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Since the discovery of topological insulators, topological phases have generated considerable attention across the
physics community. The superlattices in particular offer a rich system with several degrees of freedom to explore a
variety of topological characteristics and control the localization of states. Albeit their importance, characterizing
topological invariants in superlattices consisting of a multi-band structure is challenging beyond the basic case of
two-bands as in the Su–Schreifer–Heeger model. Here, we experimentally demonstrate the direct measurement of
the topological character of chiral superlattices with broken inversion symmetry. Using a CMOS-compatible
nanophotonic chip, we probe the state evolving in the system along the propagation direction using novel nano-
scattering structures. We employ a two-waveguide bulk excitation scheme to the superlattice, enabling the iden-
tification of topological zero-energy modes through measuring the beam displacement. Our measurements reveal
quantized beam displacement corresponding to 0.088 and −0.245, in the cases of trivial and nontrivial photonic
superlattices, respectively, showing good agreement with the theoretical values of 0 and −0.25. Our results provide
direct identification of the quantized topological numbers in superlattices using a single-shot approach,
paving the way for direct measurements of topological invariants in complex photonic structures using tailored
excitations with Wannier functions.
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1. INTRODUCTION

Since the discovery of superlattices in 1925 by Johansson and
Linde [1] in X-ray diffraction experiments, there has been a
tremendous interest in their properties in the fields of optics
and condensed matter physics [2–5], which led to the realiza-
tion of key enabling technologies such as the quantum cascade
lasers [6]. The topology of the band structure is particularly
important. It provides new means of controlling light propaga-
tion and simulating topological phases of matter in optics
[7–12]. Furthermore, edge states in topological lattices exhibit
resistance to disorder as they are protected from backscattering
on the band structure level [13,14].

A 1D lattice of dimers, famously labeled the Su–Schrieffer–
Heeger (SSH) model [15], or specifically SSH2 referring to the
two lattice sites per unit cell, provides the simplest system with
topologically trivial and nontrivial edge states [16], and has
been widely studied in different physical platforms [17–21].
From a topology perspective, higher-order superlattices SSHM ,
with M sites per unit cell [22–24], enable a larger parameter

space with multi-band structure for photonic state engineering.
The SSH4 model shows richer physics with the simultaneous
existence of topologically trivial and nontrivial states.
Meanwhile, directly probing the Zak phase in SSH4 photonic
lattice enables designing the system parameters to tune the
number of topologically protected states, paving the way for
topologically protected and robust mode-division multiplexing
in photonic networks through manipulating the coupling
strengths between waveguides. In a series of experiments, topo-
logical invariants have been probed through several techniques
such as Bloch oscillations [25] and quantum walks [26–30].
However, a larger number of bands can limit the use of imaging
techniques to identify protected edge localized states, as topo-
logical and nontopological states can coexist in different bands
[22]. The probing of such a multi-band structure has proved to
be challenging beyond the dimer SSH2 case. A more general
approach would be to infer the Zak phase of a particular band
through using the beam displacement approach, with Wannier
function input. Although this measurement scheme is general
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and can be applied to a superlattice with arbitrary number of
sites in the unit cell, the Wannier function excitation technique
is difficult to implement experimentally, requiring precise con-
trol of the field amplitudes and phases in each individual lat-
tice site.

2. CHIRAL SUPERLATTICES WITH BROKEN
INVERSION SYMMETRY

We experimentally simplify the Wannier function excitation
and realize direct measurement of the topological character
in an engineered chiral SSH4 system with broken inversion
symmetry [22]. The schematic of the designed system is shown
in Fig. 1(a). It consists of a superlattice with four waveguides
per unit cell with equal on-site potential. The Hamiltonian is
presented in Eq. (1), with only nearest neighbor coupling
between lattice sites:

Ĥ �
X
n

X3
l�1

�t l â†n,l ân,l�1 � τâ†n,M ân�1,1 �H:c:�: (1)

