
IN DEGREE PROJECT MECHANICAL ENGINEERING,
FIRST CYCLE, 15 CREDITS

, STOCKHOLM SWEDEN 2021

Balancing a Monowheel with a PID
controller
Balansering av ett Monowheel med
hjälp av en PID regulator

FRITIOF ANDERSEN EKVALL

NILS WINNERHOLT

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ARCHITECTURE AND THE BUILT ENVIRONMENT

Balancing a monowheel with a PID controller

FRITIOF ANDERSEN EKVALL
NILS WINNERHOLT

Bachelor’s Thesis at ITM
Supervisor: Nihad Subasic
Examiner: Nihad Subasic

TRITA-ITM-EX 2021:49

Abstract
This bachelor’s thesis aimed to create a self balancing monowheel,
a vehicle type consisting of one wheel, using a PID con-
troller. The wheel is equipped with an accelerometer to
gather data about the tilt of the construction, which is then
filtered using a Kalman filter. A DC motor is propelling the
monowheel forward whereas a stepper motor with a battery
pack attached will actively balance the wheel with the help
of a PID-controller. This method of balancing had limited
success allowing the vehicle to travel for up to 7 seconds
before falling over, compared with up to 4 seconds with no
balancing implemented.

Keywords: Mechatronics, Monowheel, Balance, PID & Arduino

Referat
Balansera ett monowheel med en PID

kontroller
Detta kandidatexamensarbete har m̊alet att skapa ett självbalanserande
hjul med hjälp av en PID kontroller tillsammans med en ac-
celeromter vars utsignal filtreras med ett kalman filter. En
DC motor driver hjulet framm̊at medan en stepper motor
med ett batteripack fastsatt är den rörliga vikten som ba-
lanserar konstruktionen. PID metoden lyckades balansera
upp till 7 sekunder vilket är en marginell ökning jämfört
med upp till 4 sekunder helt utan aktiv balansering.

Nyckelord: Mekatronik, Monowheel, Balans, PID & Arduino

Acknowledgements

We would like to thank all our classmates who have all been very helpful. We would
also like to offer a special thanks to Rayan Alnakar for his help and encouraging
words.

Abbreviations

CAD Computer Aided Design

DC Direct Current

IDE Integrated Development Environment

PID Proportional Integral Derivative

PWM Pulse Width Modulation

USB Universal Serial Bus

CoG Center of Gravity

KF Kalman filter

Contents

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 1
1.3 Scope . 1
1.4 Method . 2

2 Theory 3
2.1 Arduino . 3
2.2 Gyroscope and accelerometer . 3
2.3 DC and stepper motor . 4
2.4 H-Bridge . 5
2.5 PID . 5
2.6 Kalman filter . 6

3 Demonstrator 9
3.1 Problem formulation . 9
3.2 Powertrain . 11
3.3 Simulation . 11
3.4 Component selection . 11
3.5 Software . 12

4 Results 13

5 Conclusions and Discussion 17
5.1 Discussion . 17

5.1.1 Design . 17
5.1.2 Kalman filter . 17
5.1.3 PID . 17
5.1.4 Stepper motor and the natural balance of the construction . 18
5.1.5 Proposal for future work . 18

5.2 Conclusions . 18

Bibliography 19

Appendices 20

A Arduino 21

B Acumen 27

List of Figures

2.1 An Arduino Uno compatible developement board [14] 3
2.2 MPU6050: gyroscope and accelerometer chip [15] 4
2.3 Circuit diagram of DC motor with a power source [5] 4
2.4 Circuit diagram of H-bridge [13] . 5
2.5 Block diagram of an implementation of a PID controller. Drawn in Paint 6

3.1 CAD model of the construction. Made in SolidEdge 2020 University
Edition . 10

3.2 Exploded view of the CAD model. Made in SolidEdge 2020 University
Edition . 10

3.3 Wiring diagram of the electronics for the monowheel. Made in fritzing
0.9.3 . 11

4.1 The constructed prototype. Photo taken by Nils Winnerholt 13
4.2 Test results for different types of balancing strategies 15

List of Tables

4.1 Table of the PID paramters used . 14
4.2 Table of the time balanced with different methods of balancing 14

Chapter 1

Introduction

1.1 Background

A monowheel is a vehicle with only a single wheel that has all of its driving action
taking place inside of the wheel. Since the construction only has one point of
contact to the ground it suffers from instability if it starts to tilt. Thus a form of
stabilization is often implemented where the most common stabilization method is
a shifting of the wheels’ center of gravity[1]. A classical monowheel has a person
sitting inside the machine balancing it. This version will use a method for stabilizing
using a shiftable weight to alter the center of gravity. Another possible method of
stabilization is control moment gyroscope which uses a gyroscope paired with motors
and flywheel, as was done in a previous bachelor’s project by Arthur Grönlund and
Christos Tolis[2]. The challenge of creating a method of stabilization for such a
vehicle has enticed us to start this project.

