-
order intensity auto-correlation g(2)(∆τ)-function. The
distance between the side peaks corresponds to the laser
repetition rate of 80 MHz. As a result a g(2)(τ) cor-
relation function is measured with a final g(2)(0) =
0.0018 ± 0.0001, showing almost perfect single photon
emission. Several quantum dots have been similarly char-
acterized, showing comparable optical properties, includ-
ing: (i) less than a factor of 2 away from the Fourier limit,
(ii) XX lifetimes of approximately 130 ps, (iii) wavelength
tunability of 0.5 nm, (iv) extremely low multi-photon
emission, and (v) small fine-structure splitting.

We collect the quantum dot photons with polariza-
tion maintaining fiber serving as a quantum communica-
tion channel towards a room temperature quantum mem-
ory [13]. The quantum memory is based upon a warm
87Rb vapor cell at approximately 60◦ C, containing Kr
buffer gas and serves as the atomic medium to transform
the short single photons. The memory-transmitted pho-
tons are collected in a superconducting nanowire single-
photon detector (SNSPD) in order to study the resonant
dynamics of the quantum light-matter interface. The
dashed yellow lines in Fig. 3 are the histograms col-
lected for the transmitted photons through the memory
for different temperatures. In order to account for the un-
certainty in the emission time of the photons, described
by the Wigner-Weisskopf theory [35] applied to the bi-
exciton transition, we de-convolute these experimental
histograms with a 134 ps lifetime exponential decay form.
This lifetime is obtained from the measured photon ar-
rival time histogram without atomic interaction [Fig. 3,
dashed purple lines]. The results of these procedures are
shown as red histograms in Fig. 3 and can be interpreted
as the inherent temporal evolution of the short photons
created in the quantum dots as they transverse a reso-
nant atomic medium.

As the purpose of this work is to go beyond the semi-
classical description of the light-matter interface, we now
construct a quantized model of the interaction between



3

1.2
g(2)(0) = 0.0018 ± 0.0001

Fr
eq

ue
nc

y d
etu

nin
g f

ro
m 

87
Rb

 D
1 (G

Hz
)

Piezo voltage (V)

-40

-60

-20

40

60

20

0

400200400200400 200 400

b)

d)

P
ul

se
 a

re
a 

(a
. u

.)

Intensity (a. u.)

87Rb D1

C
ou

nt
s 

(a
. u

.)

Excitation laser
XXX

π

3π

5π

7π

793.06 794.01 794.97 0 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

  

In
te

ns
ity

 (a
rb

. u
ni

ts
)

  F=1→F='1   

-Vp

FSR

F=1→F='2 F=1→F='1

-100 -50 0 50 100
0k

1k

2k

3k

4k

C
or

re
la

tio
n 

ev
en

ts

Time delay (ns)Wavelength (nm) Frequency detuning from F=1 → F'=1 transition (GHz)

(a) (b) (c)

Figure 2. Quantum dot light source characterization. (a) Color-coded photoluminescence spectra of the biexciton-exciton
cascade under resonant two-photon excitation as a function of the excitation pulse area, revealing Rabi-oscillations. The red
vertical line indicates the rubidium D1 transitions. (b) High-resolution spectroscopy with a tunable Fabry-Pérot interferometer
to precisely measure the XX transition of the quantum dot with respect to the rubidium F = 1 ↔ F ′ = 1 transition. By
fine-adjusting the piezo voltage (VP ) the XX line is brought from off-resonance (gray area) into resonance (red area). (c)

Second-order intensity auto-correlation measurement of the XX transition under coherent π-pulse excitation, shows g(2)(0) =
0.0018± 0.0001.

temporally short single photons and coherently prepared
multi-level atomic transitions. This model will allow us
then to explore the quantum state of the atoms during
and after the photon propagation. The input temporal
envelope of the photons impinging on the quantum mem-
ory used in our model is derived from the measurements
of the photon spectrum width, which is presented in Fig.
SM3. This allows us to use an effective Gaussian tem-
poral envelope Eeff(t) with full width at half maximum
(FWHM) 77.56 ps corresponding to the inverse Fourier
transform of the measured spectral FWHM 5.69 GHz
that accounts for the natural linewidth, the spectral dif-
fusion, and the phonon sideband (details in SM Section
IV, Fig. SM3).

