Comparing the omics landscapes of HEK293 and CHO for improved bioproduction

Mapping differences between industrially relevant HEK293 strains and learning lessons from the divergence in secretory pathways between HEK293 and CHO

Presenter: Magdalena Malm, Ph.D., Researcher, KTH Royal Institute of Technology <u>mamalm@kth.se</u>; https://rocklab.se/ PI: Prof. Johan Rockberg, KTH Royal Institute of Technology

Six industrially relevant HEK293 cell lines show genomic and transcriptomic divergences

cholesterol biosynthetic process (GO:0006695) - IDI1;HMGCS1;NPC1L1;MSMO1;INSIG1			
secondary alcohol biosynthetic process (GO:1902653) - IDI1;HMGCS1;NPC1L1;MSMO1;INSIG1			
sterol biosynthetic process (GO:0016126) - IDI1;HMGCS1;NPC1L1;MSMO1; INSIG1			
cholesterol metabolic process (GO:0008203) - IDI1;HMGCS1;NPC1L1;MSMO1;INSIG1			
regulation of ubiquitin-protein transferase activity (GO:0051438) - ARRDC4;ARRDC3;SMAD7			
cellular response to sterol depletion (GO:0071501) - NPC1L1;INSIG1			
generation of neurons (GO:0048699) - TUBB2B;ID1;ID3;MAPT			
central nervous system neuron development (GO:0021954) - NPY;MAPT		-log10(Padj)	
positive regulation of protein ubiquitination (GO:0031398) - ARRDC4;ARRDC3;SMAD7	0	2	4
negative regulation of transferase activity (GO:0051348) - MAPT;SMAD7			

The secretory pathway utilization is different in HEK293 and CHO cell lines during expression of difficult-toexpress proteins

Co-expression of highly abundant HEK293 secretory pathway components can boost bioproduction in CHO

Heavily glycosylated proteins benefit from higher activation of glycosyltransferases activation in HEK293 compared to CHO

HEK293 transcriptomic mapping enables identification of secretory pathway bottlenecks in CHO

