
INOMEXAMENSARBETE MASKINTEKNIK,
GRUNDNIVÅ, 15 HP

,STOCKHOLM SVERIGE 2021

Omnidirektionell Robot
Omnidirectional Robot

AXEL HEDVALL

FILIP RYDÉN

KTH
SKOLAN FÖR INDUSTRIELL TEKNIK OCH MANAGEMENT

Omnidirectional Robot

AXEL HEDVALL, FILIP RYDÉN

Bachelor’s Thesis at ITM
Supervisor: Nihad Subasic
Examiner: Nihad Subasic

TRITA ITM-EX 2021:29

Abstract
Robots are being used more and more in today’s society.
These robots need to be mobile and have a good under-
standing of their surroundings. This bachelor’s thesis in
mechatronics aims to see how a mobile robot can be con-
structed, and how it can best map its surroundings.

The robot was built to have three omni wheels to allow
it to move freely in the plane and stepper motors to pro-
vide accurate movement. Ultrasonic sensors were placed
around the robot to be used as a tool to determine its sur-
roundings. The brain of the robot was an Arduino UNO,
which with the help of an ESP-01, communicated with a
server over Wi-Fi. The server received the data from the
ultrasonic senors and drew a map on a web page.

Multiple test were made to evaluate the different systems.
The robot moved really well and with high precision af-
ter some tweaking. The ultrasonic sensors were also very
precise and the communication between the robot and the
server worked very well. All the different systems were com-
bined to make the robot move autonomously. The robot
could navigate by itself and avoid obstacles. Although the
mapping worked from a technical point of view, it was hard
to read and could be done better.

Keywords: Mechatronics, Omnidirectional, Omni wheels,
Wireless control, Mapping

Referat
Omnidirektionell robot

Robotar är n̊agot som används mer och mer i dagens mo-
derna samhälle. Dessa robotar behöver vara mobila och ha
en god uppfattning om miljön de befinner sig i. Detta kan-
didatexamensarbete inom mekatronik ska undersöka hur en
mobil robot kan byggas, och hur den kan kartlägga miljön
den befinner sig i.

Roboten som konstruerades hade tre omnihjul för att kun-
na röra sig fritt längs markplanet och stegmotorer för pre-
cis drift. Ultraljudsensorer placerades runt om roboten för
att ge den en uppfattning av omgivningen. Hjärnan i ro-
boten var en Arduino UNO som med hjälp av en ESP-01
kommunicerade över Wi-Fi till en server. Servern tog emot
sensordata fr̊an roboten och ritade upp det som en karta i
en webbläsare.

Det utfördes tester för att utvärdera de olika delsystemen.
Driften p̊a roboten fungerade utmärkt med god precision
efter n̊agra iterationer. Ultraljudsensorerna hade ocks̊a god
precision och kommunikationen mellan roboten och servern
fungerade mycket bra. De olika delsystemen kombinera-
des för att ge roboten självkörning. Roboten kunde navi-
gera själv och undvika hinder. Trots att kartan fungerade
ur ett tekniskt perspektiv s̊a var den sv̊artydd och kunde
förbättrats.

Nyckelord: Mekatronik, Omnidirektionell, Omnihjul, Tr̊adlös
styrning, Kartläggning

Acknowledgements

We would like to thank our supervisor during this thesis, Nihad Subasic, for the help
and feedback during the process. We would also like to thank Staffan Qvarnström
and the assistants at the laboratory, Amir Avdic and Malin Lundvall, for providing
practical help with the building process, and a final thank you to our peers for
providing opposition and feedback.

Axel Hedvall & Filip Rydén
Stockholm, May 2021

Contents

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 1
1.3 Scope . 2
1.4 Method . 2

2 Theory 3
2.1 Omni Wheels . 3

2.1.1 Kiwi drive . 3
2.2 Microcontroller . 3
2.3 Motors . 4

2.3.1 Stepper motor . 4
2.3.2 Stepper driver . 4

2.4 Ultrasonic sensor . 5
2.5 External communication . 5
2.6 Position . 5

3 Demonstrator 7
3.1 Hardware . 7

3.1.1 Microcontroller . 7
3.1.2 Stepper motor & driver . 8
3.1.3 Ultrasonic sensor . 8
3.1.4 Wi-Fi module . 8

3.2 Electronics . 8
3.3 Software . 10

3.3.1 Arduino . 10
3.3.2 Modes . 11
3.3.3 Displaying . 12
3.3.4 Server . 12

4 Tests and Results 15
4.1 Communication Test . 15
4.2 Manual Control Tests . 15

4.2.1 Test 1 . 15
4.2.2 Test 2 . 16
4.2.3 Test 3 . 16

4.3 Sensor Test . 17
4.4 Autopilot Test . 17

5 Discussion and conclusions 19

6 Further work 21

Bibliography 23

Appendices

A Acumen Simulation

B Arduino code

C Node.JS code

D control.html

E worker.js

List of Figures

3.1 Render of the prototype in Autodesk Fusion 360[17] 7
3.2 Wiring Diagram created in Fritzing[20] 9
3.3 Flowchart of the program, created with diagrams.net[21] 10
3.4 How the control panel looks. Screenshot from our web page in Google

Chrome[27] . 13

4.1 Autopilot test. Screenshot from our web page in Google Chrome[27] . . 18

List of Tables

3.1 Components used . 9

4.1 Distance tests . 16
4.2 Sensor tests . 17

Glossary

holonomic Free movement along a plane. 3, 19

kiwi drive Three omni wheels in a triangle formation. 3, 19

omni wheel A wheel with rollers along the circumference. 3, 15, 19

omnidirectional All directions. 1–3, 19

Acronyms

ALU Arithmetic Logic Unit. 4

CPU Central Processing Unit. 3

CU Control Unit. 4

DC Direct Current. 4

EEPROM Electrical Erasable Programmable Read Only Memory. 4

FoV Field of View. 5, 8, 12, 20, 21

GPS Global Positioning System. 5

I/O Input/Output. 4, 7, 8

IC Integrated Circuit. 3

LED Light Emitting Diode. 4

LiDAR Light Detection and Ranging. 21

RAM Random Access Memory. 4, 7

VCC Voltage at Common Collector. 8

Wi-Fi Wireless Fidelity. 5, 8, 9, 12, 15

Chapter 1

Introduction

1.1 Background

Today, robots are used more and more in both industry and at home. The reason
being that they are more expandable than us humans and in some cases can execute
the task more efficiently than a human.

One application where expandable robots are used is to survey environments which
are inaccessible or too dangerous for humans to enter. Robots are instead used to
gather information about the environment so that a good plan of action can be
made. This can be used to save victims stuck in a burning building, or victims after
an earthquake. A robot can also be used to survey a dilapidated building. These
robots need to have high mobility to adapt to an unknown environment.

Mobility can be defined as ”the ability to move freely or be easily moved”[1]. A com-
mon solution for robots to achieve this is to use threads or differential steering and
with that rotate on the spot to turn. If the need to turn is eliminated the mobility
would increase significantly. This can be achieved by using omnidirectional wheels
which allows free movement in any direction without turning, and instantaneous
change of direction.

1.2 Purpose

The purpose of the project was to control a ground vehicle omnidirectionally, i.e.
moves freely along the ground plane, avoid obstacles, and map the environment.
Another goal was to transmit the map to the user who can command the robot in
a specific direction. These three questions were formulated:

• What is a simple yet robust configuration of omnidirectional wheels?

• How can the sensor data be represented as a map?

1

CHAPTER 1. INTRODUCTION

• What configuration of sensors gives an adequate perception of the environ-
ment?

1.3 Scope
As this project was part of a Bachelor’s thesis, the main constraints were time and
budget. This led to the robot being constructed was a prototype to demonstrate the
technology rather than a finished product. Due to the constraints some assumptions
were made.

• The space where the robot will operate is flat.

• Speed is not important.

• The wheels do not slip.

1.4 Method
To answer the questions in section 1.2, a background study initiated the project.
This study covered different types of omnidirectional wheels and different configu-
rations of them. How to keep track of the robots position and what sensors to use
were also of importance. After the study, a simulation was created in Acumen[2],
which can be found in Appendix A. After the simulation, the components were
chosen and the construction began.

2

Chapter 2

Theory

In this chapter, the theory needed for the construction of the prototype is presented.

2.1 Omni Wheels
An omni wheel is a specific type of omnidirectional wheel. omnidirectional wheels
are a type of wheel that can move in all directions. Omni wheels have rollers
along the circumference which allows movement in the opposite direction they are
facing[3][4]. Omni wheels can be configured with different amount of wheels. A
three wheel configuration is called kiwi drive. Three wheel drive is a cheaper option
than a four wheel alternative since each wheel requires a motor and a motor driver.

