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Heart valves ensure uni-directional blood flow in 

the human body by opening and closing about 3 

billion times in a lifetime. In case of valvular 

disease or congenital malformations, heart valves 

are often replaced by either mechanical or 

bioprosthetic valves. Although these are life-

saving devices, their main limitation is that they 

consist of non-living materials, and hence cannot 

remodel in response to changing demands or 

grow in line with the somatic growth of the 

individual. Tissue-engineered heart valves 

(TEHVs) are a promising alternative to current 

treatment options, as these living, autologous 

tissues have the intrinsic capacity to grow and 

remodel. The major challenges are to (1) 

understand the underlying growth and remodeling 

mechanisms, and (2) design TEHVs such that 

these mechanisms lead to physiological 

development and adaptation. Computational 

modeling plays an important role in addressing 

both challenges. In our group at TU/e, we have 

developed a computational framework of soft 

tissue remodeling, incorporating the effects of 

cellular (re)orientation and traction forces, cell-

mediated collagen crimp, and mechanically-

induced collagen remodeling, inspired by experimental data on the individual mechanisms. With this 

framework, we predicted that cellular contractility is crucial for obtaining a successful outcome with 

TEHVs implanted in the pulmonary position, whereas hemodynamic factors appeared to dominate valve 

remodeling in case of implantations in the aortic position. Via a one-year pre-clinical follow-up, we 

recently confirmed that the long-term functionality and remodeling of TEHVs can indeed be predicted 

and, importantly, also guided towards a successful outcome via design optimization. Besides focusing 

on TEHVs, we also aim to improve our understanding of the development of human native heart valves, 

as these present the benchmark for TEHVs. Using a computational-experimental analysis, we 

demonstrated that aortic and pulmonary valves appear to maintain a stretch homeostasis throughout life. 

Interestingly, our computational models also suggested that growth and remodeling play opposing roles 

in maintaining this homeostasis. Finally, in a recent computational study we observed that the 

development of the native collagen 

architecture in human valves is not 

only determined by mechanical factors, 

but also depends considerably on the 

presence of topographical features. 
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Figure 1: FEM model (left) and tissue-
engineered (right) heart valve. 
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