1.2 Purpose

The purpose of this project is to create a stable monowheel using a weight shifting
stabilization method. The project aims to answer the research question:

”How well can a monowheel be stabilized using an Arduino microcontroller cou-
pled with a shiftable weight using PID regulation?”

1.3 Scope

This project will focus on keeping the monowheel stabilized running in a straight
line forwards and backwards using a PID controller. How to get the monowheel to
turn is an interesting aspect of further investigation that is beyond the scope of this
project.

1

CHAPTER 1. INTRODUCTION

1.4 Method
A prototype will be constructed using a 3D printer. One battery pack will be the
shiftable weight and another will be placed as low as possible for increased stability
and balancing the weight and the DC motor. Utilizing the battery packs like this
saves weight as no additional material is needed to be added for the purpose as
ballast. The shifting of the battery pack will be done by a stepper motor which the
battery pack is mounted to and moves perpendicular to the forward motion of the
monowheel. An accelerometer and gyroscope will sense the current angle of tilt and
then send that information to an Arduino that will control the positioning of the
shiftable weight.

To assess where and how to place the motors and electronic controllers as effi-
ciently as possible a CAD drawing will be made of the chosen prototype and then
different placing schemes for the component mounts will be tested inside of the CAD
software. This will allow us to try out multiple geometries at no extra cost.

2

Chapter 2

Theory

2.1 Arduino
Arduino is a brand of open source microcontrollers, which are small computers made
on a single board. Arduino comes in many different models with their own best areas
of implementation. In this project an Playknowlogy Uno Rev.3 Arduino compatible
developement board is used, which can bee seen in figure 2.1. The microcontroller
is attached to a board that has a series of both digital and analog input/output
pins. Electrical components such as sensors and motors can be connected to those
pins and controlled using the programmable microcontroller. It is programmed by
writing code in the Arduino IDE v1.8.13 and then transferring that code onto the
microcontroller using a USB cable[3].

Figure 2.1. An Arduino Uno compatible developement board [14]

2.2 Gyroscope and accelerometer
An acceleromemeter is a sensor that detects its own acceleration in space. A gy-
roscope measures its own rotation and angular velocity. With these two types of
sensors an accurate representation of an objects orientation in space can be con-

3

CHAPTER 2. THEORY

structed. The MPU6050 pictured in figure 2.2 is a sensor that combines a 3 axis
accelerometer and a 3 axis gyroscope into one part. The gyroscope measure the an-
gular rate by measuring the displacement of a mass inside of the sensor due to the
Coriolis effect. The mass will move, causing the capacitance between the mass and
fixed plates to change. The accelerometer also work by measuring the capacitance
between a mass and a fixed plate, but does it by mounting the mass on springs
that allow the mass to be offset from its steady state when it is subjected to an
acceleration[4].

Figure 2.2. MPU6050: gyroscope and accelerometer chip [15]

2.3 DC and stepper motor
A DC motor has three main parts: rotor, stator and commutator. It uses direct
current to induce an electromagnetic force through the commutator to the rotor
located within the stator which translates to torque and mechanical energy. It can
be adjusted through altering the voltage supplied to the motor. The relation follows
the equation:

UA = RAIA + k2Φω (2.1)

with UA as the voltage, RA is the internal resistance of the motor, IA is the current
going over it, k2Φ is a motor specific constant and ω is the angular velocity[5].

Figure 2.3. Circuit diagram of DC motor with a power source [5]

A stepper motor has a similar construction to that of a DC motor but it’s
method of control is different. The stepper motor rotates in steps with one or a pair

4

2.4. H-BRIDGE

of electromagnets powering on for each step[6]. It is possible to change the amount
of steps to make smaller individual movements with microstepping, up to 6400 from
the regular 200[16].

2.4 H-Bridge

The H-Bridge is an electrical circuit switches polarity of the voltage for a DC motor,
thus allowing for control of the direction it spins. It does this with the help of four
transistors that function like power switches. When transistor S1 and S4 in figure
2.4 are activated while S2 and S3 are deactivated the current flows into the positive
pole of the motor and out of the negative pole, thus making the motor start spinning.
To make the motor spin the other way S2 and S3 are activated while S1 and S4 are
deactivated[5].

Figure 2.4. Circuit diagram of H-bridge [13]

2.5 PID

The PID controller is a mechanism utilized in closed feedback loops in order to get
the desired output y from a system. This is done by comparing the current output
of the system with a reference signal r and then taking the difference between them

5

CHAPTER 2. THEORY

to get the error e.

e(t) = r(t) − y(t) (2.2)

Using the error, the input signal to the system in the following way:

u(t) = KP e(t) +KI

∫ t

0
e(τ)dτ +KD

d

dt
e(t) (2.3)

The equation for the input signal has three different coefficients that correspond to
different properties of the controller. KP is the proportional gain and improves the
rise time of the system and decreases the steady state error, but does not eliminate
it, introduces overshoot to the system and causes instability if increased to much.
KI is the integrated gain and eliminates the steady state error and improves the
rise time further, but adds additional overshoot and instability at high values. The
overshoot is corrected for with the last parameter KD is the derivative gain and
also decreases instability. Fine tuning of the coefficients allows the system to get
the desired properties[7] .

