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Luminescence solar concentrators act as semitransparent photovoltaic cells of interest for modern urban environ-
ments. Here, their efficiencies were analytically derived for different regular unit shapes as simple, integral-free
expressions. This allowed analysis of the shape and size effect on the device performance. All regular shapes appear
to have a similar efficiency as revealed by optical path distribution formulas, despite differences in the perimeter
length. Rectangles of the same area feature higher efficiency due to reduced average optical path. It comes with the
cost of a longer perimeter, and the relation between these two is provided. An explicit formula for the critical size
of an LSC unit, above which its inner part becomes inactive, has been obtained. For square geometry with matrix
absorption coefficient α this critical size is ∼2.7/α, corresponding to 70–90 cm for common polymer materials.
Obtained results can be used for treatment of individual units as well as for analysis of tiling for large areas. ©2020

Optical Society of America

https://doi.org/10.1364/AO.393521

1. INTRODUCTION

Solar light spatial concentration through fluorophore re-
emission in a planar waveguide was introduced long ago to
reduce costs and improve the performance of solar cells [1]. It
was mainly based on organic dyes, embedded in a plastic slab.
However, dye molecules suffer from strong reabsorption losses,
which seriously limited practical application of such lumines-
cent solar concentrators (LSCs) [2,3]. Recent developments in
quantum dots (QDs) make more favorable optical properties
possible and thus bring the LSC concept closer to realization
[4–7]. Covering large surfaces of, for example, facades of tall
buildings with such semitransparent solar cells may be consid-
ered as one of the goals [8,9]. Here, the exact geometrical shape
and size of the device unit may play an important role in the total
efficiency.

Historically, the “concentration ratio” has been considered
as a main figure of merit for an LSC. By now, the cost of solar
cell modules ($/W) dropped by about three orders of mag-
nitude compared with that of the early days of LSC research
[10]. Therefore, reducing the area covered by solar cells and/or
improving their performance by concentrating the incoming
light flux may no longer be the primary motivation behind
LSC development. In practice, attachment of solar cells only
to one edge of an LSC was typically considered, i.e., an “LSCs
for solar cell” approach [11,12]. Now, instead, possible modern
applications include integration of such semitransparent mod-
ules in urban environments, where the full perimeter should
be covered to increase the output power [13]. Here, the device
efficiency of LSCs appears to be a more important parameter,

even if it is associated with a nonoptimal solar cell performance
or arrangement: a “solar cells for LSC” approach. From this
application-driven perspective, the incorporation of all loss
mechanisms in the device efficiency description is a necessary
condition for adequate LSC analysis.

The analysis of optical losses in such planar waveguides is
usually done by numerical integration [14] or by Monte Carlo
ray tracing [13,15]. Indeed, simulations can follow evolution
of nearly all aspects of the propagating light. In addition to its
intensity, the spectrum, polarization, angle distribution, etc.
can be tracked all the way to final distributions at the edges. In
some cases, e.g., when only the total device efficiency needs to
be estimated, such a complete and computationally demanding
description may be redundant. We have previously shown that
an analytical solution to the device efficiency can be obtained
using only geometrical optics by probabilistic approach [16]. It
was derived for a rectangular-shaped LSC as a function of the
fluorophore and matrix parameters as well as device geometry.

Based on this analytical methodology, here we turned to the
question of optimal size and shape for an LSC unit in a large
assembly. Intuitively, one can associate two opposite effects with
geometry of a single device. On the one hand, for a large area
unit cell, the total perimeter length, hence the overall number of
needed photodetectors, will be lower. On the other hand, large
devices will suffer from more optical losses per unit and, hence,
reduced efficiency. Indeed, the LSC operation is based on the
waveguiding effect, therefore light scattering, re-absorption,
and absorption in the matrix will become stronger. Here, we
quantitatively assessed the interplay between these two effects
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on examples of devices with common regular shapes and rect-
angle geometry. Based on the description, including all the
losses, we show that, among regular shapes, a hexagon has the
most favorable geometry. While the square is not far away in
performance, a substantial enhancement can be achieved by
enclosing the same area with rectangles. It comes with the cost
of a longer perimeter, requiring more photodetectors, and the
exact relation between these two parameters is provided. We
have also derived a single, integral-free formula for the device
efficiency in the case of a square-shaped LSC. More importantly,
a simple criterion for the largest device size is introduced, which
allows us to quickly evaluate limitations of a particular matrix
material for LSC units.

