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Temporal array with superconducting nanowire single-photon detectors
for photon-number resolution
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We present an experimental realization of a 16 element, temporal-array, photon-number-resolving (PNR)
detector, which is a multiplexed single-photon detector that splits an input signal over multiple time bins, and the
time bins are detected using two superconducting nanowire single-photon detectors (SNSPD). A theoretical
investigation of the PNR capabilities of the detector is performed and it is concluded that, compared to a
single-photon detector, our array detector can resolve one order of magnitude higher mean photon numbers,
given the same number of input pulses to measure. This claim is experimentally verified and we show that
the detector can accurately predict photon numbers between 10−3 and 102. Our present detector is incapable
of single-shot photon-number measurements with high precision since its effective quantum efficiency is 49%.
Using SNSPDs with a higher quantum efficiency the PNR performance will improve, but the photon-number
resolution will still be limited by the array size.
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I. INTRODUCTION

Photon-number-resolving detectors are devices capable of
accurately measuring photon numbers in input wave packets.
Having the ability to resolve photon numbers is applicable
and highly desirable in imaging applications [1], investigation
of exceptional points in PT -symmetric systems [2], quantum
key distribution [3], decoy states for quantum key distribution
security [4,5], measurements in the number basis [6], and
photon-counting laser radars [7].

PNR detectors can be divided into two categories: Inherent
PNR detectors which utilize some process where the quan-
tity used as the output has a well-defined dependence on
the incident photon number and multiplexed PNR detectors
which split the input over multiple single-photon detectors.
Examples of detectors in the former category are transition
edge sensors (TES) [8–10], complementary metal–oxide–
semiconductor (CMOS) detectors [11], and charge coupled
device (CCD) detectors. The latter category consists of var-
ious schemes to distribute the incoming photons over multiple
single-photon detectors [12–14]. Some examples of these
schemes are spatial arrays [15–17], loop arrays [18–20], and
temporal arrays [21–23].
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The spatial array design consists of a symmetric N-port
coupler that takes the input and ideally distributes the in-
put photons uniformly over the N single-photon detectors.
However, the requirements on the number of single-photon
detectors grow quickly [24], and the limited quantum effi-
ciency of the detectors makes the design difficult to scale. An
alternative design that uses fewer resources is the loop-based
array [18–20], which only requires one single-photon detec-
tor. However, this design results in a nonuniform distribution
of photons over the time bins and most of the light exits in the
first few time bins, which is undesirable.

The temporal multiplexed PNR detector is a device that
splits input pulses over time bins rather than over different
detectors. Given that the time bins are appropriately spaced
and that the mean photon number per time bin is much smaller
than unity, it is possible to use single-photon detectors to
measure the output. This results in a device that has an out-
put distribution equivalent to a spatial array, but the required
number of single-photon detectors is only two. However, by
increasing the size of the temporal array, the time required
per measurement increases since the time bins need to be
separated sufficiently for the single-photon detector to recover
and go back to a fully thermalized, superconducting state.
This leads to a decreasing detection rate with the size of
the temporal array. Furthermore, increasing the size of the
temporal array introduces additional losses which eventually
overcome the gain in performance of increasing the size [24].

The ability to resolve photon numbers can be quantified in
multiple ways, which differ due to the application considered.
In this work we mainly consider two different types of PNR
capabilities. The first is the ability to find the correct photon
number in a single wave-packet, single-shot measurement.
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FIG. 1. Schematic figure of our setup. The signal generator triggers the laser with a frequency of 100 kHZ. The laser light is filtered through
a 980 nm narrow bandpass filter and attenuated with a variable attenuator. The attenuated light is coupled into the multiplexer which splits the
light into eight time bins in two output fibers. The polarization of the output is adjusted with polarization controllers and the light is detected
with SNSPDs. Figure 1 was created with ComponentLibrary [27].

This capability is useful in photon number encoded commu-
nication or quantum cryptography, where each signal is only
sent once. The second is the ability to reconstruct the number
distribution of the input source useful in characterization of
low intensity light sources or imaging at low intensities. A
detector capable of single-shot PNR measurements is also
capable of reconstructing the number distribution, but the
former is much more difficult to attain and it is also difficult
to quantify it directly.