Figure 2.5. Block diagram of an implementation of a PID controller. Drawn in
Paint

2.6 Kalman filter
Kalman filter, also called linear quadratic estimation is a recursive algorithm. Here
it will be used for reducing the noise from the sensors[8]. To use a Kalman filter,
first the Kalman gain will be calculated with EEST as the error (uncertainty) of the
estimate and EMEA is the error in the measurment :

KG = EEST

EEST + EMEA
(2.4)

The estimate error is calculated with:

EEST = (1 −KG)EESTprev (2.5)

The estimation EST updates regarding the previous estimate ESTprev and the mea-
surment MEA through the Kalman gain KG:

6

2.6. KALMAN FILTER

EST = ESTprev +KG(MEA− ESTprev) (2.6)

As the estimate error decreases the Kalman gain will decrease allowing the the
estimate to depend more on the previous estimate and less on the measurement[9].

7

Chapter 3

Demonstrator

3.1 Problem formulation
The demonstrator needed to fulfill a number of requirements in order to function
in the desired way. Those functions are:

1. Powertrain that transfers the rotation of a DC-motor to the outer wheel

2. Accelerometer that detects the deviation from upright

3. Balancing mechanism that adjusts the CoG of the monowheel

To test and improve the theory, a prototype will be constructed. The shell is mod-
elled in CAD and 3D printed. Two motors, their drivers, sensors and the Arduino
mounted inside shown below in figure 3.1 and figure 3.2.

9

CHAPTER 3. DEMONSTRATOR

Figure 3.1. CAD model of the construction. Made in SolidEdge 2020 University
Edition

Figure 3.2. Exploded view of the CAD model. Made in SolidEdge 2020 University
Edition

10

3.2. POWERTRAIN

3.2 Powertrain

The powertrain consists of an outer gear with four inner gears. One of the inner
gears is driven by the DC motor sitting on the side of figure 3.1.

3.3 Simulation

To verify the wiring it was first drawn up and tested in Tinkercad and fritzing
as seen in figure 3.3 before being physically connected. First for the DC motor
and afterwards for the stepper motor and last for the gyroscope and accelerometer
sensor.

Figure 3.3. Wiring diagram of the electronics for the monowheel. Made in fritzing
0.9.3

3.4 Component selection

A 24V DC motor is coupled with a stepper motor with a driver accepting 8-45V
making it possible to run the same voltage for them both. This will be achieved with
9V batteries connected both in parallel and in series for 18V and extra capacity.

11

CHAPTER 3. DEMONSTRATOR

3.5 Software
The tuning of the PID parameters has been done with the help of PIDtuner[17],
a website that allows for the optimization of parameters when supplied with data
from the use of a controller. The parameters were fine tuned by repeated use of the
software.

Arduino IDE was used to program the Arduino Uno microcontroller. In the code a
set of libraries were utilized to aid in the programs simplicity. The inbuilt Wire.h
library allows for communication with I2C and TWI devices. The PIDv2.h library,
which was created by Brett Beauregard, creates a PID-controller using parameters
that the users chooses[18].

12

Chapter 4

Results

The prototype was constructed using 3D-printed parts held together with screws
and reinforced with tape at connection points. Some parts were too large to print
in one piece so were split into modules that could fit onto the printing surface. The
final PID tuning parameters used are shown below in table 4.1.

Figure 4.1. The constructed prototype. Photo taken by Nils Winnerholt

13

CHAPTER 4. RESULTS

Table 4.1. Table of the PID paramters used

KP 0.7764
KI -0.004131
KD -72.97

The balance of the monowheel was tested while rolling forward by timing how
long it could roll forward on a slightly uneven surface. The test was performed us-
ing different balancing methods to evaluate the dependency of the balance method
for the performance of the monowheel. The tested balancing methods were PID-
controller+Kalman filter, PID-controller and P-controller. The test was also per-
formed with no active balancing as a negative control.
As seen in figure 4.1, with no active balancing the monowheel where balanced for
approximately four seconds. The result was similar for all the three tries. The
longest balancing period was obtained when a PID-controller was used to balanced
the monowheel and was approximately 7 seconds. The shortest balancing period
was also obtained when using a PID-controller. When using a PID-controller to-
gether with a Kalman filter, the monowheel was balanced for approximately 4.5
seconds. As summarized in table 4.2 below.