2.1.1 Kiwi drive
A kiwi drive is a type of configuration with the least amount of omnidirectional
wheels to achieve holonomic drive[5]. In a kiwi drive configuration, the wheels are
placed in a circle 120° from each other with their axis pointing towards the central
point of the circle. This configuration gives a set of equations that determines
how much each wheel needs to move depending on the x and y translation, see
Equation 2.1 to 2.3.

s1 = −x (2.1)

s2 = 1/2 ∗ x−
√

3/2 ∗ y (2.2)

s3 = 1/2 ∗ x +
√

3/2 ∗ y (2.3)

Where si is the steps for each motor.

2.2 Microcontroller
A microcontroller is a programmable Integrated Circuit (IC), it can be seen as a
tiny computer; it has all the same core components. The component that performs
the written instructions is the Central Processing Unit (CPU). The CPU consists

3

CHAPTER 2. THEORY

of two parts, the Arithmetic Logic Unit (ALU) which does the calculations, and
the Control Unit (CU) which parses the instructions and feeds them to the ALU. A
microcontroller has two types of memory, Electrical Erasable Programmable Read
Only Memory (EEPROM) and Random Access Memory (RAM). The written in-
structions are saved in the EEPROM and it is preserved on a reboot. The RAM is
where temporary data is saved. The RAM is erased on reboot.

Where a microcontroller differs from a personal computer is in the Input/Output
(I/O) ports. The microcontroller uses the I/O ports to communicate with external
components. Inputs are used to detect changes or receive sensor data. Outputs can
be used to e.g. turn on an LED or control a motor[6].

2.3 Motors

Motors are used to drive wheels separately or to drive axles if the wheels are con-
nected to an axle.

2.3.1 Stepper motor

A stepper motor is a type of DC motor where the output shaft can be rotated in
discrete steps. The stepper motors have several internal coils grouped in phases.
The stepping works by energizing the coils in a phase in a specific sequence. This
allows very precise control since the number of steps per revolution commonly varies
between 24 and 200, and a stepper motor can be driven one step at a time. This
allows the motor to be driven anywhere from one step to several revolutions.

A drawback of a stepper motor compared to a conventional DC motor is that the
stepper motor has nearly constant current draw, independent of the load, which
leads to great inefficiencies and heat production[7].

The accurate control of a stepper motor allows the needed position by assuming
that the robot drives to the calculated position. This open loop system is suscepti-
ble to drift, especially if the motors do not have the required torque to turn or the
wheels slips[8]. This drift can build up over time.

2.3.2 Stepper driver

A stepper motor cannot be driven directly from the microcontroller since it requires
a higher current to energize the coils than a microcontroller can deliver. This can
be solved by using a motor driver. There are motor drivers specifically for stepper
motors. These have the benefit of keeping track of where in the step sequence the
stepper motors are. This means that they only need to receive a signal for step and
another signal for direction. Stepper drivers can also do micro stepping, where more

4

2.4. ULTRASONIC SENSOR

than one phase is energised at a time to orientate the motor between two normal
full steps. The micro stepping range may vary from half steps to 1/32 of a step[9].

2.4 Ultrasonic sensor
Ultrasonic sensors send out ultrasonic waves in a cone shape in front of them. The
waves hit the object(s), provided there are any in the sensors Field of View (FoV),
and reflect back to the sensor. Depending on how long time it takes for the wave
to get back to the sensor, the signal from the sensor changes which can be used to
measure distances[10]. Since sensors have a limited FoV they need to be spread out
to get as much coverage as possible. Spreading them out also avoids having them
interfere with each other[11][12].

2.5 External communication
To send data to an external computer the robot needs to be able to communicate
with it. This can be done either by a wire going between the robot and the com-
puter, or the robot sends all the data wirelessly to the computer. Wireless allows
for more free movement.

Two ways of wireless communication were considered, Bluetooth and Wi-Fi, both
with their advantages and disadvantages. Bluetooth requires less energy and is less
prone to interference from the surroundings. The disadvantage of Bluetooth is the
lower operating range and higher cost compared to Wi-Fi[13].

2.6 Position
Two main ways to achieve the robots position was studied. The first one is keeping
track of the offset from an external frame of reference e.g. GPS[14]. Another way
is to keep track of the robots offset from the start position by tracking the displace-
ment of the robot.

There are several ways to implement tracking of the robots displacement. Some of
them requires advanced sensors and sometimes some preparations in the environment[15].
It is also possible to do it in an easier way at the expense of accuracy and precision.
Since the robot is driven, the position of the robot can be calculated based on the
rotation of the motors[8][16].

5

Chapter 3

Demonstrator

This chapter will go into more detail about the chosen components and the con-
struction. See Figure 3.1 for a render of how the finished robot looked.

3.1 Hardware

Figure 3.1. Render of the prototype in Autodesk Fusion 360[17]

3.1.1 Microcontroller

The microcontroller used was an Arduino UNO. The Arduino UNO is based on
the ATmega328P microcontroller. The ATmega328P has 32 KB flash memory for
programs and 2 KB RAM. The Arduino UNO has a recommended input voltage of
7 - 12 V and a total of 20 I/O pins. It can output both 3.3 V and 5 V. It has one
hardware serial port and support for multiple software serial ports[18].

7

CHAPTER 3. DEMONSTRATOR

3.1.2 Stepper motor & driver

In order map the robots position it was decided to use the displacement of the
robot. The best option for measuring displacement of the robot was to calculate
how much the motors had rotated. Thus stepper motors were chosen as they do
not require a closed loop for position[8].

For this project the Tamawaga TS3214N61 stepper motors were chosen. They have
200 steps per revolution which means an angle of 1.8° per step. The TS3214N61s
can handle a maximum of 12 V and 0.25 A per phase.

The stepper drivers chosen for this projects were the DRV8825. The DRV8825
can supply a voltage between 8.2 V to 45 V and a maximum current of 2.2 A per
phase. The current is continuously adjustable. The DRV8825 support full steps
and five different micro step resolutions; 1/2-step, 1/4-step, 1/8-step, 1/16-step and
1/32-step[9].

3.1.3 Ultrasonic sensor

The ultrasonic sensor used were HY-SRF05 with a range of 0 - 4.5 m and a FoV of
±15°. The robot needed to see in all directions, this was done by placing a senor
every 60° around the robot. The sensors have five I/O pins; ground, VCC, echo,
trig, and out. VCC and ground were connected to the 5V and ground pins on the
microcontroller respectively. To activate the senor the trig pin needs a signal for at
least 10 µs. The response is sent back via the echo pin. All pins were connected to
the microcontroller. The out pin is used for a different operating mode and was not
used in this project. The ultrasonic sensors were used for obstacle avoidance and
mapping.

3.1.4 Wi-Fi module

In order for the robot to communicate over Wi-Fi, a Wi-Fi module was required since
the microcontroller does not have built in Wi-Fi. For this an ESP-01 ESP8266[19]
Wi-Fi module was chosen. This particular Wi-Fi module was programmed using
AT commands in order to get it connected to the network, and getting it to send
and receive data. The ESP-01 operates on 3.3 V with no internal voltage regulator.

3.2 Electronics
The ultrasonic sensors’ VCC, ground, and trig pins were all wired in parallel. All
echo pins had individual connections to the microcontroller. This meant that all
the sensors would trigger at the same time, but could be distinguished from each
other with the individual echo connections.

8

3.2. ELECTRONICS

The Wi-Fi module required 3.3 V and the Arduino could only provide a fixed 3.3
V output to power it, while the logic level of the Arduino was 5 V. This meant that
when the Arduino sent data to the ESP-01 it could be damaged from the too high
voltage. To solve this a voltage divider was created with a 1 kΩ and a 2 kΩ resistor.

A 100µF capacitor was used over the positive and ground power for the stepper
drivers to protect them against the inrush current when power was first supplied.

To power the robot a battery was used. This battery was connected to the stepper
drivers and the Arduino’s internal voltage regulator. The battery was a three cell
lithium battery with a voltage of 11.1 V.

See Table 3.1 for a list of the components used and Figure 3.2 for a full wiring
diagram.

Table 3.1. Components used

Á Component Description
1 Microcontroller Arduino UNO
3 Stepper Motors Tamawaga TS3214N61
3 Stepper drivers DRV8825
3 Omni wheels Diameter 48 mm
6 Ultrasonic sensors HY-SRF05
1 Wi-Fi module ESP-01

Figure 3.2. Wiring Diagram created in Fritzing[20]

9

CHAPTER 3. DEMONSTRATOR

3.3 Software
Two different programs needed to be created. One for the Arduino to control the
robot, and one for the server to communicate with the robot and interact with the
user.

3.3.1 Arduino

An overarching flowchart was created to have a clear vision for the program, see
Figure 3.3.

Arduino Starts

Connect to WiFi

Connection?
No

Yes

Go in a random free
direction for 1m and
try to go in the same
direction as before

Scan

Send Position and
distances to the

Server and check
mode and instructions

mode?