We model the interaction of this single photon tem-
poral envelope with four-level atoms (defined in Fig. 1)
using a rotating wave approximation Hamiltonian:

Ĥ(z, t) = ~ω21σ̂22 − ~∆pσ̂33 + ~(ω43 −∆p)σ̂44

− i (d31σ̂31 + d41σ̂41 + d32σ̂32 + d42σ̂42s) Ê(z, t) +H.c.
(1)

Here, σ̂ij(i, j = 1, 2, 3, 4) are the atomic operators, dij
are the dipole moments, ∆p = ωp − ω31 is the de-
tuning between the photon carrier frequency and the
F = 1↔ F ′ = 1 transition, and Ê(z, t) is the slow enve-
lope of the single photon field (positive frequency part).
We obtain the spatio-temporal evolution of quantum dy-
namics of both the atomic ensemble and the photon field
by solving the coupled Maxwell-Bloch equations. Our
simulations account for the full physical system, which in
the D1 line in 87Rb atoms contains two hyperfine ground
states (F = 1, 2) and two excited states (F ′ = 1, 2). We
use a Doppler width of 500 MHz and a pressure broaden-
ing of 300 MHz to account for the two broadened man-
ifold resonances (separated by 6.834 GHz), each with a
FWHM resonance of 800 MHz. Our model is described

in detail in SM Section V.

The comparison between this quantized model and the
measured histograms is shown in Fig. 3. The solid blue
lines in Fig. 3 (a-e) demonstrate the simulated intensity
|E(z = 5 cm, t)|2, for the initial temporal envelope Eeff(t),
after propagation through the 5 cm cell. We emphasize
that all parameters in this model are the same except for
the various ensemble temperatures. The global agree-
ment between the numerical model and the experimental
data enables us to make inferences about additional phys-
ical phenomena occurring in fast resonant quantum light-
matter interactions. More details on our benchmarking
between simulation and experiment are explained in SM
Section VI.

By simulating the evolution of the relevant density ma-
trix elements in time and space as the resonant pulse
propagates through the cell [Fig. 4], we observe novel
dynamics as compared to the off-resonant interactions
reported previously [24, 27, 29]. The simulated evolution
of the resonant photon field |E(z, t)|2 shows the creation
of several time-dependent oscillations [36]. These are also
present in the density matrix element ρ31(z, t), corre-
sponding to the polarizability of the resonant transition
F = 1 ↔ F ′ = 1. At deeper propagation depths, oppo-
sitely phased oscillations develop between |E(z, t)|2 and
ρ31(z, t), indicating the formation of a light-matter po-
lariton. Analogously, a polariton forms between |E(z, t)|2
and ρ41(z, t), corresponding to F = 1 ↔ F ′ = 2 transi-
tion. Additionally, we observe in-phase oscillations be-
tween ρ31(z, t) and ρ41(z, t) testifying to the formation
of a non-linear coupled system, in the form of an atomic
V-scheme. Lastly, we observe the formation of an excited
coherence ρ43(z, t), which outlasts the original duration
of the input pulses by a factor of ∼ 20.

To highlight these novel features, we plot the atomic
ensemble energy [defined in SM Section VII], and co-
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Figure 3. (a-e): Benchmarking the simulation (blue line) against deconvoluted experimental data (red area) for different cell
temperatures. All simulations are conducted with the same parameters except for different ensemble temperatures to achieve
a global fit with the data. We used an effective Gaussian temporal profile with 77.56 ps FWHM as input. Deconvoluted data
at each temperature is obtained from the measured histogram (yellow dashed line) deconvoluted with the exponential decay
(purple dashed line) and is normalized to the 55◦C data. (f) The effective Gaussian spectrum used in the simulation (blue line)
and the measured spectrum (red line).

herence ρ31(t), ρ41(t), ρ43(t) for the largest propagation
depth, z = 5 cm, at different cell temperatures[Fig. 5].
Here we observe the ensemble energy remains non-zero
for times far beyond the original temporal length of the

(a) (b)

(c) (d)