â†n,l , ân,l are the creation and annihilation operators at cell n
and lattice site l . t1−3 and τ are the coupling amplitudes be-
tween lattice sites within each cell and between different cells,

respectively. The topological character of the band structure is
directly related to the Zak phase γ of the band. The Zak phase is
calculated by integrating the Berry connection along the wave
vector axis in the Brillouin zone. We employ S to represent
the bandgaps in a system. Our superlattice model shown in
Fig. 1(a) contains S � 3 bandgaps. The topology of the nth
bandgap, where n � 1, 2,…, S − 1, is characterized by the
gap topological number N n, which is defined as the sum of
Zak phases of all the filled bands below n [22,23]:

N n �
Xn
i�1

γi : (2)

The Hamiltonian in Eq. (1) can exhibit topologically non-
trivial N values in all three bandgaps for a superlattice with
inversion symmetry satisfying t1 � t3. Alternatively, in the case
of broken inversion symmetry only N 2 shows topologically
protected quantized values for different intercell coupling τ,
which is not the case for N 1 and N 3. Figure 1(b) shows a si-
mulated band structure of our superlattice with 15 cells; as the
intercell coupling amplitude τ is tuned, the intracell coupling
amplitudes are kept constant at t1 � 0.0587, t2 � 0.0503,
and t3 � 0.0902. We notice that the first and third bandgaps
never close, with the emergence of left and right edge nonto-
pological states within the bandgap at different energies. The
case is different for the bandgap centered at zero energy, where
we can see the closing and reopening of the bandgap at
τ0 � t1t3∕t2, with the emergence of energy-degenerate right
and left edge localized topologically protected states in the
superlattice. The bandgap number N 2 takes quantized values
of 0 and π, for τ smaller and larger than t1t3∕t2, respectively.
For an arbitrary input to the lattice, the beam displacement
D�z� can be utilized to quantify the deviation of the light beam
from the center point as light propagates in the lattice.D�z� can
be directly related to the Zak phase of the band using a
Wannier function. Such an input can uniformly excite the low-
est S-bands of the superlattice:

D�z� � �1∕z�
Z

z

0

dξ
X∞
n�−∞

nhan�ξ�jan�ξ�i: (3)

As this is rather challenging to achieve experimentally, it was
shown in Ref. [22] that bulk excitation in a superposition state
of the first and third waveguides in the central cell an�0� �
�1∕ ffiffiffi

2
p ��1,0,eiθ1,0�� can predict the topological phase through

the beam displacement measurement. The beam displacement
then takes two quantized values:

D �
�
0, for τ < τ0
−0.25, for τ > τ0

: (4)

For the superlattice parameters in Fig. 1(b), τ0 � 0.106.
Figures 2(a) and 2(b) show the simulated light evolution in
two superlattices with different intercell coupling τ1 � 0.052
and τ2 � 0.194, respectively. Each superlattice consists of 15
cells, among which the bulk eighth cell was used for excitation
a8 � �1∕ ffiffiffi

2
p ��1,0,1,0�; only the first and third waveguides in

the central cell are excited equally and in phase. Figure 2(c)
presents the numerically calculated beam displacement using

Fig. 1. (a) Schematic of an SSH4 superlattice. The lattice consists of
four sites per unit cell, with intracell coupling amplitudes t1−3 and
intercell coupling amplitude τ. (b) Energy spectrum at different inter-
cell coupling amplitude τ. The intracell coupling amplitudes are fixed
at t1 � 0.0587, t2 � 0.0503, and t3 � 0.0902. As the intercell cou-
pling amplitude is increased, the first and third bandgaps never close.
The situation is different for the bandgap centered at zero energy,
where we can see the closure and reopening of the bandgap at
τ0 � t1t3∕t2 together with the appearance of energy-degenerate right
and left edge localized topologically protected states. Two regions are
highlighted I and II, which correspond to the topologically trivial and
nontrivial bandgap number N 2, respectively.
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Eq. (3) for different propagation lengths. The results confirm
the theoretical prediction of quantized values of the beam dis-
placement corresponding to the topological nature of the sec-
ond bandgap number N 2. The dotted lines in Fig. 2(d),
corresponding to the left y axis, show calculated beam displace-
ment at propagation distance of 200 μm versus the phase differ-
ence between the two excited sites, for the two superlattices in
Figs. 2(a) and 2(b). The solid line, corresponding to the right y
axis, shows the difference between the beam displacement in
the trivial and nontrivial superlattices. The result indicates that,
even for large variations in the input phase, there is a clear dis-
tinction between the beam displacement measurement for dif-
ferent topological phases, making the experimental realization
both robust and feasible.