Autopilot

Manual control

Is it clear?

Yes

Go according to
instruction, but for 1m

maximum

Go to the obstacle
and stop

Rotate 30deg

Scan

Rotate -30deg

Say Hi to Server Server responds?

No

Yes

No

Figure 3.3. Flowchart of the program, created with diagrams.net[21]

10

3.3. SOFTWARE

The robot had two modes; manual control and autpilot, see subsection 3.3.2 Modes.
The two modes ran in the same loop that started by first scanning the environment
and sending the data to the server which responded with the current settings.

Scanning

Since the ultrasonic sensors requires precise timing to work, only one ultrasonic
sensor could be used at a time. To achieve this, the sensors were cycled one after
another. This also prevented the sensors from interfering with each other. However,
the sensors only covered a total of 180° around the robot. To get the full 360°, all the
sensors scanned once, then the robot rotated 30°, scanned once more and rotated
back to the initial rotation. Rotating the robot and scanning again also helped with
a problem where the angel from the sensor to the wall was too flat[22]. Sensor data
was then sent to the server along with the current position. A library was used to
simplify the communication to the server[23].

3.3.2 Modes

The robot had two modes, manual control for controlling the robot manually from
the control panel, and autopilot which allowed the robot to move freely on its own.

Manual Control

In this mode the robot is controlled via the control panel on the website. A direction
is chosen on the control panel and sent to the robot to perform. If a direction was
not chosen the robot would stand still and wait until a new direction is chosen.
Before the robot starts driving in the chosen direction, it scans and checks if the
path is clear. If the path is clear the robot will drive one meter in the chosen
direction. However, should there be an obstacle in the way, the robot will drive up
to the obstacle and stop.

Autopilot

The autopilot mode allows the robot to move on its own with no target or goal.
The robot will go in a random direction until it detects an object blocking its path
in which case it will choose a new direction to travel in. A new direction is chosen
based on sensor data. The robot checks all sensor data starting with the first sensor,
the one facing 90° in the robots own coordinate system. When it finds a suitable
direction, no obstacle closer than half a metre, it starts driving in that direction.

The full Arduino code can be found in Appendix B.

11

CHAPTER 3. DEMONSTRATOR

3.3.3 Displaying
To display the map it was determined that the easiest and fastest way to implement
it would be to send the sensor data from the robot to a computer. Then process the
data on the computer and display it as a map. Since it was already decided that
the wireless transmission would be over Wi-Fi, the displaying of the map would be
on a website running on the receiving computer.

Since the ultrasonic sensors detected obstacles in a cone shape the map had limited
resolution. However, the map had adequate resolution to get an understanding of
the environment.

3.3.4 Server
The server ran Node.JS[24] with Express[25] to act as an web server and Socket.io[26]
to communicate in real-time. The robot communicated with the server via http GET
requests and the control panel used socket. The map was generated by JavaScript
in the client’s browser, see Figure 3.4. The server code is available in Appendix C.

Node.JS

The Node.JS server kept track of the connected robot and control panels. When the
server received a GET request from the robot, it parsed the request and sent it to
the connected control panels. The server also responded with the current settings
so the robot could act accordingly.

Control Panel

The control panel displayed the map, a communication log, and provided control of
the robot. The control panel had a drop down list to select which mode the robot
should use and in the case of manual control, arrow keys to select direction, see
Figure 3.4. The map was a canvas element that was updated by JavaScript when
the server sent new data. Since the sensors were placed horizontally the map was
a top down view of where the robot had been. The sensor data was drawn as arcs
to represent the cone shape of the ultrasonic sensors’ FoV. The control panel code
is available in Appendix D.

12

3.3. SOFTWARE

Figure 3.4. How the control panel looks. Screenshot from our web page in Google
Chrome[27]

13

Chapter 4

Tests and Results

The tests performed on the final prototype is described in this chapter.

4.1 Communication Test
A communication test was performed to test the two way communication over Wi-
Fi. To test the communication, the robot and a laptop were connected to a Wi-Fi
hotspot. When they both were connected, the robot sent a http request to the
laptop which then responded. First the robot sent an empty request, which the
laptop received and responded to. The response was received by the robot without
any problems. When the robot sent data in the request, the server received it
and responded, however the the robot did not receive the response and timed-out
instead. This problem was found to be a limitation of the Arduino library used and
could therefor not be solved. A workaround was created by first sending en empty
request to receive data to the robot, and after that send a request with data and
waiting for the time-out.

4.2 Manual Control Tests
Three tests were preformed to test the precision and accuracy of the drive.

4.2.1 Test 1

The first test of the manual control system was a success. The robot and server
connected to each other without any issues and all commands issued via the control
panel was performed by the robot. One issue was that the robot drifted a bit from
the expected result. The expected result was that it would return to its original
position given that the directions given were back, left, forward, and right. This
however, did not happen, and the robot ended up drifting more than half a metre
from the starting location. Some drift was expected since the weight was not equally
distributed and all omni wheels were not the same. It does not explain all the drift

15

CHAPTER 4. TESTS AND RESULTS

that was observed and a better result should be possible with some tweaking of the
code.

4.2.2 Test 2

In the second round of testing baseline measurements were taken by making the
robot drive in four directions; left, right, up, and down, three times. The baseline
measurements were used to see how much the robot drifted and how consistent it
was in its movements.

After the baseline measurements were completed the code was changed to make
the robot move much faster, and the timing of the stepper motors more even. This
yielded much better results and an overall lower deviation of about 78%, see Ta-
ble 4.1. However, the drift was still very noticeable in the cases when the stepper
motors took different amount of steps. This was most notably when the robot drove
left or right, where one motor took more steps than the other two.

4.2.3 Test 3

A third test was performed to test if an implementation to the code would mini-
mize the remaining drift. In this test, the motor(s) with fewest amount of steps,
had their steps multiplied with a constant. When the constant had a value of 1.2,
i.e. the motor(s) with fewest amount of steps took 20% more steps, the best result
was achieved. With this new change the robot achieved the same accuracy when it
drove to the left/right as up/down.

The numerical results of Test 2 and Test 3 can be seen in Table 4.1.

Table 4.1. Distance tests

Goal Actual Deviation
Baseline Test 2 Test 3 Baseline Test 2 Test 3

Right:
0°, 1m

305°, 72 cm 350°, 89 cm 1°, 99 cm 83 cm 19 cm 2 cm
300°, 70 cm 352°, 88 cm 358°, 98 cm 88 cm 17 cm 4 cm
302°, 74 cm 355°, 92 cm 359°, 101 cm 87 cm 11 cm 2 cm

Up:
90°, 1m

89°, 95 cm 90°, 97 cm 89°, 100 cm 5 cm 3 cm 2 cm
91°, 1 m 89°, 99 cm 90°, 98 cm 2 cm 2 cm 2 cm
88°, 1 m 89°, 98 cm 90°, 99 cm 3 cm 3 cm 1 cm

Left:
180°, 1 m

235°, 75 cm 191°, 85 cm 178°, 99 cm 83 cm 23 cm 3 cm
230°, 74 cm 189°, 88 cm 182°, 101 cm 77 cm 19 cm 4 cm
237°, 71 cm 190°, 86 cm 179°, 99 cm 86 cm 21 cm 2 cm

Down:
270°, 1 m

272°, 98 cm 271°, 101 cm 270°, 98 cm 4 cm 2 cm 2 cm
271°, 98 cm 270°, 98 cm 269°, 99 cm 3 cm 2 cm 2 cm
268°, 99 cm 269°, 99 cm 271°, 98 cm 3 cm 2 cm 3 cm

16

4.3. SENSOR TEST

4.3 Sensor Test
A sensor test was performed to see if the senors were able to detect objects and
if the robot sent the sensor data to the server. An obstacle was placed at specific
distances from the robot and five measurements were made for every distance. For
this test, it was decided that the resolution of one centimetre was enough. All
the sensors performed well with some small errors and could detect objects within a
three metre range very reliably. See Table 4.2 for the average deviations for the test.

Table 4.2. Sensor tests

Distance avg. deviation
2 cm 0 cm
5 cm 0 cm
10 cm 0 cm
20 cm 0 cm
50 cm ±1 cm
100 cm -1 cm
150 cm -2 cm
200 cm -2 cm
250 cm -2 cm
300 cm -1 cm

On the server side it worked perfectly. All sensor data was collected and sent
from the robot to the server, where it was deciphered and drawn out on the map.

4.4 Autopilot Test
The autopilot was tested both in a corridor and in a room with chairs and tables.
The robot managed to avoid the walls and furniture and draw a map with the sensor
data. The map did not give a good image of the rooms, however, since the robot’s
path was drawn it could be used to see a rough shape of the rooms. See Figure 4.1
for the map after the test in the corridor.