Figure 4. Simulated spatio-temporal distribution of (a) pho-
ton field intensity, (b,c) atomic density matrix off-diagonal el-
ements corresponding to the coherences between excited state
|3〉, |4〉 and the ground state |1〉, (d) the coherence between
the two excited states. The simulation shows the evolution in
a time span of 1.5 ns, across the 5 cm rubidium cell at 75 ◦C.

incoming pulse. Our interpretation of these findings is
that the ensemble retains the original optical excitation
in the form of a coherent superposition of the atomic ex-
cited states, akin to what a storage-of-light procedure
achieves in the ground states. This is independently
verified by the evolution of the exited state coherence
ρ43(t). Most noticeably, as temperature increases, the co-
herences ρ31(t) and ρ41(t) become coupled, following the
quasi-simulton-like dynamics discovered in [37]. In our
case, we use single photons in a superposition of many
frequency modes, two of which interact simultaneously
with the two coupled atomic transitions, thus creating a
superposition of two single-photon polaritons, what we
call a quantum quasi-simulton.

In summary, we have found a novel regime of coher-
ent dynamics in which short single photons from GaAs
quantum dot are modified by their propagation in a res-
onant 87Rb ensemble. We modeled the coherent quanta
exchange between the single-photon field and the atomic
ensemble, and benchmarked the model experimentally.
The predicted features of the system provide a promising
pathway toward developing non-linear photonic quantum
devices. The formation of long-lived atomic coherence in
the system could be used to store short photons with a
user-defined retrieval time by replacing one of the arms of
the V-scheme with a time-modulated classical field. Ad-
ditionally, the quantum quasi-simulton dynamics could
be used to construct non-linear photon-photon gates by
sending two independent narrower-in-frequency photons
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herence absolute values at propagation depth z = 5 cm.

in the same V-scheme. Naturally, these techniques are
of great interest in the context of creating large hybrid
quantum networks. We envision pursuing these topics in
future experiments.
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J.-P. Jahn, R. J. Warburton, and P. Treutlein, Phys.
Rev. Lett. 119, 060502 (2017).

[15] K. T. Kaczmarek, P. M. Ledingham, B. Brecht, S. E.
Thomas, G. S. Thekkadath, O. Lazo-Arjona, J. H. D.
Munns, E. Poem, A. Feizpour, D. J. Saunders, J. Nunn,
and I. A. Walmsley, Phys. Rev. A 97, 042316 (2018).

[16] G. Buser, R. Mottola, B. Cotting, J. Wolters, and
P. Treutlein, PRX Quantum 3, 020349 (2022).

[17] R. Finkelstein, E. Poem, O. Michel, O. Lahad, and
O. Firstenberg, Science Advances 4, eaap8598 (2018).

[18] P. S. Michelberger, T. F. M. Champion, M. R. Sprague,
K. T. Kaczmarek, M. Barbieri, X. M. Jin, D. G. England,
W. S. Kolthammer, D. J. Saunders, J. Nunn, and I. A.
Walmsley, New Journal of Physics 17, 043006 (2015).

[19] K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C.
Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley,
Nature Photonics 4, 218 (2010).

[20] C. Schimpf, M. Reindl, F. Basso Basset, K. D. Jöns,
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G. Weimann, Physical Review Letters 73, 1138 (1994).

[34] S. Stufler, P. Machnikowski, P. Ester, M. Bichler, V. M.
Axt, T. Kuhn, and A. Zrenner, Physical Review B 73,
125304 (2006).

[35] V. Weisskopf and E. Wigner, Zeitschrift für Physik 63,
54 (1930).

[36] U. Kallmann, S. Brattke, and W. Hartmann, Physical
Review A 59, 814 (1999).

[37] T. P. Ogden, K. A. Whittaker, J. Keaveney, S. A. Wrath-
mall, C. S. Adams, and R. M. Potvliege, Phys. Rev. Lett.
123, 243604 (2019).