The work is organized as follows. In Sec. II we present
the experimental setup for a 16 element temporal array with
two superconducting nanowire single-photon detectors as de-
tector elements. In Sec. III a framework for estimating the
mean photon numbers in incident laser light is presented and
the limits in resolvable mean photon numbers are predicted
using our model. In Sec. IV the results of the experiments
are presented. This includes results from measurements of
losses in the multiplexer and in the single-photon detector (in
Sec. IV A), measurements and estimations of PNR capability
for multiple input data and for single input data (in Sec. IV B),
and the bandwidth of the detector (in Sec. IV C). Finally, in
Sec. V, we summarize our findings and draw conclusions.

II. SETUP

A schematic image of the setup is presented in Fig. 1. A
980 nm wavelength semiconductor laser is electrically driven
at a repetition rate of 100 kHZ with a pulse length of 16.3 ns
using a signal generator. The laser output is filtered through
a narrow bandpass filter and subsequently attenuated with
a variable, neutral density filter to the few photon regime.
These photons are focused with a lens and coupled into a po-
larization maintaining PANDA fiber PM980-XP. The fiber is
connected to a temporal multiplexer made of a series of nom-
inally 50:50, polarization maintaining fiber couplers, which
have been connected with PANDA fiber loops of lengths

between nominally zero to 120 m. When splicing the input
fiber and the loops to the couplers, great care was taken to
align the PANDA fiber ends both transversely and rotationally
as to minimize the splicing losses. The multiplexer splits every
input laser pulse into eight nonoverlapping time-bin pulses,
which results in an effective detector array size of 16 elements.

The (linear) polarization state of the output from the mul-
tiplexer is rotated using polarization controllers prior to the
detectors to maximize the respective count rate from the two
NbTiN based superconducting, nanowire single-photon de-
tectors (SNSPD, Single Quantum EOS). There are two main
reasons for choosing PANDA fibers instead of ordinary single
mode (SM) fibers for the multiplexer in spite of the higher
losses for the former. The first is that we can consistently
make sure that the setup operates in the polarization regime
where the SNDPD detection efficiency is the highest. The
second is that also fiber couplers typically are polarization
sensitive, so that the splitting ratio between the 16 output
pulses would depend on the polarization state of the input
if SM fibers would have been used. Moreover, mechanical
stress and temperature changes may shift the polarization in
SM fibers, which makes it difficult to control the polarization.

The SNSPDs have an approximate timing-jitter FWHM of
30 ps and are set to operate at bias currents of 13.00 μA and
10.10 μA, and trigger voltages of 150 mV and 50 mV, respec-
tively. The electrical outputs of the SNSPDs are synchronized
with the laser pulses and recorded using a quTools quTag time
tagger with picosecond digital resolution and <10 ps timing
jitter. The outputs from the SNSPDs are time binned with
30 ns windows centered around the expected arrival times
relative to the trigger signal.

III. PARAMETER ESTIMATION

One potential application for the temporal array detector is
to use it to estimate the mean photon number for values where
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neither single-photon detectors nor power meters are capable
of making an accurate measurement. Here we consider the
scenario when a Poissonian laser pulse of mean photon num-
ber μ is used as input for the device. The goal is to find an
estimator μ̂ and estimate the error ε = |μ̂ − μ|.

We use the maximum likelihood method to find an esti-
mator μ̂MLE for the mean photon number μ. To compute this
estimator we use that the probability to get x clicks from the
SNSPDs after the laser pulse passes through the multiplexer
with n effective detector elements is given by [24–26]

Pr(x | μ) =
(

n

x

)
e−μη(1 − pd )n

(
eμη/n

1 − pd
− 1

)x

, (1)

where η and pd are the quantum efficiency and probability
for a dark count per time bin, respectively. The maximum
likelihood estimator for the measurement data {xi}N−1

i=0 from
N laser pulses is then given by

μ̂MLE(〈x〉) = −n

η
ln

(
n − 〈x〉

(1 − pd )n

)
, (2)

where the expectation value over the experimental data 〈x〉 is
given by

〈x〉 = 1

N

N−1∑
i=0

xi. (3)

The error of the maximum likelihood estimator can be
divided into two parts: The variance and the resolution error
caused by finite number of data points. The variance can be
estimated by propagating the sample variance for 〈x〉 to μ̂MLE

and a lower bound can be computed using the Cramer-Rao
bound, which gives that

Var(μ̂MLE) � n[(1 − pd )−1eμη/n − 1]

η2N
. (4)

Hence the variance grows at least exponentially with μη/n,
which implies that the number of required measurements to
reach a certain set variance grows exponentially with the
mean photon number and it therefore becomes unfeasible to
measure too strong input signals. We also note that an array
with size n can measure around n times more photons with
the same variance as a single-photon detector.