3. EXPERIMENTAL MEASUREMENT OF
TOPOLOGICAL INVARIANTS

A CMOS-compatible Si3N4 photonic platform [31,32] is used
to implement the engineered superlattices. Each waveguide
representing a superlattice site has a dimension of 500 nm ×
250 nm, with SiO2 and poly(methyl methacrylate) (PMMA)
as the bottom and top cladding, respectively. Mode simulations
are used to calculate the superlattice site spacings to satisfy the
nearest neighbor coupling amplitudes in the model [33]. Two
superlattices were fabricated with identical intracell spacings
gt1 � 230 nm, gt2 � 250 nm, and gt3 � 170 nm, while hav-
ing two distinct intercell spacings gτ1 � 220 nm and gτ2 �
100 nm, corresponding to the topologically trivial and nontri-
vial phases. The experimental setup is shown in Fig. 3(a).

We excite the superlattice using a continuous-wave laser source
centered at 795 nm. A lensed fiber installed on a five-axis nano-
positioning stage is used to couple the light to the nanopho-
tonic chip. A polarizing beam splitter and a fiber-coupled
three-paddle polarization controller are used to selectively excite
the transverse electric (TE) mode of the waveguide. An on-chip
Y-splitter divides the input light into two pathways. The first
leads to the superlattice, while the second acts as a monitor for
the coupling efficiency and the polarization on-chip. A charge-
coupled device (CCD) camera with a 40× objective is used to
image the evolution pattern of the light along the propagation.

It is technically challenging to detect light intensity in indi-
vidual nanosized waveguides using an optical microscope since
the superlattice dimensions and spacings are below the Abbe
diffraction limitation. Here, we deliberately introduce nano-
scattering sites, in particular 50 nm gaps in the waveguides
to scatter light upward toward the imaging system, providing
means to sample the light intensity at a specific propagation
length in the superlattice. To preserve the state fidelity in
the superlattice, the nanoscattering structures are introduced
in all the odd and even cells, separated by 5 μm, which is a
length scale well below the coupling lengths in the system.
The inset of Fig. 3(a) shows a top image of the superlattice,
where the top (bottom) row gives an intensity measurement
of the light in the odd (even) cells. Using this approach, the
beam displacement is calculated using Eq. (3) by summing over
the odd and even cell numbers. Figure 3(b) shows a false col-
ored scanning electron microscope (SEM) image of the super-
lattice (yellow), integrated with a 50:50 beam splitter (green)
to excite a superposition state at the eighth cell. A reference

Fig. 2. (a), (b) Simulated light evolution pattern in superlattices. The two superlattices have the same parameters as in Fig. 1(a) band diagram,
with τ1 � 0.052 (< τ0) in (a) and τ2 � 0.194 (> τ0) in (b), corresponding to topologically trivial and nontrivial phases, respectively. Bulk excitation
is used at the eighth cell a8 � �1∕ ffiffiffi

2
p ��1,0,1,0�. (c) Beam displacement calculation of trivial superlattice (gold) and nontrivial superlattice (brown).

The numerical calculation involves summing over all the superlattice cells at different propagation distances using Eq. (3). Two quantized values of 0
and −0.25 are found in the case of trivial and nontrivial superlattices. (d) Phase difference versus beam displacement. The beam displacement (dotted
lines, left y axis) is calculated for different phases θ between the two input waveguides an�0� � �1∕ ffiffiffi

2
p ��1,0,eiθ1,0�, for the trivial phase (gold) and

the nontrivial lattice (brown). The difference between the two beam displacements in the trivial and nontrivial superlattices is shown by the green
solid line (right side y axis) with robustness.
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waveguide (green) is used to measure the transmitted light off-
chip using a 100× objective. Figure 3(c) shows a false colored
SEM image of different cells, and the scattering nanostructures
are highlighted in white.