SUPPLEMENTARY MATERIALS
Coherent Quantum Interconnection between On-Demand Quantum Dot Single

Photons and a Resonant Atomic Quantum Memory

Guo-Dong Cui(崔国栋),1, ∗ Lucas Schweickert,2, ∗ Klaus D. Jöns,2, 3, † Mehdi Namazi,1 Thomas Lettner,2

Katharina D. Zeuner,2 Lara Scavuzzo Montaña,2 Saimon Filipe Covre da Silva,4 Marcus Reindl,4

Huiying Huang(黄荟颖),4 Rinaldo Trotta,4, 5 Armando Rastelli,4 Val Zwiller,2 and Eden Figueroa1, 6, ‡

1Department of Physics & Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA
2Department of Applied Physics, Royal Institute of Technology,

Albanova University Centre, Roslagstullsbacken 21, 106 91 Stockholm, Sweden
3Institute for Photonic Quantum Systems (PhoQS),

Center for Optoelectronics and Photonics Paderborn (CeOPP),
and Department of Physics, Paderborn University, 33098 Paderborn, Germany∗

4Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, 4040, Austria
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I. EXPERIMENTAL SETUP

The experiment setup of our hybrid quantum platform is demonstrated in Fig. SM1. It consists of three main
parts. The first part is the quantum-light source, which generates on-demand pairs of entangled photons, with one
photon of the pair specifically tuned to generate quantum fields at the rubidium D1 line. In the second part, we shine
the temporally short single photons onto a room temperature rubidium ensemble, thereby coherently controlling the
temporal wave function of the short single photons by the on-resonance interaction with the rubidium atoms. Lastly,
after atomic interaction, we detect the photons using a superconducting nanowire single-photon detector (SNSPD).
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Figure SM1. Combined setup to interface quantum dot single photons and a rubidium light-matter interface. Upper left:
Pulsed laser system for single quantum dot excitation. Upper center quantum dot single photon production. Upper right:
spectral characterization of the quantum dot photons. Lower center: quantum memory setup including rubidium room
temperature ensemble. Bottom right: single photon detection after interaction.

II. QUANTUM DOT SAMPLE

The quantum dot sample was grown by molecular beam epitaxy at the JKU in Linz. First a bottom distributed
Bragg reflector made of 9 pairs of λ/4-thick Al0.95Ga0.05As (68.9 nm) and Al0.2Ga0.8As layers is deposited as a mirror
for a λ-cavity. The quantum dot layer is located at the center of the λ-cavity made of a λ/2-thick (123 nm) layer of
Al0.4Ga0.6As sandwiched between two λ/4-thick (59.8 nm) Al0.2Ga0.8As layers. The quantum dot layer is fabricated
by Al-droplet etching [1, 2] on the Al0.4Ga0.6As layer followed by deposition of 2 nm GaAs. The top mirror for the
cavity is made of two pairs of the same material combination as the bottom distributed Bragg reflector. To protect the
structure a 4 nm-thick GaAs protective layer covers the final sample. The QD design emission wavelength is centered
around ∼ 790 nm and a gradient in the mode position (Q factor of about 50) is generated by stopping the substrate
rotation during the top Al0.2Ga0.8As cavity-layer deposition. The cavity design together with solid immersion lens
enhances the collection efficiency by ∼ 30 times compared to an unstructured sample.

III. PIEZO-ACTUATOR INTEGRATION

To achieve stable and precise energy tuning of our quantum dot emission into resonance with the rubidium D1

F = 1 → F ′ = 1 transition we integrate the GaAs quantum dot structure on a gold coated PMN-PT piezoelectric
actuator (TRS technologies, thickness of 200µm, 〈001〉 orientation). The quantum dot sample is mechanically thinned
using diamond-based abrasive films and transferred on the piezo-electric substrate with a bendable soft tip in pick
and place method, taking advantage of electrostatic forces. We use cryogenic epoxy (Stycast, two component resin)
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Figure SM2. Color-coded photoluminescence spectra of the XX transition tuned in and out of resonance of rubidium D1

transition. The horizontal line is a narrow-band cw laser locked to the Rubidium D1 line 5S1/2F = 1 → 5P1/2F
′ = 1 transition

as a reference.

resulting in a rigid connection between the sample and the piezo-actuator with good thermal contact. More details
on the quantum dot sample transfer on the piezo-electric substrate can be found in Ref. 3. To verify the reversible
emission energy tuning we performed several piezo-actuator voltage sweeps. Fig. 2 in the main text shows the tuning
of the quantum dot emission by the application of a DC voltage to the piezoelectric actuator, the emission is compared
to a laser locked to the rubidium D1 line 5S1/2 F = 1 → 5P1/2 F

′ = 1 transition. Our device can be repeatably tuned
in and out of resonance with a much higher precision than the resolution of the spectrometer [see Fig. SM2].