Table 4.2. Table of the time balanced with different methods of balancing

PID+KF PID P No balancing
Average time (ms) 4485 4897 3568 4189

Best time (ms) 4724 6920 4439 4334

14

0 1000 2000 3000 4000 5000 6000 7000 8000

Time (ms)

-40

-20

0

20

40

R
o
ll

(°
)

PID-controller + Kalman

Test 1

Test 2

Test 3

0 1000 2000 3000 4000 5000 6000 7000 8000

Time (ms)

-20

-10

0

10

20

30

40

R
o
ll

(°
)

PID-controller

Test 1

Test 2

Test 3

0 1000 2000 3000 4000 5000 6000 7000 8000

Time (ms)

-40

-30

-20

-10

0

10

R
o
ll

(°
)

P-controller

Test 1

Test 2

Test 3

0 1000 2000 3000 4000 5000 6000 7000 8000

Time (ms)

-20

-15

-10

-5

0

5

10

R
o
ll

(°
)

No active balancing

Test 1

Test 2

Test 3

Figure 4.2. Test results for different types of balancing strategies

15

Chapter 5

Conclusions and Discussion

5.1 Discussion

This section will address and allow discussion regarding the results and the project
as a whole.

5.1.1 Design

The play in the support cogs and the side covers allows a bit too much movement
sometimes resulting in the wheel getting caught on a side cover, this makes balancing
harder and also heavily increases the wear on the DC motor mounted cog (which has
been replaced during testing). The cog for the stepper motors balancing motion also
sometimes gets stuck which results loss of the active balance and a lot of vibrations
causing the accelerometer to give out quite varied values.

5.1.2 Kalman filter

The kalman filter lowers the error from the accelerometer readings but it also incurs
a small time penalty that does have some impact for the balancing of the monowheel
as the immediate balance is quite time sensitive. Testing has not shown a big differ-
ence with the kalman filter included or not suggesting that the increased accuracy
might not weigh up for the, albeit slight, time penalty.

5.1.3 PID

A PID controller is a great method for balance. It takes time, a lot of testing and
adjusting of parameters for it to reach it’s potential. The balance of the monowheel
could probably be improved substantially with the right tuning parameters. Ziegler-
Nichols method is one way of finding better values for the parameters. In it’s current
state it is sometimes slow, sometime over corrects and does only increase the balance
moderately.

17

CHAPTER 5. CONCLUSIONS AND DISCUSSION

5.1.4 Stepper motor and the natural balance of the construction
There are more possibilities with the use of a stepper motor, most of the testing
is done with the 200 base steps. For a smoother motion microstepping up to 6400
steps can be implemented. The attached battery-packs weight on the stepper motor
aids the change in CoG it causes with it’s movement but it is a quite light weight
in comparison to the whole monowheel. Thus reducing it’s ability to ”save” the
monowheel from exaggerated tilt angles. The DC motor has a large part of the
total weight which also hangs out quite a bit from the center line of the wheel, to
somewhat compensate for this one battery-pack and the powerbank for the arduino
has been placed opposite the DC motor. This results in less movable weight and
less impact from the stepper motors movement.

5.1.5 Proposal for future work
Other solutions might be better suited for this purpose, such as gyroscopic balance.
Involving the DC motor in the algorithm for example: starting with a certain speed
then when the monowheel starts tilting a small increase in the speed increases the
gyroscopic effects and thus increasing the stability of the monowheel. Furthermore,
a more powerful DC motor would provide extra speed for the monowheel, which
would improve the stabilization even further. With more precise manufacturing of
parts, less play and vibrations can be expected, probably improving on the design.

5.2 Conclusions
It is possible to balance the monowheel to some extent using an Arduino and a PID
controller with the method used in this report. The balancing system increased the
the average time per run by a second and at its best allowed for a doubling of time
spent upright. The construction is however not optimal since the vibrations from
both the powertrain and the balancing mechanisms introduced disturbances in the
data that caused the balancing to fail.

18

Bibliography

[1] Patryk Cieslak, Tomasz Buratowsk, Tadeusz Uhl, Mariusz Giergiel,
The Mono-Wheel Robot With Dynamic Stabilization,
Robotics and Autonomous Systems, 59:611–619, 2011

[2] DEGREE PROJECT MECHANICAL ENGINEERING,FIRST CYCLE, 15
CREDITS, STOCKHOLM SWEDEN 2018 Arthur Grönlund, Christos Tolis,
Riderless self-balancing bicycle,
http://kth.diva-portal.org/smash/get/diva2:1237256/FULLTEXT01.pdf

[3] Arduino. Date accessed: 2021-05-09
https://www.arduino.cc/

[4] MEMS Accelerometer Gyroscope Magnetometer Arduino. Date accessed:
2021-05-09
https://howtomechatronics.com/how-it-works/
electrical-engineering/mems-accelerometer-gyrocope-magnetometer-arduino/