2. SHAPE EFFECT

A. Regular Shapes

We start analysis by considering LSCs of regular shapes, enclos-
ing the same area. As shown in Table 1, the perimeter length
grows when shifting from a circle (radius R) to a triangle (side
length b). In Table 1, the perimeter length is given in the units of
a side length a of the same area square, where s is a hexagon side
length.

First, we analytically derived the optical path length r distri-
bution p(r ) for photons emanating from an isotropic emitter
randomly located inside an LSC. Photodetectors with an
antireflection coating are considered at all the edge surfaces.
Derivations were done for various shapes and based on the
algorithm used for a rectangle, as detailed in [16]. In essence,
contributions from emitters on the arc with a radius r to the
elementary edge element are summed up with subsequent
integration over the edge length (see example for a circle in
Appendix A1). At this stage, 2D geometry is considered and
photons experience no attenuation. Results of analytical deriva-
tions were verified by the normalization condition: integrated
expressions over the whole range of optical paths should be equal
to the enclosed area. Below, the normalized (total integral is
unity) probability density functions are presented. Thus, for a
circle in a 2D case, the result is

pc (r )=

√
4R2 − r 2

πR2
, 0< r < 2R . (1)

For a hexagon, the initial part is linear:

ph(r )=
4s − 2(1− π

√
3/9)r

s 2π
√

3
, 0< r < s , (2)

with more complex expressions for the remaining s < r < 2s
(presented in Appendix A2). For a square, the distribution is
piece-wise:

ps (r )=

{
4a−2r
πa2 , 0< r < a

2r 2
−4a
√

r 2−a2

πa2r
, a < r < a

√
2.

(3)

For a triangle, the distribution is linear almost all the way:

pt(r )=
4
√

3b −
(
2
√

3+ 4π/3
)

r

πb2
, 0< r < b

√
3/2. (4)

The exact expression for the remaining short range b
√

3/2<
r < b is given in Appendix A2.

The derived distributions are shown in Fig. 1 (left) and their
first moments (average optical paths) in Table 1. From Fig. 1
(left), it is seen how a longer perimeter (from circle to triangle)
increases the fraction of shorter optical paths. It stems from a
larger part of emitters located close to the light-collecting edge.
At the same time, increasing the perimeter also makes longer
paths possible for the photons travelling across the unit.

These two effects largely compensate each other, making the
average optical path similar for all considered regular shapes, as
summarized in Table 1. Thus, increasing the perimeter length
by∼30%, when choosing a triangle instead of a circle does not
bring meaningful increase in optical efficiency (the average
optical path stays nearly the same). This is a first conclusion of
this work, which may not be so obvious without the explicit
expressions in Eqs. (1)–(4) and Fig. 1 (left). As an independent
verification of Eqs. (2)–(4), we note that, in [17], average optical
paths were calculated by numerical integration, yielding the
same results for these regular shapes.

Thus, considering optical losses, the best regular shape for
such a planar waveguide obviously would be a circle. Here, the
shortest perimeter is accompanied by nearly the same average
optical path. Tiling without gaps, however, is not possible, and
flexible solar cells are required in this case to accommodate the
circular edge. A more practical shape would be a hexagon, which
can be tiled over large surfaces without gaps and does not require
special photodetectors at the edges. A square does not differ
substantially from a hexagon in this respect. On the other hand,
the most inefficient way of enclosing an area in this case is a
triangle. This geometry also suffers from nonuniform incoming

Table 1. Perimeter Lengths and Average Optical Paths of Photons in Different Shape LSC with the Same Area
a