An attempt to solve this was made by finding out which arcs overlapped each
other and then drawing them in a darker shade to imply probability of an obstacle.
This was implemented by dividing up every arc in pieces and see if they matched
any other piece. This was a very inefficient way of doing it and caused the whole
control panel to freeze. To avoid having the control panel freeze, the code checking
for overlaps was moved to a thread in the background of the web browser. This
improved the performance a bit but it was still quite unusable. The code for the
separate thread can be found in Appendix E.

17

CHAPTER 4. TESTS AND RESULTS

Figure 4.1. Autopilot test. Screenshot from our web page in Google Chrome[27]

18

Chapter 5

Discussion and conclusions

There were two major flaws with the current setup that arose during the tests. The
first one was the result from the communication test where the request timed-out
when the robot sent data to the server. This made the robot unresponsive when it
periodically froze to receive data. If this problem would be solved, the robot would
most likely act a lot smoother. It would move smoother since an empty request
took a fraction of the time a sub-optimal time-out request did.

The other flaw was from the autopilot test where the map that was drawn was
not that usable as a map. An attempt to solve this was made in the autopilot test
by indicating the probability of an obstacle actually being there. However, there
were still some arcs being drawn where there was not any obstacles. It was those
arcs that made the map unusable since the user then had to figure out which arcs
were real and which were not.

With those flaws in mind, the result was still impressive for a prototype, it showed
that with some more tweaks the robot would work as initially intended.

To answer the three formulated questions in section 1.2, we begin with the first
one:

• What is a simple yet robust configuration of omnidirectional wheels?

In this project, a kiwi drive was used, this means the robot had three omni wheels
and three motors. This is the least amount of wheels required since three points
of contact is needed for something to not fall over without active balancing. Theo-
retically a holonomic drive can be achieved with only two motors since the ground
plane consists of two orthogonal directions. This would require a complex drive
system since the motors would have to apply their torque at the center of the robot
to avoid rotations. Hence the configuration is simple. With the manual tests we
have shown that the configuration is robust since the robot repeatedly drove both
accurate and precise.

19

CHAPTER 5. DISCUSSION AND CONCLUSIONS

Let us consider the second question next:

• How can the sensor data be represented as a map?

We have shown that the data from the sensors could be sent from the robot and
received on a server. After that the data could be represented as a working map
displayed on a web page. The issue was that the senors gave out data in the form
of distances. This distance could have come from an object anywhere in the sensors
FoV which means that when the map was drawn we had to take that into consid-
eration. That is why, when the map was drawn, the sensors data were represented
with arcs. This gave us a better view of how the room looked and a more accurate
representation of what the sensors saw, since an object could have been anywhere
in that arc. However, this resulted in a cluttered map which was hard to read after
a while. Some alterations were tested but did not perform well.

Lastly, consider the third question:

• What configuration of sensors gives an adequate perception of the environ-
ment?

The robot needed to avoid obstacles in every direction which meant that the sensors
needed to cover 360°. This would require the robot to have 12 sensors to be able to
see 360° at all times. However, this would not be possible without getting a bigger
microcontroller since every sensor needed one port on the controller and with all
the other equipment there was not enough room. Thus six senors were deemed to
be enough and the robot would instead rotate 30° and scan again to get the full
coverage, see section 3.3.1 Scanning.

20

Chapter 6

Further work

The problem that arose in the communication test can be solved by programming
custom firmware for the ESP-01. This could also solve a problem where the robot
has to wait for a response when it sends a request to the server. With custom
firmware, the ESP-01 can handle the requests by it self, and the Arduino can prompt
the request, and retrieve the response later.

While the map worked to get an idea of what the room looked like it became
very cluttered with all the sensors’ data and some of the data was false data i.e it
was not actually an obstacle there. A solution to this was tested but deemed to be
too slow and ineffective, see section 4.4 Autopilot Test. Another solution can be to
first send the data to another program that can calculate and remove some of the
data that is false through geometry.

To further improve the mapping, better senors can be used so that false data would
be less prevalent. While the ultrasonic sensors were adequate they had their issues,
see section 3.3.1 Scanning. With more sophisticated senors, like Light Detection
and Ranging (LiDAR), those issues can be mitigated. A LiDAR also has a much
narrower FoV than an ultrasonic sensor since a LiDAR uses a thin laser beam. This
makes it much more accurate and less prone to detecting something that is not in
the robot’s path. LiDAR also comes with the benefit of being much faster than
an ultrasonic senor since it moves at the speed of light instead of the much slower
speed of sound.

21

Bibliography

[1] Cambridge dictionary. (n.d.) mobility. Cambridge dictionary. Retrieved
February 11, 2021, from https://dictionary.cambridge.org/dictionary/
english/mobility

[2] Acumen. (n.d.) Acumen. Acumen Language. Retrieved February 1, 2021, from
http://www.acumen-language.org/

[3] NORMELIUS, A., & BECKMAN, K. (2020) Hand Gesture Controlled Omnidi-
rectional Vehicle (Dissertation). Retrieved from http://urn.kb.se/resolve?
urn=urn:nbn:se:kth:diva-279822

[4] BJÖRKLUND, F., & STRAND, C. (2019) Omnidirectional pong playing
robot: Pong playing robot using kiwi drive and a PID controller (Disser-
tation). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:
diva-264456

[5] SWART, D. (2014) R/C Omniwheel Robot. Make:. Retrieved February 11, 2021,
from https://makezine.com/projects/make-40/kiwi/

[6] GUDINO, M. (2018) Introduction to Microcontrollers. Arrow. Retrieved Febru-
ary 12, 2021, from https://www.arrow.com/en/research-and-events/
articles/engineering-basics-what-is-a-microcontroller

[7] EARL, B. (2020) All About Stepper Motors. Adafruit. Retrieved Febru-
ary 11, 2021, from https://cdn-learn.adafruit.com/downloads/pdf/
all-about-stepper-motors.pdf

[8] ANDERSSON, P., & KUGELBERG, E. (2018) Home Assistant Navi-
gation - Smart Optical and Laser Orientation: H.A.N.S.O.L.O (Disser-
tation). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:
diva-233139

[9] TEXAS INSTRUMENTS. (2014) DRV8825 Stepper Motor Controller IC
datasheet Rev. F. Texas Instruments. Retrieved February 11, 2021, from
https://www.ti.com/lit/ds/symlink/drv8825.pdf

23

https://dictionary.cambridge.org/dictionary/english/mobility
https://dictionary.cambridge.org/dictionary/english/mobility
http://www.acumen-language.org/
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279822
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279822
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264456
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264456
https://makezine.com/projects/make-40/kiwi/
https://www.arrow.com/en/research-and-events/articles/engineering-basics-what-is-a-microcontroller
https://www.arrow.com/en/research-and-events/articles/engineering-basics-what-is-a-microcontroller
https://cdn-learn.adafruit.com/downloads/pdf/all-about-stepper-motors.pdf
https://cdn-learn.adafruit.com/downloads/pdf/all-about-stepper-motors.pdf
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233139
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233139
https://www.ti.com/lit/ds/symlink/drv8825.pdf

BIBLIOGRAPHY

[10] Andria, G., Attivissimo, F., & Giaquinto, N. (2001) Digital signal processing
techniques for accurate ultrasonic sensor measurement. Measurement, 30(1),
105-114. https://doi.org/10.1016/S0263-2241(00)00059-2

[11] HALTORP, E., & BREDHE, J. (2020) ODAR: Obstacle Detecting Autonomous
Robot (Dissertation). Retrieved from http://urn.kb.se/resolve?urn=urn:
nbn:se:kth:diva-279834

[12] OTTOSON, J., & RENSTRÖM, N. (2019) aMAZEing robot: A method for
automatic maze solving (Dissertation). Retrieved from http://urn.kb.se/
resolve?urn=urn:nbn:se:kth:diva-264491

[13] SATTLE, S. (n.d.) WiFi vs. Bluetooth: Wireless Electronic Basics. Autodesk.
Retrieved February 13, 2021, from https://www.autodesk.com/products/
eagle/blog/wifi-vs-bluetooth-wireless-electronics-basics/

[14] Garmin Ltd. (n.d.) ABOUT GPS. Garmin. Retrieved February 11, 2021, from
https://www.garmin.com/sv-SE/aboutGPS/

[15] XinReality. (n.d.) Inside-out tracking. XinReality. Retrieved February 13, 2021,
from https://xinreality.com/wiki/Inside-out_tracking

[16] ANTONOVA, A., & LUNDIN, H. (2019) Photobot: An Exploring Robo (Disser-
tation). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:
diva-264452

[17] Autodesk. (n.d) Fusion 360. Autodesk fusion Retrieved May 9, 2021, from
https://www.autodesk.com/products/fusion-360/overview

[18] Arduino. (n.d.) Arduino UNO REV3. Arduino store. Retrieved April 10, 2021,
from https://store.arduino.cc/arduino-uno-rev3