IV. EFFECTIVE PHOTON FREQUENCY AND TEMPORAL PROFILES

To characterize the spectrum of quantum dot photons with respect to the desired Rb resonance, a high-resolution
photoluminescence spectroscopy (HRPL) setup is employed with the help of a tunable fiber-coupled Fabry-Pérot
interferometer that could resolve 70 MHz and has a free spectral range (FSR) of 20 GHz. The measured spectral
lineshape of the bi-exciton (XX) photon is presented in Fig. SM3.
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Figure SM3. Spectrum of quantum dot photon. The horizontal axis is the detuning of the Fabry-Perot interferometer from 87Rb
D1 transition F = 1 ↔ F ′ = 1 line in GHz. Green dots: transmitted photon histograms through Fabry Perot interferometer
at different resonance frequencies. Red curve: fitted spectrum using two added Voigt intensity profiles. One of them is the
convolution of a Lorentzian with FWHM of 1.18 GHz (corresponding to the 134 ps measured lifetime) and a Gaussian with a
variance of 1.31 GHz (corresponding to spectral diffusion broadening). The other, centered at -4 GHz away, is the convolution
of a Lorentzian with FWHM of 1.19 GHz and a Gaussian with a variance of 4.62 GHz (corresponding to the photon sideband).
Blue curve: the effective Gaussian spectrum used to capture the dominant dynamics in our simulation. The FWHM is fitted
to be 5.69 GHz using one Gaussian profile. Insert: the effective Gaussian intensity profile versus time, that is obtained via
the inverse Fourier transformation from the effective Gaussian spectrum. The FWHM is calculated to be 77.56 ps. It is used
as the input single-photon temporal profile in the quantum photon-atom interaction simulation.
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In order to perform our simulation of the single-photon dynamics, we use an effective frequency spectrum of the
quantum dot single photon as seen by the atomic ensemble. This can be represented by a Gaussian profile, as
indicated in the blue profile presented in Fig. SM3. The effective line-shape width is determined by a Gaussian fit to
the measured spectrum. This follows the form:

Seff(ν) ∝ e−4 ln(2) ν2

∆ν2 (1)

The full width at half maximum (FWHM) is ∆ν = 5.69 GHz. From the inverse Fourier transformation of the effective
frequency spectrum, we get the effective temporal profile of the photon in the time domain:

Ieff(t) ∝ |Eeff(t)|2 ∝
∣∣∣FT−1

[√
Seff(ν)

]
(t)
∣∣∣
2

∝ e−4 ln(2) t2

∆t2 (2)

where the photon’s FWHM in time is calculated to be ∆t = 77.56 ps. This is displayed in the inset of Fig. SM3 and
it is the input of our master equation simulation to calculate the atomic dynamics.

V. MAXWELL-BLOCH EQUATIONS SIMULATION OF LIGHT-MATTER INTERACTION

We assume that the field transverses the atoms in z direction with linear polarization along y direction. It is
convenient to define positive- and negative-frequency parts of the field.

E(z) := E+(z) + E−(z) (3)

where E+(z) ' i
√

~ωp
2V ε0

∑
k ake

ikz and E−(z) = E†+(z). Here ωp is the central frequency of the quantum dot photon

profile (probe). Since there is no external field, the choice of quantization axis for an atom could be random. We
define the quantization axis also in y direction, same as the photon linear polarization axis. Thus the photon will
induce π transitions of the atoms in this convention. In the Schrödinger picture, the Hamiltonian of all the atoms
located at different position z interacting with the same field can be written as (the definition of the atomic sublevels
is presented in Fig. 1 of the main text).

HN =
N∑

n=1

~
(
ω11σ

(n)
11 + ω22σ

(n)
22 + ω33σ

(n)
33 + ω44σ

(n)
44

)
−

N∑

n=1

d(n)
y (E+(zn) + E−(zn)) +

∑

k

~ωka†kak (4)

where E(zn) is the field value at the position of the nth atom.

To move everything into the interaction picture, we first consider the photon field part. Choose H ′ph :=
∑
k ~ωka

†
kak.