The resolution error arises from the fact that the quantity
N〈x〉 is a non-negative integer less than or equal to nN . This
implies that there are in total nN possible finite values S =
{μ̂MLE(0), μ̂MLE(1/N ), . . . , μ̂MLE(n − 1/N )} that the estima-
tor μ̂MLE can take and the estimator has a resolution error if
the mean photon number μ �∈ S. Let us quantify this error by
the spacing between the estimator and the next possible value:

�μ̂MLE(〈x〉) = μ̂MLE(〈x〉 + 1/N ) − μ̂MLE(〈x〉)

= −n

η
ln

(
n − 〈x〉 − 1/N

n − 〈x〉
)

. (5)

In the weak light limit when 〈x〉 � n, we notice that the
spacing between adjacent estimator values is approximately

�μ̂MLE(〈x〉) ≈ 1

ηN
, (6)

which is small for sufficiently many measurements. However,
for strong light the spacing is not small and the resolution error
diverges as 〈x〉 → n.

The resolution error and the limited number of outputs
effectively limit the maximum mean photon number that can
be resolved with the detector. The largest value that can be
recorded with finite resolution error and a finite estimator is

μ̂MLE(n − 2/N ) = n

η
ln

(
nN (1 − pd )

2

)
. (7)

For this experiment when N ≈ 106 and the dark counts are
negligible we get that the largest resolvable input is μηMax ≈
250 when n = 16, while for a (nonmultiplexed) single-photon
detector μηMax ≈ 13.

IV. RESULTS

A. Detector characterization

Losses in the PNR detector can be divided into two types:
Losses in the temporal multiplexer and limited efficiency of
the SNSPD. The former types are assumed to be linear losses
and include fiber losses, losses in splices, and excess loss in
the couplers, while losses due to nonunity quantum efficiency
belong to the latter type. To estimate the total loss in the
multiplexer an optical power meter is used to compare the
power at the detectors with the output before the first coupler.
These power measurements are conducted without the neutral
density filters and the power measurement before the first
coupler is done by cutting the fiber. The total loss in the
multiplexer is measured to be 0.63 dB.

The measured loss is well in line with the average ex-
pected transmission loss of 0.66 dB (the average transmission
is 0.86), based on the manufacturers’ specifications, where
it is assumed that each coupler has a loss of 0.1 dB and the
fiber has a loss of 2.5 dB/km with an average travel distance

FIG. 2. Counts per time bin are displayed for the detectors. The
multiplexer splits the input into 16, 30 ns long, time bins with close
to uniform splitting ratio. Spacing between two following time bins
is approximately 150 ns, which sets the requirement that the single-
photon detectors must be able to resolve signals of at least 7 MHz.
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of 105 m. Each pulse also passes through eight fiber splices.
However, the splice losses are negligible compared to the
other losses.

To measure the quantum efficiencies of the SNSPDs, in-
cluding the fiber pigtail, the count rate of a laser at 980 nm
attenuated with a calibrated attenuator is measured. The
unattenuated laser power is measured using a power meter
and is compared with the measurements conducted with the
SNSPDs. The resulting nominal quantum efficiencies are 50%
and 64%, respectively, chosen so that the dark count rates
are 0.11 Hz ± 0.04 Hz and 0.22 Hz ± 0.05 Hz, respectively.
Hence the average, overall quantum efficiency of the whole
setup becomes 0.86 × (0.50 + 0.64)/2 = 49%.

The probability for a dark count to occur within any of
the 30 ns time bins during one input pulse is 2.6 × 10−9 and
5.3 × 10−8, which is negligible for any signal resolvable with
the array. Hence it is justified to neglect dark counts in the data
analysis.

Histograms displaying the time bins for each SNSPD are
presented in Fig. 2. The laser pulses have an ≈4 ns FWHM,
which is about one order of magnitude smaller than the
time-bin length of 30 ns. The multiplexer time bins have an ap-
proximate spacing of 150 ns, which requires the single-photon

detectors to have a count rate of at least 7 MHz in order not to
saturate. The used SNSPDs have a maximal count rate that
exceeds 10 MHz, which suggests that the spacing between the
time bins could be reduced slightly before saturation occurs.
However, the SNSPDs experience a quantum efficiency drop
when the count rate approaches the maximum count rate.
The time-bin spacing was therefore chosen with a margin to
guarantee that no extra loss is introduced.