[19] ESPRESSIF SYSTEMS. (2020) ESP8266 AT Instruction Set v3.0.3. Espres-
sif. Retrieved February 11, 2021, from https://www.espressif.com/sites/
default/files/documentation/4a-esp8266_at_instruction_set_en.pdf

[20] Fritzing. (n.d.) Fritzing. Fritzing. Retrieved May 8, 2021, from https://
fritzing.org/

[21] diagrams.net. (n.d) diagrams.net. Retrieved May 8, 2021, from https://www.
diagrams.net/

[22] NAGAI, I., NIWA,K., & WATANABE, K. (2017) A detection method using
ultrasonic sensors for avoiding a wall collision of Quadrotors Retrieved from
https://ieeexplore.ieee.org/abstract/document/8016028

[23] bportaluri. (2019) WiFiEsp. GitHub. Retrieved March 21, 2021, from https:
//github.com/bportaluri/WiFiEsp

24

https://doi.org/10.1016/S0263-2241(00)00059-2
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279834
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279834
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264491
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264491
https://www.autodesk.com/products/eagle/blog/wifi-vs-bluetooth-wireless-electronics-basics/
https://www.autodesk.com/products/eagle/blog/wifi-vs-bluetooth-wireless-electronics-basics/
https://www.garmin.com/sv-SE/aboutGPS/
https://xinreality.com/wiki/Inside-out_tracking
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264452
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264452
https://www.autodesk.com/products/fusion-360/overview
https://store.arduino.cc/arduino-uno-rev3
https://www.espressif.com/sites/default/files/documentation/4a-esp8266_at_instruction_set_en.pdf
https://www.espressif.com/sites/default/files/documentation/4a-esp8266_at_instruction_set_en.pdf
https://fritzing.org/
https://fritzing.org/
https://www.diagrams.net/
https://www.diagrams.net/
https://ieeexplore.ieee.org/abstract/document/8016028
https://github.com/bportaluri/WiFiEsp
https://github.com/bportaluri/WiFiEsp

[24] Node.js (n.d.) About. Node.js. Retrieved April 7, 2021, from https://nodejs.
org/en/about/

[25] Express (n.d.) Express. Express. Retrieved April 7, 2021, from https://
expressjs.com/

[26] Socket.IO (n.d.) Get started. socket.io. Retrieved April 7, 2021, from https:
//socket.io/get-started/

[27] Google Chrome (n.d) Google Chrome. Chrome Retrieved April 7, 2021, from
https://www.google.com/chrome/

https://nodejs.org/en/about/
https://nodejs.org/en/about/
https://expressjs.com/
https://expressjs.com/
https://socket.io/get-started/
https://socket.io/get-started/
https://www.google.com/chrome/

Appendix A

Acumen Simulation

// Bachelor’s Thesis in mechatronics 2021 at KTH Royal Institute of
Technology↪→

// TRITA-ITM-EX 2021:29
// MF133X Group 11
// Axel Hedvall, Filip Rydén
// 2021-02-28
// Task:
// Simulate the robot in a 3d environment.
// Notes:
// In this simulation the platform is represented as a circle.
// In reality it's probably going to be a triangle.

model Main(simulator) =
initially

y = 0, //distance in y-direction
y' = 1, //speed in y-direction

_3D = ()

always
y' = 1, //speed in y-direction, +y in all geometric shapes' y

coordinate to simulate movement↪→

_3D = ((Cylinder // Platform
center = (0,y,0) // Where the platform is in the

room↪→

radius = 1 // radius of platform
length = 0.1 // platform thickness
color = yellow // platform colour
rotation = (pi/2,0,0) // platform rotation
)

(Cylinder //wheel
center = (0,1.05+y,-0.15) //where the wheel is
radius = 0.2 //radius of wheel
length = 0.1 //wheel ''width''
color = black //wheel colour
rotation = (0,0,0) //rotation
)
(Box //motor
center = (0,0.875+y,-0.15) //placement, right next to

motor↪→

size = (0.15,0.25,0.15) //size of motor
color = green //motor colour
rotation = (0,0,0) //rotation
)
(Box //motor controller
center = (0,0.6+y,-0.15) //placement, right next to

motor↪→

size = (0.25,0.3,0.3) //size of motor controller
color = red //motor controller colour
rotation = (0,0,0) //rotation

)

(Cylinder //wheel
center = (0.92,-0.5+y,-0.15)
radius = 0.2
length = 0.1
color = black
rotation = (0,y,pi/3) //rotation around y

//to simulate movement
)
(Box //motor
center = (0.76,-0.4375+y,-0.15)
size = (0.15,0.25,0.15)
color = green
rotation = (0,0,pi/3)
)
(Box //motor controller
center = (0.52,-0.3+y,-0.15)
size = (0.25,0.3,0.3)
color = red
rotation = (0,0,pi/3)

)

(Cylinder //wheel
center = (-0.92,-0.5+y,-0.15)
radius = 0.2
length = 0.1
color = black
rotation = (0,y,-pi/3) //rotation around y

//to simulate movement
)
(Box //motor
center = (-0.76,-0.4375+y,-0.15)
size = (0.15,0.25,0.15)
color = green
rotation = (0,0,-pi/3)
)
(Box //motor controller
center = (-0.52,-0.3+y,-0.15)
size = (0.25,0.3,0.3)
color = red
rotation = (0,0,-pi/3)

)
)

Appendix B

Arduino code

// Bachelor’s Thesis in mechatronics 2021 at KTH Royal Institute of
Technology↪→

// TRITA-ITM-EX 2021:29
// MF133X Group 11
// Axel Hedvall, Filip Rydén
// 2021-05-09
// Task:
// Control a robot with three omniwheels
// Connect to a server via Wi-Fi and perform recived instructions
// Hardware:
// 1 Arduino UNO
// 1 ESP-01
// 3 Omni wheels
// 3 Stepper drivers, DRV8825
// 3 Stepper motors, Tamawaga TS3214N61
// 6 Ultrasonic sensors, HY-SRF05

#include <WiFiEsp.h> //Ads the WiFiEsp Library

// Define constants
#define SQRT32 0.866025403784439 // sqrt(3)/2
#define DEG2RAD 0.017453292519943
#define RADIUS 0.024
#define DIST2STEP 1326.291192432461 // 1/(2*r*pi)*steps
#define stepsPerRevolution 200
#define ANGLE2STEP 117.0256934499231 // 2*pi*R * dist2step
#define STEPSPEED 1500 // Microseconds to wait between steps

// Use hardware serial if available use software else
#ifndef HAVE_HWSERIAL1

#include "SoftwareSerial.h"
SoftwareSerial Serial1(3, 2); // RX, TX
#endif

// Which state the robot is in
enum State {

scanning, driving, sending, reciving
};

// Define stepper motor connections
const int dirPin[] = {A1, A3, A5};
const int stepPin[] = {A0, A2, A4};

// Define sonic sensor connections
const int sensors[] = {13, 12, 11, 10, 9, 8};
const int trig = 7;

float s[] = {0, 0, 0, 0}; // Steps each motor will take

int status = WL_IDLE_STATUS; // The Wifi radio's status
char server[] = "192.168.43.220"; // The IP of the server
char ssid[] = "WiFi";
char pass[] = "password";

// Initialize the client object
WiFiEspClient client;

float distances[12]; // The distances measured
float posX, posY; // The position of the robot

int mode = 0; // The current mode
String instructions = ""; // The current instructions
State state; // The current state

void setup() {
// Setting the pins
for (int i = 0; i < 6; i++) {

pinMode(sensors[i], INPUT);
}
pinMode(trig, OUTPUT);
for (int i = 0; i < 3; i++) {

pinMode(dirPin[i], OUTPUT);
pinMode(stepPin[i], OUTPUT);

}

// Start HW serial
Serial.begin(115200);

// initialize serial for ESP module
Serial1.begin(9600);
// initialize ESP module
WiFi.init(&Serial1);

// Check for the presence of the module
if (WiFi.status() == WL_NO_SHIELD) {

Serial.println("WiFi module not present");

// Don't continue
while (true);

}

// Connect to the WiFi
connectWiFi(ssid, pass);
// Print the wifi status
printWifiStatus();

// Start with scannning
state = scanning;

}

// The angle the robot tries to drive in autopilot
unsigned int prevAngle = 90;
String response = ""; // The http request response
void loop() {

Serial.println(state);
switch (state) {

case scanning: {
scan(); // Scan the sonic sensors
state = reciving; // Next state
httpRequest2(); // Request settings from server
break;

}
case reciving: {

// Read the response from the ESP
while (client.available()) {
char c = client.read();
response += c;

}

// If we have the "}" the whole message has been recived
if (response.indexOf("}") == -1) {
Serial.print(response);