Field operators in interaction picture is calculated via unitary operator Uph(t) = e−iH
′
pht/~ and can be expressed as

E+(z, t) = U†ph(t)E+(z)Uph(t) := E(z, t)e−i(ωpt−kpz), E−(z, t) = E†+(z, t) where kp := ωp/c is the central wave
vector and a slowly varying envelope is assumed to be

E(z, t) :' i
√

~ωp
2V ε0

∑

k

ake
−i(δωk t−δk z) (5)

where δωk := ωk−ωp, and δk := k−kp. For the picture transformation for the nth atom we adopt a spatially rotating

unitary operator U
(n)
atom(z, t) = e−

i
~H

′(n)
atom(t− znc ), with unperturbed atomic Hamiltonian H

′(n)
atom := ~ωp

(
σ

(n)
33 + σ

(n)
44

)
.

Thus the picture transformation operator for the whole system could be defined as

UN (t) =
N∏

n=1

⊗
[(
σ

(n)
11 + σ

(n)
22

)
+ e−i(ωpt−kpzn)

(
σ

(n)
33 + σ

(n)
44

)]
⊗ e−i

∑
k ωka

†
kakt (6)

The dipole moment operator is d
(n)
y (t) =

(
d

(31)
y σ

(n)
31 + d

(41)
y σ

(n)
41 + d

(32)
y σ

(n)
32 + d

(42)
y σ

(n)
42

)
ei(ωpt−kpzn) +h.c. in the inter-

action picture. Similarly, the Hamiltonian of the whole system is defined byHN (t) = U†N (t)
(
HN −

∑
nH

′(n)
atom −H ′ph

)
UN (t),

from which one gets

HN (t) =
N∑

n=1

~
(
ω21σ

(n)
22 −∆pσ

(n)
33 + (ω43 −∆p)σ

(n)
44

)

−
N∑

n=1

(
d(31)
y σ

(n)
31 + d(41)

y σ
(n)
41 + d(32)

y σ
(n)
32 + d(42)

y σ
(n)
42

)
E(zn, t) +H.c.

(7)
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Here ∆p := ωp−ω31 is the detuning between the photon carrier frequency and the F = 1↔ F ′ = 1 transition. σ̂ij :=

|i〉 〈j| represent the atomic operators. We use dipole moment matrix elements [4] d
(31)
y := 1

2
√

3
dfine, d

(41)
y :=

√
5

2
√

3
dfine,

d
(32)
y :=

√
5

2
√

3
dfine and d

(42)
y :=

√
5

2
√

3
dfine, with dfine = 3.588× 10−29 C·m being the fine transition dipole moment of D1

line. The continuous limit of the Hamiltonian is

H(z, t) =~ω21σ22 − ~∆pσ33 + ~ (ω43 −∆p)σ44

−
(
d(31)
y σ31 + d(41)

y σ41 + d(32)
y σ32 + d(42)

y σ42

)
E(z, t) +H.c.

(8)

In the above expression, a position-independent term like ω31σ22 means that this term is a common property that any
atom in the ensemble has regardless of its position, while a position-dependent term like E(z, t) gives specific value for
an atom at that position. The many-body Hamiltonian in Eq.(7) is thus mapped into its continuous limit in Eq.(8).
Similarly, the dipole moment operator in continuous limit becomes

dy(z, t) =
(
d

(31)
y σ31 + d

(41)
y σ41 + d

(32)
y σ32 + d

(42)
y σ42

)
ei(ωpt−kpz) +H.c..

The time evolution of atomic ensemble is governed by the Lindblad master equation [5, 6]:

∂ρ(z, t)

∂t
= − i

~
[H(z, t), ρ(z, t)] +

∑

eg

Γeg
2

(2σgeρ(z, t)σeg − σeeρ(z, t)− ρ(z, t)σee) (9)

where e = 3, 4 are excited states, g = 1, 2 are ground states. We use the atomic polarization decay rates
(Γ31,Γ32,Γ41,Γ42) = (1

6 ,
5
6 ,

1
2 ,

1
2 ) Γ, and the spontaneous emission rate Γ = 2π × 5.746 MHz.