[5] H. Johansson
Elektroteknik
Institutionen för Maskinkonstruktion, KTH, 2013

[6] What is a Stepper Motor : Types Its Working Date accessed: 2021-05-09
https://www.elprocus.com/stepper-motor-types-advantages-applications/

[7] Torker Glad, Lennart Ljung Reglerteknik: Grundläggande teori
Studentlitteratur AB, 4(17), 2006

[8] Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction
Problems
Journal of Basic Engineering. 82: 35–45, 1960. Date accessed: 2021-05-09
https://pdfs.semanticscholar.org/bb55/c1c619c30f939fc792b049172926a4a0c0f7.
pdf

[9] Lectures in The Kalman Filter. Date accessed: 2021-05-09
http://www.ilectureonline.com/lectures/subject/SPECIALTOPICS/26/
190

19

http://kth.diva-portal.org/smash/get/diva2:1237256/FULLTEXT01.pdf
https://www.arduino.cc/
https://howtomechatronics.com/how-it-works/electrical-engineering/mems-accelerometer-gyrocope-magnetometer-arduino/
https://howtomechatronics.com/how-it-works/electrical-engineering/mems-accelerometer-gyrocope-magnetometer-arduino/
https://www.elprocus.com/stepper-motor-types-advantages-applications/
https://pdfs.semanticscholar.org/bb55/c1c619c30f939fc792b049172926a4a0c0f7.pdf
https://pdfs.semanticscholar.org/bb55/c1c619c30f939fc792b049172926a4a0c0f7.pdf
http://www.ilectureonline.com/lectures/subject/SPECIALTOPICS/26/190
http://www.ilectureonline.com/lectures/subject/SPECIALTOPICS/26/190

BIBLIOGRAPHY

[10] Gheorghe Deliu, Mariana Deliu, Monowheel Dynamics.Date accessed: 2021-05-
09
http://www.recentonline.ro/027/DELIU_Gheorghe_02.pdf

[11] Dan Botezatu, The Plane Motion of the Monowheel Vehicle. Date accessed:
2021-05-09
http://www.recentonline.ro/042/Botezatu-R42.pdf

[12] Sreevaram Rufus Nireekshan Kumar, Bangaru Akash, T. Thaj Mary Delsy,
Designing the Mono Wheel by Using Self Balancing Techinque,
International Journal of Circuit Theory and Applications, 9(4):29–34, 2016

[13] Build Electronic Circuits. H-bridge. Date accessed: 2021-05-09
https://www.build-electronic-circuits.com/wp-content/uploads/
2018/11/H-bridge-switches.png

[14] Kjell & Company. Playknowlogy Uno Rev. 3 , Date accessed: 2021-05-09
https://www.kjell.com/globalassets/productimages/559575_88860.
tif?ref=61DF06C805&format=jpg&w=960&h=960&mode=pad

[15] F1 Depo. MPU6050, Date accessed: 2021-05-09
https://st2.myideasoft.com/shop/dt/63/myassets/products/293/
mpu6050-sensor.jpg?revision=1540787072

[16] Makerguides. How to control a stepper motor with DRV8825 driver and
Arduino. Date accessed: 2021-05-09
https://www.makerguides.com/drv8825-stepper-motor-driver-arduino-tutorial/

[17] PID Tuner Controller, Date accessed: 2021-05-09
https://pidtuner.com/#/

[18] PIDv2.h library, Date accessed: 2021-05-22
https://playground.arduino.cc/Code/PIDLibrary/

20

http://www.recentonline.ro/027/DELIU_Gheorghe_02.pdf
http://www.recentonline.ro/042/Botezatu-R42.pdf
https://www.build-electronic-circuits.com/wp-content/uploads/2018/11/H-bridge-switches.png
https://www.build-electronic-circuits.com/wp-content/uploads/2018/11/H-bridge-switches.png
https://www.kjell.com/globalassets/productimages/559575_88860.tif?ref=61DF06C805&format=jpg&w=960&h=960&mode=pad
https://www.kjell.com/globalassets/productimages/559575_88860.tif?ref=61DF06C805&format=jpg&w=960&h=960&mode=pad
https://st2.myideasoft.com/shop/dt/63/myassets/products/293/mpu6050-sensor.jpg?revision=1540787072
https://st2.myideasoft.com/shop/dt/63/myassets/products/293/mpu6050-sensor.jpg?revision=1540787072
https://www.makerguides.com/drv8825-stepper-motor-driver-arduino-tutorial/
https://pidtuner.com/#/
https://playground.arduino.cc/Code/PIDLibrary/

Appendix A

Arduino

1 /*
2 * Authors : Nils Winnerholt & Fritiof Ekvall
3 * Date: 2021 - 05 - 08
4 * --
5 * Made for Bachelors Project in Mechatronics
6 * MF133X
7 * --
8 * Thank you to: Dejan from http :// howtomechatronics .com
9 * Benne de Bakker from http :// makerguides .com