B. PNR capability

We consider two different types of PNR capabilities in
this experiment: The ability to measure the photon number
of a single wave packet and measuring the photon number
after many repeated measurements. The former is useful in
communication schemes where the data is encoded in photon
numbers and the latter is useful when characterizing few pho-
ton sources. Here we show the latter experimentally, while the
former capability is investigated theoretically using data from
the experiments.

The output distribution for different attenuation strengths
with corresponding fits are presented in Fig. 3. The fits display
good agreement with experimental data suggesting that the

(a) (b) (c)

(d) (e) (f)

FIG. 3. Output count distribution (blue, dots) for different attenuation strengths. Each distribution is fitted to Eq. (1) using the maximum
likelihood estimator under the assumption that dark counts are negligible (orange, squares). The experimental data points are presented with
error bars corresponding to one standard deviation uncertainty, but the uncertainty is so small that the error bars are hardly visible. The
mean photon number estimator is presented in the legends with a one standard deviation estimated uncertainty. The resolution error is at
least two orders of magnitude smaller than the standard deviation for these mean photon numbers and is excluded from the presented error.
(a) Attenuation is OD = 5.0. The detector is close to saturation and most pulses result in detections in all 16 time bins. The existence of pulses
resulting in less than 16 detection events allows for estimation of the mean photon number. The blue curve is completely hidden behind the
orange. (b) Attenuation is OD = 5.6. (c) Attenuation is OD = 5.9. (d) Attenuation is OD = 6.3. (e) Attenuation is OD = 7.0. (f) Attenuation
is OD = 7.9. For sufficiently small mean photon numbers the distribution approaches a Poisson distribution Po(〈x〉), which is defined by the
probability p〈x〉(k) = e−〈x〉〈x〉k/k! of obtaining k photons given the mean value x.
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FIG. 4. Mean photon-number estimation as a function of the at-
tenuation with an exponential fit. The detector displays good linearity
in the measured interval, with a small deviation in the region OD 7
to OD 8. This allows the detector to measure mean photon numbers
over five orders of magnitude from 10−3 to 102.

array detector setup is well described by Eq. (1). A small
deviation between the experimental data and the fit is apparent
in Figs. 3(c) and 3(d), which is possibly explained by the
fact that the two SNSPDs do not have identical quantum
efficiencies as is assumed in the derivation of Eq. (1). The
reason for the deviation to be largest for this mean photon
number is likely due to the variance of x being maximal
for μη = n ln 2 ≈ 11.1, which is close to the value in the
experiment. The variance approaches zero for both higher and
lower mean photon numbers.

The fitted mean photon numbers as a function of the ap-
plied attenuation are presented in Fig. 4. The fit is in good
agreement with the experimental data and the fitted exponent
is in good agreement with theory. A small deviation from the
fit is present in the interval OD 7 to OD 8, which is possibly
caused by uncertainty in attenuation or due to instabilities
in laser power over time. Overall, the results suggest that
the device is capable of accurately estimating the mean, de-
tected photon numbers up to μ̂MLEη = 150, but as predicted
in Sec. III the upper limit is likely closer to 250. The estimated
number can then be used to find the absolute mean photon
numbers by carefully calibrating the quantum efficiency of the
detectors and the losses in the multiplexer.

The experimental setup is not very suitable to investigating
the multiplexed detector’s ability to resolve photon numbers
in a single wave packet. In order to do this, the laser should
be replaced by a deterministic few photon source. However,
the present setup makes it possible to estimate the probability
for a correct classification using the detector parameters. We
assume that the detector is well described by (1), which is
supported by the preceding results in this subsection. It then
holds that the probability to get x clicks when the input is a
Fock state of m photons is given by [22,24]

Pr(x | m) = 1

nm

(
n

x

) x∑
l=0

(−1)l (1 − pd )n−x+l

(
x

l

)

× [n − (n − x + l )η]m. (8)

For this setup, the total loss (loss due to nonunity quantum
efficiency combined with the loss in the multiplexer) is η =
0.49 and pd = 0, since dark counts can be neglected. Given
these parameters it is only possible to resolve almost one
photon with at least 50% probability for a correct classifi-
cation. This shows that, in spite of a rather elaborate choice
of components and a working wavelength on the short side
of the near-infrared wavelength range, it is still difficult to
achieve true, single-shot PNR performance. Increasing the
SNSPDs’ quantum efficiencies to η > 0.9 would still only
allow single-shot PNR performance with up to two photons
using this 16-array multiplexer.