Meanwhile, the propagation of the single photon field slow envelope is governed by the Maxwell’s equation
(
∇2 − 1

c2
∂2

∂t2

)
E(z, t) = µ0

∂2

∂t2
Py(z, t) (10)

The left-hand-side (LHS) of the equation can be expressed as i
2ωp
c2

(
∂E(z,t)
∂t + c∂E(z,t)

∂z

)
e−i(ωpt−kpz) +H.c. in the slow

envelope approximation. The right-hand-side (RHS) of the equation can also be simplified noticing that expectation
of dipole moment operator is

〈Py(z, t)〉 := nTr[dy(z, t) ρ(z, t)] = n
(
d

(31)
y ρ13(z, t) + d

(32)
y ρ23(z, t) + d

(41)
y ρ14(z, t) + d

(42)
y ρ24(z, t)

)
ei(ωpt−kpz) + H.c..

After comparing the same oscillating terms on both the LHS and RHS of Maxwell’s equation, one gets first-order
propagation of the single photon field

(
∂

∂t
+ c

∂

∂z

)
E(z, t) = i

ωpn

2ε0

[
d(13)
y ρ31(z, t) + d(23)

y ρ32(z, t) + d(14)
y ρ41(z, t) + d(24)

y ρ42(z, t)
]

(11)

We use a Matlab routine to solve the coupled set of Maxwell-Bloch equations (Lindbladian master equation (9) and
the first order Maxwell’s equation (11)), using as input the fitted effective Gaussian distribution in time Eeff(t) and
obtained all the elements of the atomic density matrix. This provides full knowledge of the dynamics involved in the
light-matter interface.

VI. COMPARISON OF SIMULATION WITH EXPERIMENTAL DATA

So far, our simulation has only taken into account the frequency spread of the quantum dot photon. However, we
have not considered the time uncertainty in the emission of the photons, which is provided by the Wigner-Weisskopf
theory [7] applied to the bi-exciton transition. To characterize the time uncertainty in the emission of the photon,
we excite the quantum dot with a pulsed laser at an 80 MHz repetition rate. After cross-polarization filtering and
transmission spectrometer, only the bi-exciton photons are collected and time-tagged in SNSPD. Here we emphasize
that there is no atomic interaction before the measurement.

Fig. SM4 shows the measured temporal envelop of the quantum dot photons (solid black line). We fit the measured
histogram using an exponentially modulated Gaussian function (EMG)

emg(t; t0,∆t, τ) :=
1

2τ
exp

(
− t− t0

τ
+

∆t2

16 ln(2) τ2

)
erfc

(
−2
√

ln(2)
t− t0

∆t
+

∆t

4
√

ln(2)τ

)
(12)

The EMG represents the convolution of the effective Gaussian temporal envelope of the photon together with a time
uncertainty that has an exponential decay form, with a fitted lifetime τ = 134 ps. The EMG-fitted Gaussian temporal
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Figure SM4. The temporal profile of the quantum dot photon. The black line shows the EMG fitting of the measured photon
temporal histograms from an SNSPD measurement. The EMG is the convolution of an exponential decay profile (dashed purple
line, with a fitted lifetime of 134 ps) and a Gaussian function (red solid line, FWHM 77.56 ps). An example photon temporal
profile applied to the simulation is marked in the yellow area plot.

profile has a FWHM of ∆t = 75.35 ps, which is in good agreement with the 77.56 ps derived from the spectrum
discussion in Section IV. The colored Gaussians in Fig. SM4 represent photons arriving at different times weighted
by the exponentially decaying probability.

Figure SM5. (a-e) Benchmarking the convoluted simulations (thick dashed blue lines) against the experimental data (thick
red lines) at five temperatures. The simulated dynamics of the photon envelops reaching the ensemble at different times are
represented by the individual thin lines, one of which is highlighted in the yellow area for each temperature. The individual
simulations are weighted by the 134 ps exponential decay function following their arrival times, then integrated to form the
convoluted simulation. All the simulations are conducted using an identical set of parameters except for ensemble temperatures.
The incident photon field amplitude is the only free global parameter and is optimized for the multi-temperature fit between
the simulations and the data. The raw data are normalized to the 55◦C peak. (f) The red line represents the measured photon
spectrum. The effective Gaussian spectrum used in our simulation is shown in the blue line. The horizontal axis represents the
detuning from 87Rb D1(F = 1 ↔ F ′ = 1) line.