10 * For providing example codes that will be used in this project
11 * Brett Beauregard from http :// brettbeauregard .com/

projects /
12 * For providing the PID_v2 library
13 */
14
15 # include <Wire.h>
16 # include <PID_v2 .h>
17
18 # define dirPin 2
19 # define stepPin 3
20 # define stepsPerRevolution 200
21
22 # define en 12
23 # define in1 8
24 # define in2 7
25
26 // Accelerometer and Gyroscope
27
28 const int MPU = 0x68; // MPU6050 I2C address
29 float AccX , AccY , AccZ; // Acceleration values
30 float GyroX , GyroY , GyroZ; // Gyroscope values
31 float accAngleX , accAngleY , gyroAngleX , gyroAngleY , gyroAngleZ ; //

Angles for the different outputs from the accelerometer
32 float roll , pitch , yaw; // Calculated roll , pitch and yaw from

the accelerometer readings
33 float AccErrorX , AccErrorY , GyroErrorX , GyroErrorY , GyroErrorZ ; //

Errors in accelerometer readings

21

APPENDIX A. ARDUINO

34 float elapsedTime , currentTime , previousTime ; // Keeps track of
time

35 int c = 0; // Temporary variable
36
37 // Kalman
38
39 float Mea ,KG;
40 float Est_t0 ,Est_t;
41 float E_mea , E_est , E_est0 ;
42
43
44 // PID
45 char receivedChar ;
46 boolean newData = false;
47
48 unsigned long changeTime = 0; // Last time the sensor was triggered
49 double difference = 5; // Temporary value for the difference

between the desired angle and true angle
50 double stepperOut = 250; // Temporary value for the strength of

the stepper motor
51 double setAngle = -4; // Desired angle that will result in

balance
52 String inString ;
53
54 double Kp = 0.7764; // Proprtional constant
55 double Ki = -0.004131; // Integrating constant
56 double Kd = -72.97; // Derivating constant
57
58 PID myPID (& difference , &stepperOut , &setAngle ,Kp ,Ki ,Kd , DIRECT); //

Creates a PID from the provided information
59
60
61 void setup () {
62
63 // PID
64 myPID. SetMode (AUTOMATIC);
65
66 // Assigns pins for the DC motor
67 pinMode (en , OUTPUT);
68 pinMode (in1 , OUTPUT);
69 pinMode (in2 , OUTPUT);
70
71 digitalWrite (en , HIGH); // Enables the H- bridge
72
73 // From Benne
74 pinMode (stepPin , OUTPUT);
75 pinMode (dirPin , OUTPUT);
76
77 // From Dejan
78 Serial .begin (19200) ;
79 Wire.begin (); // Initialize comunication
80 Wire. beginTransmission (MPU); // Start communication with

MPU6050 // MPU =0 x68
81 Wire.write (0 x6B); // Talk to the register 6B

22

82 Wire.write (0 x00); // Make reset - place a 0 into
the 6B register

83 Wire. endTransmission (true); // End the transmission
84
85 calculate_IMU_error ();
86 delay (20);
87
88 }
89
90
91 void loop () {
92
93 // Runs the DC motor
94 digitalWrite (in1 , HIGH); // Enables the first transistor pair
95 digitalWrite (in2 , LOW); // Disables the second transistor pair
96
97 MPU6050 (); // Calls for the accelerometer readings
98
99 // Kalman filter to improve the quality of data from the

accelerometer
100 Mea = roll; // Inital measurment
101 Est_t0 = 1; // Inital estimate
102 E_mea =1; // Error in measurement
103 E_est0 =0.5; // Inital error in estimate
104 KG = E_est0 /(E_est0 +E_mea); // Kalman gain
105 Est_t = Est_t0 +KG*(Mea - Est_t0); // Current estimate
106 E_est = (1-KG)* E_est0 ; // New error in estimate
107
108 KG = E_est /(E_est+E_mea);
109 Est_t = Est_t+KG*(Mea -Est_t);
110 E_est = (1-KG)*E_est;
111
112 KG = E_est /(E_est+E_mea);
113 Est_t = Est_t+KG*(Mea -Est_t);
114 roll=Est_t;
115
116 difference = abs(setAngle -roll); // Finds the difference between

the desired - and acual angle
117
118 myPID. Compute (); // Compute PID for this

itteration
119
120 // Determines the direction for the stepper motor (balancing)
121 if(roll > setAngle +1){
122
123 // Set the spinning direction clockwise :
124 digitalWrite (dirPin , LOW);
125
126 digitalWrite (stepPin , HIGH);
127 delayMicroseconds (stepperOut);
128 digitalWrite (stepPin , LOW);
129 delayMicroseconds (stepperOut);
130 }
131 else if (roll < setAngle -1){