Higher spatial frequency of the nanoscattering structures
would enable higher resolution probing of the light propaga-
tion dynamics, with a compromise of faster exponential decay
of light intensity in the superlattice. The total superlattice
length is selected to be 300 μm, with five intensity samples
taken at a period of 40 μm, which provides a balance between
the resolution and efficiency. Top images of both the trivial and
nontrivial superlattices are recorded, and the intensity distribu-
tions in the odd and even cells are extracted and normalized.
Figures 4(a) and 4(b) show simulated (black dashed line) and
measured light intensity in different cells for the trivial (gold
dotted line) and nontrivial (brown dotted line) superlattices,
respectively. Larger spread can be seen for the trivial case, with
a good agreement between simulation and measurement. Note

that no free fitting parameters are used in Figs. 4(a) and 4(b),
and the coupling amplitudes in the Hamiltonian are directly
determined from the physical parameters of the lattice.
Figure 4(c) shows the extracted beam displacement using
Eq. (3), integrated over the cells. Using the two-waveguide bulk
excitation approach, we observe beam displacement of 0.088 in
the case of trivial photonic superlattices, and −0.245 in the case
of nontrivial photonic superlattices. This is in excellent agree-
ment with the theoretical values of 0 and −0.25. Possible de-
viations in the measured values can be attributed to the
imbalanced splitting ratio and phase in the 50:50 beam splitter
due to fabrication inaccuracy, specifically the electron beam
lithography and reactive ion etching. The experimentally mea-
sured topologically invariant is comparable to the winding
number introduced in Ref. [35] for the SSH4 system, while we
introduce an experimentally feasible approach that does not
require measuring chiral average displacements.

Polarization

 controller

Z 
(μ

m
)

0

5

Laser

Camera

Top image of superlattice

PBS

Detector

(b) (c)

(a)

Fig. 3. Schematic of the experimental setup. A 795 nm CW laser is
used to excite the chip via a lensed fiber, and the TE mode of the wave-
guide is selected with a polarization controller. To confirm the excited
mode polarization in the superlattice, the chip’s output is free-space-
coupled to an optical power meter after a polarizing beam splitter.
A microscope equipped with a CCD camera is used to top-image
the light dispersed from the superlattice. To measure the light dynamics
in the SSH4 photonic lattice, nanoscattering structures are introduced
to the odd and even cells in the lattice [34], separated by a distance of
5 μm. The inset shows the top image of the lattice, where the top and
bottom rows sample the light propagating in the odd and even cells,
respectively. In total, the device has a length of 300 μm, with five sam-
pling sections measured at distances of 40, 80, 120, 160, and 200 μm.
(b) False colored SEM image of integrated photonic chip. The input
waveguide branches to the SSH4 superlattice (yellow) and the reference
port (green). A 50:50 Y-shaped beam splitter (blue) is used to excite the
superlattice in the a8 � �1∕ ffiffiffi

2
p ��1,0,1,0� state. (c) Magnified SEM im-

age of the nanoscattering structures at the odd and even cells to sample
the light intensity in the superlattice. The dotted white boxes indicate
the location of the nanoscattering structure. The scale bars in (b) and
(c) correspond to lengths of 40 μm and 2 μm, respectively.
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Fig. 4. (a), (b) Light intensity over different cells in topologically triv-
ial and nontrivial superlattices, respectively. The experimental data are
shown by the dotted lines, while the solid lines represent the numeri-
cally modeled superlattice. The coupling amplitudes in the simulated
Hamiltonian are directly determined from the chip physical dimensions
and refractive indices of different materials; no free fitting parameters
are utilized. As the propagation distance increases, the trivial superlattice
has greater spread around the input eighth cell. (c) Experimentally mea-
sured beam displacement. Measured topological invariant of the trivial
superlattice (gold) and nontrivial superlattice (brow) at different propa-
gation distances. The beam displacement is evaluated through integrat-
ing the intensitymultiplied by the cell numbers over the cell numbers in
Eq. (3). In the case of the trivial photonic superlattices, we measure a
beam displacement of 0.088, while in the case of nontrivial photonic
superlattices, −0.245. The results show good agreement with the theo-
retical values (dotted lines) of 0 and −0.25. A distinct gap can be ob-
served for the different topological phases.
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4. CONCLUSION