Next, we analyze the upper limits of our multiplexer to its
PNR performance by assuming idealized components. First
we consider the scenario when the single-photon detectors are
ideal and have unit quantum efficiency. The effective quantum
efficiency for our setup in this scenario is η = 0.86, all due
to the loss in the multiplexer. In this case it is possible to
measure up to three photons with more than 50% proba-
bility for a correct classification for the photon numbers 0
to 3 [24].

Finally, we consider the (unrealistic) scenario when both
the single-photon detectors and the multiplexer are ideal with
no losses. The effective quantum efficiency is in this scenario
η = 1 and the detector is only limited by the probability that
more than one photon ends up in the same time bin. In this
scenario it is possible to resolve up to five photons with
>50% success [24]. This demonstrates the difficulty to re-
solve photon numbers in a single-shot measurement scenario.

C. Bandwidth

The single-photon detectors used to build the temporal
array are wavelength dependent and the temporal array is
therefore also wavelength dependent. In addition, a temporal-
array detector built using fiber couplers also experiences a
wavelength dependence due to the wavelength dependence of
the coupling ratio. The latter dependence effectively reduces
the array size by changing the splitting ratio for the couplers.
This, in turn, reduces the dynamic range and PNR capability
of the array detector.

In Fig. 5 the normalized power in each time bin is pre-
sented as a function of the wavelength. The figure shows that
commercial fiber couplers still exhibit quite a bit of individual
behavior. The measurements show that the relation between
the coupling ratio and the wavelength is linear, at least within
a few percent deviation from the design wavelength. Given
the linear relationship, the transmission from the lower input
port to the lower output port or the upper input port to the
upper output port can be modeled as Tll = Tuu = 1/2 + a�λ.
Here a is a constant determining how fast the transmission
changes per unit wavelength, �λ is the offset from the op-
erational wavelength, and by assumption |a�λ| � 1/2 in the
interval considered. Unitarity of the coupler implies that the
transmission from lower to upper or vice versa is given by
Tul = Tlu = 1/2 − a�λ.

The average power of the different time bins can be com-
puted using the transmissions and the total input power. To
linear order in a�λ we get that the normalized power in the
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FIG. 5. Power in the eight time bins for each single photon detector normalized against the total power as a function of the wavelength.
The error bars correspond to one standard deviation uncertainty. Both detectors show a linear relationship between normalized power and
wavelength. (Left) The normalized power in detector 1. (Right) The normalized power in detector 2.

time bins in the first detector is given by

P1,±
Ptot

= 1

16
± 1

4
a�λ + O((a�λ)2), (9)

where half of the time bins correspond to P1,+ and the other
half to P1,−. The normalized powers in the second detector are
given by

P2,0

Ptot
= 1

16
+ O((a�λ)2), (10)

P2,±
Ptot

= 1

16
± 1

2
a�λ + O((a�λ)2), (11)

where six time bins correspond to P2,0 and the P2,+, P2,− have
one time bin each. The nonequal behavior in the first and
second detector are due to the symmetry being broken when
one input port of the first 50:50 coupler is chosen over the
other. If equal power is incident in both input ports in the
temporal multiplexer (but in a manner so that no interference
between different pulses ensue) the output is also expected to
be symmetric.

In the wavelength interval considered, the array size of our
detector effectively decreases to 11 elements as |�λ| grows
sufficiently large. These 11 elements sustain the same power
or increase in power as the wavelength changes and they
can therefore still be used to measure the input signal. The
remaining five time bins have a power that is quickly reduced
with wavelength and their contribution to the measurements
therefore decrease as the wavelength differs sufficiently from
980 nm.