} else {
Serial.println(response);
// Takes out the json data
response = response.substring(response.indexOf('{'),

response.lastIndexOf('}') + 1);↪→

// Parses the json data
mode = response.substring(response.indexOf(':')+1,

response.indexOf(',')).toInt();↪→

instructions =
response.substring(response.lastIndexOf(':')+2,
response.indexOf('}')-1);

↪→

↪→

// Prints the formated recived data
Serial.print(mode);
Serial.print(",");
Serial.println(instructions);

response = ""; // Resets the response for next time
httpRequest(); // Sends position and sensor data to server
state = sending; // Next state

}
break;

}
case sending: {

// if there's incoming data from the net connection send it
out the serial port↪→

// this is for debugging purposes only
while (client.available()) {
Serial.print(client.read());

}

// Go to next state if the ESP has disconnected
if (!client.connected()) {
state = driving; // Next state
// Empty the serial buffer
while (client.available()) {

Serial.print(client.read());
}
delay(500); // Waits 500ms for the ESP to really disconnect

}

break;
}
case driving: {

Serial.print(mode);
Serial.print(",");
Serial.println(instructions);
// If we are in manual control
if (mode == 0) {
// If we have instructions
if (instructions == "N" || instructions == "E" ||

instructions == "S" || instructions == "W" ||
instructions == "NW" || instructions == "NE" ||
instructions == "SW" || instructions == "SE") {

↪→

↪→

↪→

if (instructions == "N") { // 90
drive(90, getDistance(90));

} else if (instructions == "S") { // 270
drive(270, getDistance(270));

} else if (instructions == "E") { // 0
drive(0, getDistance(0));

} else if (instructions == "W") { // 180
drive(180, getDistance(180));

} else if (instructions == "NW") { // 135
drive(135, getDistance(135));

} else if (instructions == "NE") { // 45
drive(45, getDistance(45));

} else if (instructions == "SW") { // 225
drive(255, getDistance(225));

} else if (instructions == "SE") { // 315
drive(315, getDistance(315));

}
}

} else if (mode == 1) { // If we are in autopilot
int firstAngle = prevAngle; // A tmp version of prevAngle
while(firstAngle == prevAngle) { // While the robot is

driving in the same direction↪→

int index = ((450 - prevAngle)/ 30) % 12; // The index for
the sensor towards prevAngle↪→

float dist = distances[index]; // The saved distance in
that direction↪→

// Find a clear direction by checking the three closest
distances↪→

while (dist > 0 && dist < 0.15 || (distances[(index+1) %
12] < 0.1 || distances[(index+11) % 12] < 0.1)) {↪→

prevAngle += 60; // Check +60deg

if(prevAngle > 360) {
prevAngle -= 360;

}
index = ((450 - prevAngle)/ 30) % 12; // New index
dist = distances[index]; // and distance

}
// If we have a new direcion
if (firstAngle != prevAngle) {
state = scanning;
return;

}
if (dist > 0) { // If we can see anything, stop at it
drive(prevAngle, dist - 0.1);

} else { // else drive 4 meters
drive(prevAngle, 4);

}
// Scan to refresh the distances
if(firstAngle == prevAngle) {
scan();

}
}

}
state = scanning; // Next state
break;

}
}

}

// This function calculates the safe distance to drive in the
specified direction↪→

float getDistance(int angle) {
int index = ((450 - angle)/ 30) % 12; // The index for the sensor

towards the direction↪→

float dist = distances[index]; // The saved distance in that
direction↪→

// If the direction is clear return 1 meter
if ((dist == 0 || dist > 1) && ((distances[(index+1) % 12] == 0 ||

distances[(index+1) % 12] > 0.5) && (distances[(index+11) %
12] == 0 || distances[(index+11) % 12] > 0.5))) {

↪→

↪→

return 1;
} else if (dist > 0.2 & (distances[(index+1) % 12] > 0.2 &&

distances[(index+11) % 12] > 0.2)) {↪→

// If it is less than one meter to an obsticle, drive to it
return dist - 0.1;

} else { // If it's unsafe to drive at all
return 0;

}
}

// Tihs function performes the saved steps
void takeSteps() {

// Calculate the most number of steps
float _max = max(max(s[0], s[1]), s[2]);
// Increase the steps with less steps than max
for(int i = 0; i < 3; i++) {

if(s[i] < _max) {
s[i] *= 1.2;

}
}
// How often ewery stepper should take a step
int ffs[] = {(int)round(_max/s[0]), (int)round(_max/s[1]),

(int)round(_max/s[2])};↪→

// For every step
for(int steg = 0; steg < _max; steg++) {

// Wich steppers should take a step
bool b[] = {steg % ffs[0] == 0, steg % ffs[1] == 0, steg %

ffs[2] == 0};↪→

// For every stepper
for(int motor = 0; motor < 3; motor++) {

// If the stepper no. j should take a step
if(b[motor]){
digitalWrite(stepPin[motor], HIGH);

}
}
delayMicroseconds(STEPSPEED);
// For every stepper
for(int motor = 0; motor < 3; motor++) {

// If the stepper no. j should take a step
if(b[motor]){
digitalWrite(stepPin[motor], LOW);

}
}
delayMicroseconds(STEPSPEED);

}
// Reset the saved steps
s[0] = 0;
s[1] = 0;
s[2] = 0;

}

// This function activates the sonic sensors one after another
void scan() {

// Scan every sensor
for (int i = 0; i < 6; i++) {

// Turn off trig if would be on
digitalWrite(trig, LOW);
delayMicroseconds(2);
// Send trig signal for 10us
digitalWrite(trig, HIGH);
delayMicroseconds(10);
digitalWrite(trig, LOW);
// Messures the lenght of recived signal
long duration = pulseIn(sensors[i], HIGH);
// Calculates the distance in meters
distances[i*2] = (duration / 2.0) / 2910.0;
// If the distance is wrong set it to 0
if (distances[i*2] > 4.5) {

distances[i*2] = 0;
}
// Wait before the next sensor
delay(100);

}

// Rotate
rotate(-30);
// Scan every sensor again
for (int i = 0; i < 6; i++) {

// Turn off trig if would be on
digitalWrite(trig, LOW);
delayMicroseconds(2);
// Send trig signal for 10us
digitalWrite(trig, HIGH);
delayMicroseconds(10);
digitalWrite(trig, LOW);
// Messures the lenght of recived signal
long duration = pulseIn(sensors[i], HIGH);
// Calculates the distance in meters
distances[i*2+1] = (duration / 2.0) / 2910.0;
// If the distance is wrong set it to 0
if (distances[i*2+1] > 4.5) {

distances[i*2+1] = 0;
}

// Wait before the next sensor
delay(100);

}
// Rotate back
rotate(31);

}

// This function calculates the steps for every motor to drive a
// specific distance in a specific angle
void drive(float angle, float distance) {

angle = angle * DEG2RAD; // Degrees to radians

// The robots x and y position after the driving
posX += cos(angle) * distance;
posY += sin(angle) * distance;

// Calculates the x and y distance
float x = cos(angle) * distance;
float y = sin(angle) * distance;

// Calculates the distance for every wheel
float d1 = -x;
float d2 = 0.5 * x - SQRT32 * y;
float d3 = 0.5 * x + SQRT32 * y;

// Calculates the steps for every motor
s[0] = d1 * DIST2STEP * 1.0;
s[1] = d2 * DIST2STEP * 1.0;
s[2] = d3 * DIST2STEP * 1.0;

// Prints the calculated steps
for (int j = 0; j < 3; j++) {

Serial.print("Target");
Serial.print(j);
Serial.print(": ");
Serial.println(s[j]);
if (s[j] < 0) {

digitalWrite(dirPin[j], HIGH);
s[j] = -s[j];

} else {
digitalWrite(dirPin[j], LOW);

}
}
takeSteps();

}

// This function rotates the robot a specified degrees
void rotate(float angle) {

angle = angle * DEG2RAD; // Degrees to radians

s[0] = angle * ANGLE2STEP;
s[1] = angle * ANGLE2STEP;
s[2] = angle * ANGLE2STEP;

// Prints the calculated steps
for (int j = 0; j < 3; j++) {

Serial.print("Target");
Serial.print(j);
Serial.print(": ");
Serial.println(s[j]);
if (s[j] < 0) {

digitalWrite(dirPin[j], HIGH);
s[j] = -s[j];

} else {
digitalWrite(dirPin[j], LOW);

}
}

takeSteps();
}

// This function connects the ESP to a WiFi network
void connectWiFi(char ssid[], char pass[]) {

while (status != WL_CONNECTED) {
Serial.print("Attempting to connect to WPA SSID: ");
Serial.println(ssid);
// Connect to WPA/WPA2 network
status = WiFi.begin(ssid, pass);

}
// we're connected now, so print out the data
Serial.println("You're connected to the network");