23

APPENDIX A. ARDUINO

132
133 // Set the spinning direction counterclockwise :
134 digitalWrite (dirPin , HIGH);
135
136 digitalWrite (stepPin , HIGH);
137 delayMicroseconds (stepperOut);
138 digitalWrite (stepPin , LOW);
139 delayMicroseconds (stepperOut);
140 }
141 else {
142
143 // Turns off the spinning
144 digitalWrite (stepPin , LOW);
145 delayMicroseconds (4000) ;
146 digitalWrite (stepPin , LOW);
147 delayMicroseconds (4000) ;
148
149 }
150
151
152 }
153
154
155
156
157 // Code that reads data from the accelerometer
158 // Written by Dejan
159 void MPU6050 () {
160
161 // === Read acceleromter data === //
162 Wire. beginTransmission (MPU);
163 Wire.write (0 x3B); // Start with register 0x3B (ACCEL_XOUT_H)
164 Wire. endTransmission (false);
165 Wire. requestFrom (MPU , 6, true); // Read 6 registers total , each

axis value is stored in 2 registers
166 // For a range of +-2g, we need to divide the raw values by 16384 ,

according to the datasheet
167 AccX = (Wire.read () << 8 | Wire.read ()) / 16384.0; // X-axis value
168 AccY = (Wire.read () << 8 | Wire.read ()) / 16384.0; // Y-axis value
169 AccZ = (Wire.read () << 8 | Wire.read ()) / 16384.0; // Z-axis value
170 // Calculating Roll and Pitch from the accelerometer data
171 accAngleX = (atan(AccY / sqrt(pow(AccX , 2) + pow(AccZ , 2))) * 180 /

PI) - AccErrorX ; // AccErrorX ˜(0.58) See the calculate_IMU_error
() custom function for more details

172 accAngleY = (atan (-1 * AccX / sqrt(pow(AccY , 2) + pow(AccZ , 2))) *
180 / PI) + AccErrorY ; // AccErrorY ˜(-1.58)

173
174 // === Read gyroscope data === //
175 previousTime = currentTime ; // Previous time is stored

before the actual time read
176 currentTime = millis (); // Current time actual time read
177 elapsedTime = (currentTime - previousTime) / 1000; // Divide by

1000 to get seconds
178 Wire. beginTransmission (MPU);

24

179 Wire.write (0 x43); // Gyro data first register address 0x43
180 Wire. endTransmission (false);
181 Wire. requestFrom (MPU , 6, true); // Read 4 registers total , each

axis value is stored in 2 registers
182 GyroX = (Wire.read () << 8 | Wire.read ()) / 131.0; // For a 250 deg/s

range we have to divide first the raw value by 131.0 , according
to the datasheet

183 GyroY = (Wire.read () << 8 | Wire.read ()) / 131.0;
184 GyroZ = (Wire.read () << 8 | Wire.read ()) / 131.0;
185 // Correct the outputs with the calculated error values
186 GyroX = GyroX + GyroErrorX ; // GyroErrorX ˜(-0.56)
187 GyroY = GyroY - GyroErrorY ; // GyroErrorY ˜(2)
188 GyroZ = GyroZ + GyroErrorZ ; // GyroErrorZ ˜ (-0.8)
189
190 // Currently the raw values are in degrees per seconds , deg/s, so

we need to multiply by sendonds (s) to get the angle in degrees
191 gyroAngleX = gyroAngleX + GyroX * elapsedTime ; // deg/s * s = deg
192 gyroAngleY = gyroAngleY + GyroY * elapsedTime ;
193 yaw = yaw + GyroZ * elapsedTime ;
194
195 // Complementary filter - combine acceleromter and gyro angle

values
196 /* roll = 0.96 * gyroAngleX + 0.04 * accAngleX ;
197 pitch = 0.96 * gyroAngleY + 0.04 * accAngleY ;
198 */
199 // Improved filter by Chris to stop drift
200 gyroAngleX = 0.96 * gyroAngleX + 0.04 * accAngleX ;
201 gyroAngleY = 0.96 * gyroAngleY + 0.04 * accAngleY ;
202
203 roll = gyroAngleX ;
204 pitch = gyroAngleY -80;
205
206 // Print the values on the serial monitor
207 Serial .print("Roll:");
208 Serial .print(roll);
209 Serial .print(", ");
210 /*
211 Serial .print ("/");
212 Serial .print(pitch);
213 Serial .print ("/");
214 Serial . println (yaw);
215 */
216 }
217
218
219 // Code that calculates the error in the data from the accelerometer
220 // Written by Dejan
221 void calculate_IMU_error () {
222
223 // We can call this funtion in the setup section to calculate the

accelerometer and gyro data error. From here we will get the error
values used in the above equations printed on the Serial Monitor .