In summary, we directly probe the topology of SSH4 chiral
superlattices with broken inversion symmetry using a CMOS-
compatible nanophotonic device, relying on a superposition
state excitation. For the trivial and nontrivial phase photonic

superlattices, our measurements reveal quantized beam dis-
placements in close agreement with the theoretical models.
A major goal in topological physics is relating global topological
invariants with experimentally measurable quantities. Our
method of introducing nanoscattering sites to study the light
dynamics in the superlattice, offers a novel single-shot identi-
fication of quantized topological numbers, opening the path for
direct measurements of topological invariants in more complex
photonic structures and the implementation of topologically
protected multi-band devices.

APPENDIX A: CHIP DESIGN PARAMETERS

Following the theoretical model in Section 2, we design a chip
based on the silicon nitride (Si3N4) platform to realize our
single-shot detection method. The Si3N4 thickness is
250 nm, and the width of the waveguides is 500 nm. Each site
in the unit cell consists of a single Si3N4 waveguide, with SiO2

bottom PMMA top cladding. We perform ellipsometry mea-
surements to characterize the refractive index of Si3N4 and
SiO2 with excellent accuracy. The blue and green curves in
Fig. 5 represent the measured refractive indices for wavelengths
between 700 nm and 1000 nm. The light blue and green squares
indicate the refractive indices at the operating wavelength of
795 nm. The data were used to determine the design parameters
and engineer the coupling strengths in the photonic lattices.

Fig. 5. Refractive indices measured by ellipsometry. The measure-
ment is performed for wavelengths between 700 nm and 1000 nm, at
5 nm steps. The blue curve shows the refractive index of Si3N4, while
the green curve shows the refractive index of the SiO2 cladding. The
operating wavelength of the device is highlighted at 795 nm.

Fig. 6. Coupling strength between the waveguides. (a) and (b) show the real x component of the electric field for the odd and even TE modes
supported in a waveguide dimer. (c) Coupling strength per micrometer between two waveguides for different gaps. The simulated data are fitted
according to Eq. (A1) with a decay constant a of 0.0078 μm−1.
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The PMMA cladding and the asymmetric waveguide di-
mensions in the x and y directions result in breaking the degen-
eracy between the two orthogonal modes (TE and TM) in the
waveguides. However, the TMmodes for the chosen waveguide
dimensions and PMMA cladding are weakly localized. To
engineer the coupling strength between the lattice sites, we nu-
merically simulate the TE modes in a waveguide dimer,
as shown in Figs. 6(a) and 6(b), using the experimentally
measured refractive indices. The odd modes have larger refrac-
tive index than the even modes. The calculated coupling con-
stant is shown in Fig. 6(c), where C � πδn

λ0
, and δn is the

difference of the odd and even modes effective refractive indi-
ces. The coupling constant between the waveguides decays ex-
ponentially with distance:

C�x� � C0e−ax , (A1)

where x is the waveguides spacing, C0 is the maximum cou-
pling strength, and a is the decay constant. It should be noted
that the fabricated Si3N4 photonic lattice has a footprint of
hundreds of micrometers, with nanostructures fabricated and
engineered with high precision using electron-beam lithogra-
phy. The length scales in our devices are orders of magnitude
smaller than laser-written photonic lattices, which are often in
the centimeter-length scale. In such large-scale lattices several
measurements were needed to identify the central line of the
beam to probe the Zak phase [28]. This is in stark contrast
to our method, where we directly probe the topological invar-
iants in a single shot, greatly simplifying the measurement
procedure.
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