We use these fits to account for the time uncertainty in the measured histograms obtained after transmitting the
photons through the atomic ensemble (thick red lines in Fig. SM5 (a-e)). This is done by convoluting the simulated
dynamics (colored thin lines) with the fitted 134 ps exponential decay profile mentioned above. The results of this
procedure are shown in the dashed blue lines for different ensemble temperatures. These results match well with the
measured histograms, justifying the procedure. Furthermore, we mention that all the parameters remain identical
among the simulations (defined as global parameters), except for different ensemble temperatures (defined as local
parameters). The amplitude of the original photon envelope is the only free global parameter, which is varied to
obtain a multi-temperature fit that best describes the experimental data globally.

In Fig. SM6, we show the inverse to the procedure described in Fig. SM5. We compare the simulated photon
dynamics (blue lines) against the deconvoluted experimental histograms (red areas). These histograms are obtained
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from the directly measured histograms (dashed yellow lines), deconvoluted with the 134 ps exponential decay profile
(dashed purple lines), in order to remove the time uncertainty of the spontaneous emission. Thus they correspond to
the photon temporal envelopes reaching the ensemble at a well-defined time, which is the main input to the simulation.
This is the procedure use to obtain the figures in the main manuscript. The global agreement between the numerical
simulation and the experimental data enables us to make inferences about the various physical phenomena mentioned
in the main text.
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Figure SM6. (a-k) Benchmarking the simulations (blue lines) against the deconvoluted experimental data (red areas). The
deconvoluted data at each temperature is obtained from the measured histogram (dashed yellow line) deconvoluted with the
exponential decay (dashed purple line), and is normalized to the 55◦C peak. The simulations are done with the same set of
global parameters for different temperatures. We use an effective Gaussian temporal profile with 77.56 ps FWHM as the input
field. The field amplitude is the only free global parameter that is varied to fit all the simulations with the data simultaneously.
(l) The spectrum of the simulated effective photon is shown in the blue curve and the measured one in the red line.

VII. ENSEMBLE ENERGY ACCUMULATION

Once the atomic density matrix elements are obtained in our simulation, we calculate the additional ensemble energy
gained by the atomic ensemble after interacting with the photons. We choose the ground state |1〉 as a reference and
define the total ensemble energy relative to that. The energy stored in the atomic ensemble at a specific time t is
then defined as

Energy(t) =
N∑

n=1

~
(
ω21ρ

(n)
22 (t) + ω31ρ

(n)
33 (t) + ω41ρ

(n)
44 (t)

)
(13)

where N is the total number of atoms inside the crossed volume of the photon path with the atomic ensemble, and

ρ
(n)
ii (t) (i = 2, 3, 4) are the diagonal density matrix elements of the nth atom at a specific time t. For convenience, the

energy could also be defined in units of the photon energy (quanta) ~ωp. We use this definition in Fig. 5 of the main
text that corresponds to 75◦C, as well as Fig. SM7 that corresponds to all the eleven temperatures.

As the energy accumulation is a function of the atomic populations, we show in Fig. SM8 the simulated spatio-
temporal evolution of the atomic populations for the four levels as a function of time and propagation depth at 75
◦C.
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R. Trotta, F. Ding, J. Stangl, V. Zwiller, G. Bester, A. Rastelli, and O. G. Schmidt, Nat Phys 10, 46 (2014).
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Figure SM7. Calculated ensemble energy accumulation using the simulated atomic density matrix elements during and after
the quantum dot photon passes through the ensemble. Here we follow the definition of the relative ensemble energy in Eq.(13).
The calculation covers the 11 temperatures for which experiments have been done. The energy gain is defined in units of ~ωp.
It can be shown that part of the photon energy is retained in the atomic ensemble after it propagates through the cell. And
this storage time is more than 20 times longer than the effective photon time width.

(a) (b)

(c) (d)

Figure SM8. Simulated spatio-temporal evolution of the diagonal density matrix elements that represent population evolution
during- and after the interaction with quantum dot photon when the cell temperature is at 75 ◦C. (a-b) Population drop in
the ground states |F = 1(2)〉 of D1 transition compared with their thermal equilibrium values before the photon enters. (c-d)
Population increase in the excited states |F ′ = 1(2)〉.
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