224 // Note that we should place the IMU flat in order to get the
proper values , so that we then can the correct values

25

APPENDIX A. ARDUINO

225 // Read accelerometer values 200 times
226 while (c < 200) {
227 Wire. beginTransmission (MPU);
228 Wire.write (0 x3B);
229 Wire. endTransmission (false);
230 Wire. requestFrom (MPU , 6, true);
231 AccX = (Wire.read () << 8 | Wire.read ()) / 16384.0 ;
232 AccY = (Wire.read () << 8 | Wire.read ()) / 16384.0 ;
233 AccZ = (Wire.read () << 8 | Wire.read ()) / 16384.0 ;
234 // Sum all readings
235 AccErrorX = AccErrorX + ((atan ((AccY) / sqrt(pow ((AccX), 2) + pow

((AccZ), 2))) * 180 / PI));
236 AccErrorY = AccErrorY + ((atan (-1 * (AccX) / sqrt(pow ((AccY), 2)

+ pow ((AccZ), 2))) * 180 / PI));
237 c++;
238 }
239 // Divide the sum by 200 to get the error value
240 AccErrorX = AccErrorX / 200;
241 AccErrorY = AccErrorY / 200;
242 c = 0;
243 // Read gyro values 200 times
244 while (c < 200) {
245 Wire. beginTransmission (MPU);
246 Wire.write (0 x43);
247 Wire. endTransmission (false);
248 Wire. requestFrom (MPU , 6, true);
249 GyroX = Wire.read () << 8 | Wire.read ();
250 GyroY = Wire.read () << 8 | Wire.read ();
251 GyroZ = Wire.read () << 8 | Wire.read ();
252 // Sum all readings
253 GyroErrorX = GyroErrorX + (GyroX / 131.0) ;
254 GyroErrorY = GyroErrorY + (GyroY / 131.0) ;
255 GyroErrorZ = GyroErrorZ + (GyroZ / 131.0) ;
256 c++;
257 }
258 // Divide the sum by 200 to get the error value
259 GyroErrorX = GyroErrorX / 200;
260 GyroErrorY = GyroErrorY / 200;
261 GyroErrorZ = GyroErrorZ / 200;
262 // Print the error values on the Serial Monitor
263 Serial .print(" AccErrorX : ");
264 Serial . println (AccErrorX);
265 Serial .print(" AccErrorY : ");
266 Serial . println (AccErrorY);
267 Serial .print(" GyroErrorX : ");
268 Serial . println (GyroErrorX);
269 Serial .print(" GyroErrorY : ");
270 Serial . println (GyroErrorY);
271 Serial .print(" GyroErrorZ : ");
272 Serial . println (GyroErrorZ);
273 }

26

Appendix B

Acumen

//Bachelor’s Thesis at ITM, KTH
//Balancing a monowheel with a PID controller
//Date: 2021-05-09
//Written by: Fritiof Andersen Ekvall and Nils Winnerholt
//Examiner: Nihad Subasic
//TRITA number: TRITA-ITM-EX 2021:49
//Course code: MF133X
//Description of the program:
//This is a simulation of the movement of the monowheel as it rolls forward.

model Main(simulator) =
initially

m1 = create Monowheel((0,0,0),green,(0,0,0)), //Here is the model created
x1=0, x1’=0, x1’’=0, //Inital values for the x position and it’s derivatives
x2=0, x2’=0, x2’’=0,
z=0

always
if x1<20 //If the x position is small enough it will start moving

then x1’’ = -(x1’-5)
else if x1’>0

then x1’’ = -7
else x1’’ = 0,

m1.pos = (x1,0,0),// Change in x-axis position
m1.rot = (0,0.2*x1,0),// Change in y-axis rotation
x2’’ = 0,
z = x1-x2

27

APPENDIX B. ACUMEN

model Monowheel(pos,col,rot) = //Here is the formula for the creation of the model.
initially

_3D =(), _Plot=()//View of what has been created

always
_3D =(Cylinder center = pos //Choice of shape and position for the object

size = (1,2) //Size
color = col //Colour
rotation = rot //How it rotates
transparency = 0.5) //It’s transparency

28

TRITA ITM-EX 2021:49

www.kth.se

	Balancing a Monowheel with a PID controller Balansering av ett Monowheel med hjälp av en PID regulator
	22ebb6e90bf5d36fb574f9dfe054a8f3264b6b6f84c1c6feee700576afd20445.pdf
	Introduction
	Background
	Purpose
	Scope
	Method

	Theory
	Arduino
	Gyroscope and accelerometer
	DC and stepper motor
	H-Bridge
	PID
	Kalman filter

	Demonstrator
	Problem formulation
	Powertrain
	Simulation
	Component selection
	Software

	Results
	Conclusions and Discussion
	Discussion
	Design
	Kalman filter
	PID
	Stepper motor and the natural balance of the construction
	Proposal for future work

	Conclusions

	Bibliography
	Appendices
	Arduino
	Acumen

	Balancing a Monowheel with a PID controller Balansering av ett Monowheel med hjälp av en PID regulator