Shape Characteristic Size Perimeter Length Average Optical Path Length

Circle R = π−1/2
≈ 0.56 3.55 8π−3/2/3≈ 0.479

Hexagon s =
√

2/33/4
≈ 0.62 3.72 0.478

Square a = 1 4 (2+ 6 ln(1+
√

2)− 2
√

2)/3π ≈ 0.473
Triangle b = 2/31/4

≈ 1.52 4.56 0.461
Rectangle 1 w= β−1/2

≈ 0.79 4.12 0.467
β = 1.62 h = β1/2

≈ 1.27
Rectangle 2 w= β−1/2

≈ 0.59 4.56 0.444
β = 2.85 h = β1/2

≈ 1.69
aUnits Are the Side Length of the Same Area Square.
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Fig. 1. Normalized probability density functions for an emitted photon to travel a given optical path length in luminescent solar concentrators of
different shapes enclosing the same area. (left) Regular shapes are compared. (right) A hexagon is compared with the same area rectangles of two differ-
ent aspect ratios.

light distribution along the edge, compared with other regular
shapes [18].

B. Rectangle Shape

Expanding the selection of unit shapes to the irregular domain,
one can immediately invoke a rectangle as an example, which is
commonly used in modern large area facades. First, we need to
introduce the rectangle aspect ratio β as an auxiliary parameter.
An explicit expression for pr (r ) is provided in Appendix A2.
This normalized optical path probability distribution function
for two values of β is shown in Fig. 1 (right). It is seen that a
larger fraction of shorter optical paths exists for rectangles,
which results in the lower average value.

Quantitatively, the average photon path 〈r 〉 in a rectangular
slab can be analytically calculated as a first moment of the given
optical path distribution. The result is a decaying function of β
(in units of the side length of the same area square):

〈r 〉r =
β3
+ 1− (β2

+ 1)
3
2 + 3β ln

(√
β2 + 1+ β

)
+ 3β2 ln

(√
β2+1+1

β

)
3πβ
√
β

.

(5)

Further, the perimeter length of such a rectangle is (in the
same units)

P =
2 (β + 1)
√
β

. (6)

Numerical examples for two different rectangles are included
in Table 1: the first corresponds to the well-known “golden
ratio,” and the second has the same perimeter length as the
triangle. One can note that a rectangle with the same perimeter
length as a triangle features lower optical losses. By further
increasing perimeter (larger β), i.e., by deploying longer solar
cells, the efficiency can be improved even more.

This effect is more clearly illustrated in Fig. 2, where the two
functions from Eqs. (5) and (6) are shown. This graph shows
how a longer perimeter helps to reduce an average optical path
length for a rectangle, which is equivalent to reducing propa-
gation losses in an LSC. The explicit effect on the total device
efficiency, including all loss channels, will be shown later.

Fig. 2. (brown) Shortening of the average optical path for isotropic
emitters in different aspect ratio rectangles, enclosing the same area
[from Eq. (5)]. Units are the side length of the equivalent area square.
(black) Related perimeter length increase is shown on the left axis [from
Eq. (6)].

C. 3D Geometry

Before evaluating device efficiencies, we note that, for a 3D
case, the optical paths will be extended on average by a factor of
k ≈ 1.144, for which an analytical expression is given in [16].
This is due to a narrow out-of-plane path distribution, which is
limited by the escape cone. Here, emitted photons to the escape
cone for the top and bottom surfaces are treated as losses. Total
internal reflection is assumed for all other directions. A similar
factor of 1.128 was used in [17] to account for an average optical
path increase due to the out-of-plane emission. A small differ-
ence stems from the fact that, in [17], the numerical averaging
was performed over angles not over optical paths. Thus, 3D dis-
tributions for all the shapes can be represented as q(l)≈ p(l/k).
For example, in a circle the normalized probability density
function becomes

qc (l)=

√
4R2 − (l/k)2

πk R2
, 0< l < 2Rk. (7)
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Explicit expression for the optical path distributions for other
shapes in 3D are provided in the Appendix A3.