In Fig. 6 results from a simulation of the relative estimation
error are presented as a function of the wavelength offset. In
the simulation, it is assumed that the estimator in Eq. (2) is
used and the wavelength offset is not accounted for in the
estimation process. It is further assumed that the coupling
ratio varies linearly with wavelength offset up to tens of nm
on each side of the design wavelength. This assumption is
justified by Fig. 5. For small mean photon numbers the effects
of the offset are seen to be negligible because even if the

couplers’ splitting ratios are skewed, it is unlikely that more
than one photon end up in the same time bin. Thus, in this
case, it should be possible to analyze more broadband light
sources with the same model as presented in Sec. III. In other
cases the model needs to be adjusted to take into account that
the coupling ratio is not 1/2.

V. SUMMARY

In this paper, we present an experimental realization of a
temporal detector array with 16 time bins, and SNSPDs as de-
tectors. We investigate the theoretical PNR capabilities of this
detector and determine an upper bound for the mean photon
number that can be resolved by the detector when multiple
measurements are allowed. We conclude that our detector is
able to resolve one order of magnitude larger mean photon

FIG. 6. Simulation of the relative estimation error when using
Eq. (2) as a function of the wavelength offset. The coupling ratio
is assumed to be Tll = Tuu = 1/2 + a�λ, where a = 0.005 nm−1 is
estimated from experimental data. Changes in the loss due to the
wavelength offset are not included in the simulation.
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numbers than the SNSPD detector alone is able to do with the
same number of measurements. In numbers, our detector can
measure the average photon number in pulses between 10−3

and 102 photons if data is collected from a sample of around
106 identical pulses. The precision improves with the sample
size, while the accuracy is mainly determined by how well the
quantum efficiency of the used SNSPDs can be determined.
In our case the imprecision after 106 samples is estimated
to be 1%, while the accuracy is difficult to estimate since
there are many factors that add uncertainty to the overall loss
estimations.

Our experimental investigation of the PNR capabilities
shows that the agreement with the theoretical model is ex-
cellent and that the detector is linear over five orders of
magnitude when estimating the mean photon number over
multiple measurements. This suggests that the theoretical pre-
dictions of the maximal number of photons are reasonable.
Furthermore, error estimations show that the predictions made
with the detector have low variance and a statistical bias
caused by discretized readout is negligible.

While we are using a pulsed input, the detector could in
principle be used to measure the power in a (slowly vary-
ing) cw signal. To do this, one would use a periodic gating
and use the gating frequency, the detector on-off ratio, and
the overall quantum efficiency to translate the photo counts
to optical power at a given wavelength. Used this way, our
detector could measure powers in the range 0.1 pW to 10 nW.
However, by increasing the gating frequency or the on-off
ratio (without coming close to unity), even lower powers could
be detectable. The gating frequency sets a upper limit to how
rapid changes in the signal can be detected. The detector’s
dark count rate sets the fundamental lower limit to the de-
tectable optical power. At a dark count rate of 1 Hz and a
SNR of unity the detection limit becomes around 10−19 W.
However, such extremely weak signals carry non-negligible
intrinsic fluctuations (due to shot noise), so from a practical
viewpoint one would probably not want to operate the detector
below 10−17 W.

On the negative side, in spite of substantial efforts to
maximize the overall quantum efficiency of the detector, our
detector is not capable of single-shot photon-number reso-
lution of pulses since its average, overall efficiency is 0.49.

To distinguish between zero, one, and two photons with a
minimum success rate of 0.5, the quantum efficiency of the
detector needs to be �0.85. At telecom wavelengths fiber
propagation losses are lower than at 980 nm. However, this
lower loss is offset by a decreasing quantum efficiency of the
detectors as the wavelength increases [23].

We also investigate the bandwidth of the detector and show
that the time bins have different sensitivities for changes in
wavelength. This effect is due to the couplers’ changing split-
ting ratios when the wavelength changes and some time bins
correspond to paths where this effect accumulates, while other
time bins correspond to paths where the effect cancels. This
shows that the power in 11 of the 16 time bins is unchanged
or increases as the wavelength changes with 20 nm around
980 nm.

To improve array-based PNR detectors further, one would
need to use detectors with very high quantum efficiency.
It would also help to space the time bins denser, resulting
in shorter loops with lower propagation loss. However, the
length of the loops in the multiplexer needs to be long enough
to give the single-photon detectors time to recover without
reducing the quantum efficiency. Ideally, one would like to
make the whole device monolitically integrated as a photonic
circuit. However, for this to happen, the detector recovery
time needs to be shortened to the sub-ns range in addition
to solving the problem of integration between photonic and
superconducting circuits.
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