

Fock matrix construction

$$\alpha\beta|\gamma\delta\rangle = \iint \frac{\phi_{\alpha}(\mathbf{r}_1)\phi_{\beta}(\mathbf{r}_1)\phi_{\gamma}(\mathbf{r}_2)\phi_{\delta}(\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|} d^3\mathbf{r}_1 d^3\mathbf{r}_2$$

$$E[n(\mathbf{r})] = T_s[n(\mathbf{r})] + \int v^{\text{ext}}(\mathbf{r}) n(\mathbf{r}) d^3\mathbf{r} + J[n(\mathbf{r})] + E_{\text{xc}}[n(\mathbf{r})]$$
 DFT energy

$$F_{\alpha\beta} = h_{\alpha\beta} + D_{\gamma\delta} \left[(\alpha\beta | \gamma\delta) - c_{\rm HF}(\alpha\delta | \gamma\beta) \right] + F_{\alpha\beta}^{\rm xc}$$

Formally scales as ~N⁴ with screening ~N^{2.5}

Fock matrix construction: Complete property/spectrum calculations

Job type (molecule)	Method (#basis functions)	Per-core speedup (w.r.t. Beskow)	Per-node speedup (w.r.t. Beskow)
Polarizability (C60 fullerene)	B3LYP/def2-SVPD (1200)	1.07x	4.3x
C6 dispersion (C60 fullerene)	B3LYP/def2-SVPD (1200)	1.15x	4.6x
Two-photon absorption (full) (BPVB)	HF/def2-SVPD (1314)	1.23x	4.9x
Two-photon absorption (reduced) (BPVB)	HF/def2-SVPD (1314)	1.26x	5.0x
UV/vis absorption (RPA) (noradrenaline)	HF/aug-cc-pVDZ (375)	1.36x	5.4x
Circular dichroism (CPP) (noradrenaline)	HF/aug-cc-pVDZ (375)	1.55x	6.2x

Fock matrix construction: Titanium oxide nanoparticle Ti₁₆₅O₃₃₀

 Basis: DEF2-SVP

 Contr. GTOs
 Prim. GTOs

 Ti (55,3P,2D,1F)
 (145,9P,6D,1F)

 0
 (35,2P,1D)
 (75,4P,1D)

Number Contracted: **8,580** Number Primitive: **18,810**

Model Chemistries

Density-Functional Theory

Wave-Function Theory

MCSCF: Strong electron correlation

MultiPsi

- VeloxChem based multi-reference module
- Python/C++
- OpenMP/MPI
- Node-distributed memory
- NUMA aware

ELOXCHEM

Large-scale CAS calculations

- 418 billion determinants
- CI optimization
 - 22 iterations
 - 48 h
- Spin state
 - singlet by ca 5 kcal/mol

NiFe model system

Delcey et al., PCCP 2014, 16, 7927

Summary and conclusions

- Dardel will serve chemistry well
- VeloxChem efficiently
 - implements DFT-based energy and spectroscopy calculations
 - serves Gator for single-reference methods
 - serves MultiPsi for multi-reference methods

So was I wrong?

Already a fading memory...

The fundamental methods necessary for the computational treatment of the whole of **chemistry** are thus completely known, and the difficulty lies only in the fact that application of these methods is made prohibitively hard on the all too complex hardware of today.

...stay tuned for Dardel Phase II!