3. CRITICAL SIZE

A. Regular Shapes

Analytical expressions for q(l) allow us to obtain explicitly the
fraction of emitted light reaching the edge of the device, i.e., the
waveguiding or optical efficiency [%]:

f (α)=
∫ lmax

0
q(l) exp (−αl) dl , (8)

where lmax is the longest optical path in the system. Physically, it
corresponds to the optical efficiency when the only loss mecha-
nism is the matrix absorption (with a loss parameter being the
matrix absorption coefficient α = αm [cm−1

]). For a circle
(lmax = 2Rk), the integral yields

fc (α)=−
M1(2αRk)
αRk

, (9)

where M1(ξ) is a modified Struve function of the second kind:
M1(ξ)= L1(ξ)− I1(ξ), where I1(ξ) is a modified Bessel
function, and L1(ξ) is a modified Struve function (all functions
are of the first order). Analytical expressions of f (α) for other
shapes are provided in the Appendix A4. Equation (9) can
be simplified for large arguments, using expansion of M1(ξ)

(shown in the Appendix A5) and leaving only the first term (a
constant−2/π ):

fc (α)≈
2

αRπk
, αR→∞. (10)

In Fig. 3, these two expressions are shown in a log-log scale as
a function of the dimensionless parameter αR [as a solid line for
Eq. (9) and as a dotted line for Eq. (10)].

A qualitative meaning of the function f (α) is the fraction
of the total area, from which the emanated emission reaches
the edge. In the lack of attenuation, the whole area contributes,

Fig. 3. Dependence of the waveguiding efficiency of the dimen-
sionless parameter αR . A dotted line is an asymptotic from Eq. (10);
the solid line is a full expression from Eq. (9). Inset shows waveguide
efficiencies for a circle (black), a square (red), and a triangle (blue) for
the same area units (R = 30 cm).

yielding optical efficiency unity. Here, we postulate that the
transition from Eqs. (9) to (10) signifies a critical size of the
device. Indeed, in the presence of absorption, only the emission
close to the edge will be collected in large area devices. If the
thickness of this active part is 1 (1∼ 1/α), its area is about
2πR1. Thus, the useful fraction of the total area πR2 becomes
proportional to (αR)−1. This is exactly the dependence Eq. (10)
predicts. In this case, the emitted light from the central part
is lost; thus, a device is no longer operating as a proper LSC.
Therefore, in practice, it makes no sense to fabricate units larger
than this critical size, which will render the inner part inactive.

Numerically, the value of the critical dimensionless parameter
can be extracted at the point in Fig. 3 where these two curves
start converging. While this point cannot be precisely defined,
we can estimate its position from the principle of experimental
significance. A deviation of a few percent from Eq. (10) can be
measurable. Thus, one can stipulate that, when Eq. (9) differs
from Eq. (10) by more than 3% to 5%, the contribution from
the inner part should not be ignored. From Fig. 3, for αR = 1
the relative difference in efficiency is ∼10%, while for αR = 2
it is only ∼1%. Thus, for a circle, one can approximately set
α · Rcr ≤ 1.5, where the difference is∼3%. Assuming the same
optical path distribution (cf. Fig. 1), the criteria for a hexagon,
enclosing the same area, isα · s cr ≤ 1.7, while for a square,

α · acr ≤ 2.7. (11)

This is a second important conclusion of the presented analy-
sis: a way to quickly estimate maximum useful LSC unit size is
proposed. As a numerical example, consider typical polymers,
such as PMMA or OSTE with α ≈ 0.03− 0.04 cm−1 as a
matrix material [13,19]. Then, according to Eq. (11), a square
unit with a side length not more than ∼70− 90 cm should be
used. In further analysis, we will limit considered device sizes by
this criterion.

To illustrate negligible effect of the regular shape choice
on optical losses, one can compare derived expressions f (α)
for LSCs enclosing the same area. Those are shown for a cir-
cle (black), a square (red), and a triangle (blue) in Fig. 3, inset
(R = 30 cm). The x axis is limited by the LSC critical param-
eter, as defined above. These functions essentially coincide for a
small value of the loss parameter and deviate only by 1%–2% for
largerα in case of a triangle. Thus, the regular shapes considered
here indeed have similar waveguiding efficiencies, as was also
concluded from the average optical path comparison. This is
despite a large difference in the perimeter length (cf. Table 1).
Therefore, we propose to use Eq. (9) as an approximation for all
the shapes, except for the triangle. With this assumption, simple
expressions for the total LSC device efficiency can be derived for
these geometries.