}

// This function prints out information of the current WiFi
connection↪→

void printWifiStatus() {
// print the SSID of the network we're attached to
Serial.print("SSID: ");

Serial.println(WiFi.SSID());

// print your WiFi shield's IP address
IPAddress ip = WiFi.localIP();
Serial.print("IP Address: ");
Serial.println(ip);

// print the received signal strength
long rssi = WiFi.RSSI();
Serial.print("Signal strength (RSSI):");
Serial.print(rssi);
Serial.println(" dBm");

}

// This function sends the current position and sensor data to the
server↪→

void httpRequest() {
delay(100);
Serial.println();

// close any connection before send a new request
// this will free the socket on the WiFi module
client.stop();

// if there's a successful connection
if (client.connect(server, 3000)) {

Serial.println("Connecting...");

String content = "position=" + String(posX) + "," +
String(posY);↪→

content.concat("&sensor=90," + String(distances[0]));
content.concat("&sensor=60," + String(distances[1]));
content.concat("&sensor=30," + String(distances[2]));
content.concat("&sensor=0," + String(distances[3]));
content.concat("&sensor=330," + String(distances[4]));
content.concat("&sensor=300," + String(distances[5]));
content.concat("&sensor=270," + String(distances[6]));
content.concat("&sensor=240," + String(distances[7]));
content.concat("&sensor=210," + String(distances[8]));
content.concat("&sensor=180," + String(distances[9]));
content.concat("&sensor=150," + String(distances[10]));
content.concat("&sensor=120," + String(distances[11]));
Serial.println("->" + String(content.length()));
// send the HTTP GET request

client.println(F("GET /robot HTTP/1.1"));
client.println(("Host: " + String(server) + ":3000"));
client.println("Accept: */*");
client.println("Content-Length: " + String(content.length()));
client.println("Content-Type:

application/x-www-form-urlencoded");↪→

client.println("Connection: close");
client.println();
client.println(content);

} else {
// if you couldn't make a connection
Serial.println("Connection failed");

}
}

// This function requests te settings from the server
void httpRequest2() {

Serial.println();

// close any connection before send a new request
// this will free the socket on the WiFi shield
client.stop();

// Try to connect three times
for(int i = 0; i < 3; i++) {

// if there's a successful connection
if (client.connect(server, 3000)) {

Serial.println("Connecting...");

// send the HTTP GET request
client.println(F("GET /robot HTTP/1.1"));
client.println(("Host: " + String(server) + ":3000"));
client.println("Connection: close");
client.println();
return;

} else {
// if you couldn't make a connection
Serial.println("Connection failed");
Serial.println("Trying " + String(2 - i) + " more times");
client.stop();
delay(100*(i+1));

}
}
// if we fail three times go to next state

httpRequest(); // Sends position and sensor data to server
state = sending; // Next state

}

Appendix C

Node.JS code

// Bachelor’s Thesis in mechatronics 2021 at KTH Royal Institute of
Technology↪→

// TRITA-ITM-EX 2021:29
// MF133X Group 11
// Axel Hedvall, Filip Rydén
// 2021-05-09
// Task:
// Comunicate with the robot and the control panel
// Hardware:
// A computer with node.js, express and socket.io

const express = require('express');
const app = express();
const http = require('http').createServer(app);
const io = require('socket.io')(http);

var robots = []; // The connected robots
var controllers = []; // The connected controllers
var robot = {mode: 0, instructions: null}; // An object for the

robot↪→

app.use(express.static('public')); // Serves the javascript files
app.use(express.json()) // for parsing application/json
app.use(express.urlencoded({ extended: true })) // for parsing

application/x-www-form-urlencoded↪→

// GET request from /robot
app.get('/robot', (req, res) => {

var obj = { mode: robot.mode, instructions: robot.instructions
}; // JSON obj to send↪→

res.contentType('application/json'); // It's a JSON response
res.status(200); // Everything ok
res.json(obj); // Send the JSON obj back

Robot(req); // parse the request
});

app.post('/robot', (req, res) => {
var obj = { mode: robot.mode, instructions: robot.instructions

}; // JSON obj to send↪→

Robot(req); // parse the request

res.contentType('application/json'); // It's a JSON response
res.status(200); // Everything ok
res.json(obj); // Send the JSON obj back

});

// function for parsing the request and send the data to the
connected controllers↪→

function Robot(req) {
// If it's a new robot
if (!robots.includes(req.ip)) {

robots.push(req.ip);
// Send "Robot connected" to all connected controllers
controllers.forEach(element => {

element.emit('message', "Robot connected");
});

}

// If the request contains position data
if(req.body.position || req.query.position) {

var pos = req.body.position ? req.body.position :
req.query.position;↪→

pos = pos.split(',');
var data = {position:{x: pos[0]*1, y: pos[1]*1}}; // Create

the JSON data↪→

// Send the JSON data to all connected controllers
controllers.forEach(element => {

element.emit('position', data);
});

}
// If the request contains sensor data

if(req.body.sensor || req.query.sensor) {
var data = {sensors:[]}; // Create the JSON data
if (typeof(req.body.sensor) == "string") { // if there is

one or more sensors↪→

var sens = req.body.sensor.split(',');
// Append to the JSON data
data.sensors.push({angle:sens[0]*1,

distance:sens[1]*1});↪→

} else {
req.body.sensor.forEach(element => {

var sens = element.split(',');
// Append to the JSON data
data.sensors.push({angle:sens[0]*1,

distance:sens[1]*1});↪→

});
}
// Send the JSON data to all connected controllers
controllers.forEach(element => {

element.emit('sensor', data);
});

}
}

// Send the control.html to the client
app.get('/control', (req, res) => {

res.sendFile(__dirname + '/control.html');
});

// Start socket.io connection
io.on('connection', (socket) => {

console.log("A client connected: " + socket.id);
// The client requests a controller registartion
socket.on('register', (data) => {

if(data.id == socket.id) {
console.log(data.role + " connected");
socket.emit('message', 'Registration Ok');
// Append the new controller
if (data.role === "control")

controllers.push(socket);
}

});
// A controller has requested to change mode
socket.on("setmode", (mode) => {

if (controllers.includes(socket)) {
console.log("Mode: " + mode);
socket.emit('message', 'Changed to ' + mode);
robot.mode = mode * 1; // Save the new mode

}
});
// A controller has requested the current mode
socket.on("getmode", () => {

if (controllers.includes(socket)) {
socket.emit('mode', robot.mode); // Send the mode to the

controller↪→

}
});
// A controller has sent new instructions
socket.on('setinstruction', (instruction) => {

// Save the new instructions, null if it's stop
robot.instructions = instruction == "Stop" ? null :

instruction;↪→

});
// A controller has disconnected
socket.on('disconnect', () => {

controllers = controllers.filter(function(value, index,
array) {↪→

return value != socket.id;
});
console.log('Client disconnected');

});
});

// Start a webserver on port 3000
http.listen(3000, () => {

console.log('listening on *:3000');
});

Appendix D

control.html

<!--
Bachelor’s Thesis in mechatronics 2021 at KTH Royal Institute of

Technology↪→

TRITA-ITM-EX 2021:29
MF133X Group 11
Axel Hedvall, Filip Rydén
2021-05-09
Task:

Display the control panel and send instructions via socket.io to
the server↪→

Hardware:
A computer with a web browser

-->
<!DOCTYPE html>
<html>

<head>
<title>Robot control</title>
<style>

* {
font-family: sans-serif;

}

.flex {
display: flex;
flex-direction: row;
justify-content: center;

}
#output {

resize: none;
align-self: stretch;

flex-basis: 300px;
cursor: unset;

}
#output:focus {

outline: none;
}
canvas {

margin: 0 auto;
display: inline-block;

}

button {
font-size: 1.5rem;
border-radius: 5px;
background-color: lightgray;
box-shadow: 5px 5px 0 0 gray;
border: unset;
cursor: pointer;
text-align: center;
min-width: 2em;

}
button:active {

box-shadow: none;
transform: translate(5px, 5px);
border: 1px solid gray;

}
button:focus {

outline: none;
}

#toolbar {
display: flex;
flex-wrap: wrap;
justify-content: center;

}
#toolbar > * {

margin-right: 10px;
}

#dpad {
margin-top: 1em;
display: inline-grid;
grid-template-rows: auto auto;
grid-template-columns: auto auto auto;

justify-content: center;
gap: 5px;
width: 100vw;

}

select {
font-size: 1.5rem;

}
</style>

</head>
<body>

<div class="flex">
<canvas width="800" height="600" style="outline: solid

gray;"></canvas>↪→

<textarea id="output" readonly></textarea>
</div>

<div id="toolbar">

<button onclick="drawer.Clear()">Clear</button>
<button>| |</button>
<select onchange="SetMode(event, this)" id="modeselect">
<option value="0">Manual control</option>
<option value="2">Tesla autopilot</option>
<option value="1">Roomba mode</option>

</select>

<div id="dpad">
<button

onmousedown="SetInstruction('NW')">↖</button><button
onmousedown="SetInstruction('N')">↑</button><button
onmousedown="SetInstruction('NE')">↗</button>

↪→

↪→

↪→

<button
onmousedown="SetInstruction('W')">←</button><button
onmousedown="SetInstruction('Stop')">■</button><button
onmousedown="SetInstruction('E')">→</button>

↪→

↪→

↪→

<button
onmousedown="SetInstruction('SW')">↙</button><button
onmousedown="SetInstruction('S')">↓</button><button
onmousedown="SetInstruction('SE')">↘</button>

↪→

↪→

↪→

</div>
</div>
<script src="/socket.io/socket.io.js"></script>
<script src="/js/2D-Draw.js"></script>
<script src="/js/Shapes.js"></script>

<script src="/js/Logger.js"></script>
<script>

// Initalize socket.io
var socket = io();

// On connection register as a controller
socket.on("connect", () => {
console.log(socket.id);
LOGGER.log("Connected with id " + socket.id);
LOGGER.log("Register as controller");
socket.emit("register", {id: socket.id, role: "control"});

socket.emit("getmode"); // Ask for the current mode
});

// A new mode recived
socket.on("mode", (mode) => {
robot.mode = mode; // Save the new mode
document.getElementById("modeselect").value = mode; // Set

the select to the new mode↪→

LOGGER.log("Current mode: " +
document.getElementById("modeselect").selectedOptions[0].innerText);↪→

});

// A generic message recived
socket.on("message", function(msg) {
console.log(msg);
LOGGER.log(msg);

});

// A new position recived
socket.on('position', function(msg) {
console.log(msg);
LOGGER.log("New position at (" + msg.position.x + "," +

msg.position.y + ")");↪→

robot.pos = {x: msg.position.x, y: msg.position.y};
});

// New sensors recived
socket.on('sensor', function(msg) {
console.log(msg);
LOGGER.log("Recived " + msg.sensors.length + " sensors");
// Add the new sensors
msg.sensors.forEach(element => {

if(element.distance > 0) {
robot.AddSensor(element.distance, element.angle);

}
});

});

socket.on('reset', function() {
drawer = new

Drawer(document.getElementsByTagName("canvas")[0]);↪→

drawer.isGridEnabled=true;
});

</script>
<script>

const LOGGER = new Logger(document.getElementById("output"));
var drawer = new

Drawer(document.getElementsByTagName("canvas")[0]);↪→

drawer.isGridEnabled=true; // Enable the grid

var path = new Path(0, 0, "#FF0000", 1); // A path for the
robot↪→

drawer.Add(path);

// Draw the robot
robot1 = new Compound(0,0,new Polygon(0,0,3,0.5,"#000000"),new

Circle(0.5,0,0.2,"#000000"),new
Circle(-0.25,0.44,0.2,"#000000"),new
Circle(-0.25,-0.44,0.2,"#000000"));

↪→

↪→

↪→

robot1.Rotate(90);
drawer.Add(robot1);

// An obj for the robot
var robot = {
xpos: 0,
ypos: 0,
mode: 0,
obstacles: [],
set pos(p) {

this.SetPos(p.x, p.y);
},
get pos() {

return {
x: xpos,
y: ypos,

};

},
SetPos: function(x, y) {

this.xpos = x;
this.ypos = y;

path.AddNode(x, y); // Adds the new position to the path
robot1.SetPosition(x, y); // Moves the robot to the new

position↪→

},
AddSensor: function(distance, angle) {

// Creates a object for the new sensor data
obst = {position:{x:this.xpos, y:this.ypos},

radius:distance, angle:[(angle-15)*Math.PI/180,
(angle+15)*Math.PI/180], shapes:[]};

↪→

↪→

var myWorker = new Worker('js/worker.js'); // Start a new
thread↪→

myWorker.addEventListener('message', function(e) { // Set
response handler from thread↪→

robot.obstacles[e.data].shapes[0].color = "#000000"; //
Change the color↪→

drawer.Draw(); // Redraw
}, false);
var tmp = []; // New list of obstecles
// Add only the essensial information from the obsticles
this.obstacles.forEach(element => {

tmp.push({position:element.position,
radius:element.radius, angle:element.angle});↪→

});
myWorker.postMessage([obst, tmp, this.obstacles.length]);

// Start the thread↪→

// Creates an arc for the sensordata
shape = new Arc(this.xpos, this.ypos, distance, angle-15,

angle+15, "#777777", -1);↪→

obst.shapes.push(shape);
this.obstacles.push(obst);
// Draws the new arc
drawer.Add(shape);

}
}

// Events for the arrow keys press
window.onkeydown = function(evnt) {

if(evnt.repeat || robot.mode != 0) { // Ignore if the key is
repeated or not in manual control↪→

return;
}
// Sets the corresponding instruction
switch (evnt.code) {

case "ArrowUp":
SetInstruction("N");
break;

case "ArrowLeft":
SetInstruction("W");
break;

case "ArrowDown":
SetInstruction("S");
break;

case "ArrowRight":
SetInstruction("E");
break;

default:
return;

}
};
// Events for the arrow keys release
window.onkeyup = function(evnt) {
if(evnt.repeat || robot.mode != 0) { // Ignore if the key is

repeated or not in manual control↪→

return;
}
// Sets the stop instruction
switch (evnt.code) {

case "ArrowUp":
case "ArrowLeft":
case "ArrowDown":
case "ArrowRight":
SetInstruction("Stop");
break;

default:
return;

}
};

// Sends the instruction the the server
function SetInstruction(inst) {
LOGGER.log("Sending " + inst);

socket.emit("setinstruction", inst);
}

// Sends the new mode to the server
function SetMode(evnt, elmt) {
// Shows the dpad if manual control
document.getElementById("dpad").style.display = elmt.value

== 0 ? "inline-grid" : "none";↪→

console.log(elmt.value);
robot.mode = elmt.value; // Save the new mode
LOGGER.log("Sending " + elmt.selectedOptions[0].innerText);
socket.emit("setmode", elmt.value); // Send to the server

}
</script>

</body>
</html>

Appendix E

worker.js

// Bachelor’s Thesis in mechatronics 2021 at KTH Royal Institute of
Technology↪→

// TRITA-ITM-EX 2021:29
// MF133X Group 11
// Axel Hedvall, Filip Rydén
// 2021-05-09
// Task:
// Calculate which arcs are crossing, in a background thread
// Hardware:
// A computer with a web browser

self.addEventListener('message', function(e) {
const r = 1000; // N.o. pieces
const obst = e.data[0];
var obstacles = e.data[1];
const ind = e.data[2];
// Remove arcs that cannot cross
for(var i = 0; i < obstacles.length; i++) {

const element = obstacles[i];
const dx = obst.position.x - element.position.x;
const dy = obst.position.y - element.position.y;
const sqrD = dx*dx+dy*dy;
if(sqrD > (obst.radius + element.radius)*(obst.radius +

element.radius)) {↪→

// If they are too far apart
obstacles[i] = undefined;

} else if (Math.max(element.radius, obst.radius) >
Math.sqrt(sqrD) + Math.min(element.radius, obst.radius)
|| Math.max(element.radius, obst.radius) <
Math.sqrt(sqrD) - Math.min(element.radius, obst.radius))
{

↪→

↪→

↪→

↪→

// If they are inside of eachother
obstacles[i] = undefined;

}
}

for(var i = 0; i < r; i++) { // Divide the new arc into pieces
var x = obst.position.x + obst.radius *

Math.cos(obst.angle[0] +
(obst.angle[1]-obst.angle[0])*(i/r));

↪→

↪→

var y = obst.position.y + obst.radius *
Math.sin(obst.angle[0] +
(obst.angle[1]-obst.angle[0])*(i/r));

↪→

↪→

for(var k = 0; k < obstacles.length; k++) { // For every
saved arc↪→

if (obstacles[k] == undefined) { // If theh cannot cross
continue;

}
const elmt = obstacles[k];
for(var j =0; j < r; j++) { // Devide into pieces

var x1 = elmt.position.x + elmt.radius *
Math.cos(elmt.angle[0] +
(elmt.angle[1]-elmt.angle[0])*(i/r));

↪→

↪→

var y1 = elmt.position.y + elmt.radius *
Math.sin(elmt.angle[0] +
(elmt.angle[1]-elmt.angle[0])*(i/r));

↪→

↪→

if(Math.abs(x - x1) < 0.1 && Math.abs(y - y1) < 0.1)
{ // If the pieces are close enough↪→

// Send a hit to the main thread
self.postMessage(k);
self.postMessage(ind);

}
}

}
}
self.close();

}, false);

TRITA ITM-EX 2021:29

www.kth.se