B. Rectangle Shape

The size limit for a rectangle can also be evaluated from the
obtained criterion. Here, we do not consider rectangles of the
same area as regular shapes but define the maximum useful
aspect ratio for a given width. Note that it cannot be defined as
clearly as for the case of a square, where the inner part becomes
simply inactive. However, we can set the average optical path,
corresponding to the critical size acr, as a critical optical path.
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Fig. 4. Critical aspect ratio of a rectangle LSC as a function of width
for different absorption coefficients.

Then, the critical rectangle width [cm], corresponding to this
average path, can be expressed as a function of the absorption
coefficient α[cm−1

] and the aspect ratio β from Eqs. (5) and
(11) and Table 1:

wcr ≈
12β

α
(
β3 + 1−

(
β2 + 1

) 3
2 + 3β ln

(√
β2 + 1+ β

)
+ 3β2 ln

(√
β2 + 1+ 1

)
− 3β2 ln (β)

) . (12)

Examples for some relevant matrix absorption coefficients
are presented in Fig. 4. It is shown instead as inverse function
βcr(w), which indicates what the maximum aspect ratio can be
tolerated for a given rectangle width.

4. DEVICE OPTICAL EFFICIENCY

A. Analytical Expression

For more realistic description of the device performance, other
loss mechanisms need to be considered. Those included losses
from scattering and reabsorption by the fluorophores. In gen-
eral, the LSC optical efficiency γ [%] in the case of all possible
losses can be evaluated using the waveguide efficiency function
f (α)using geometrical sum series as [16]

γ =
(1− T) · δ ·QY · η · f (αsc + αre + αm)

1− δ·αsc+δ·QY·αre
αsc+αre+αm

(1− f (αsc + αre + αm))
. (13)

Here, T is a transmitted fraction of the incoming sunlight
(1− T is the absorbed fraction). Parameter η= εPL/εsun is the
energy conversion coefficient of the luminescence, defined as
the ratio of luminescence and solar peak position energies. QY
is the quantum yield, and δ is a fraction of the emission to the
waveguiding mode (δ = 75% for n = 1.5 matrix material). The
linear reabsorption coefficient isαre[cm−1

], the linear scattering
coefficient is αsc[cm−1

], and the linear matrix absorption coeffi-
cient is αm[cm−1

]. These should be taken for the wavelength of
the fluorophore luminescence (corresponding to εPL).

For a square shape, using Eq. (9), the resulting expres-
sion can be represented as a relatively simple formula (with
α = αsc + αre + αm as a loss parameter and R = a/

√
π ):

γs =
(1− T) · δ ·QY · η ·M1(2αak/

√
π) · α

√
π

δ(αsc +QY · αre)
(
akα +M1(2αak/

√
π) ·
√
π
)
− akα2

.

(14)

As justified above, it can also be used for hexagons with
a = 1.62 · s and for circles with a = R ·

√
π . Equation (14)

yields device efficiency for a square-shaped LSC without any
integral representations, as contained in a more general for-
mula for the rectangle [16]. We mark this as another important
result of the presented analysis: a single integral-free formula for
the efficiency a square-shaped LSC was derived. Multiplying
Eq. (14) by8a2 (solar flux8= 0.1 W/cm2) gives optical effi-
ciency in [W]. Reflectance of the solar radiation is not explicitly
included because back-travelling light will also contribute to the
incoming power. Therefore, the standard AM1.5 irradiance is
used for simplicity.

Unlike Eq. (9), where the only loss mechanism is matrix
absorption, the total output here is not a function of a dimen-
sionless parameter αa . The loss parameter α and the waveguide
geometry act as two independent parameters. So, instead of
a general criterion for establishing the critical size, the device
performance for each particular material system should be

evaluated. The criteria of Eq. (11) and Fig. 4 then represent an
upper limit.

B. Comparison with Experiment

To illustrate this result and to compare it with experiments, we
turn to Si QDs as fluorophores. They are often considered as
candidates for this application due to a large Stokes shift and
a good quantum yield [13,19,20]. In Fig. 5, theoretical lines
of the LSC efficiency in [%] (solid) and in [W] (dashed) are
presented for a square geometry [Eq. (14)]. The fluorophore
parameters are taken from the experiment [21]: QY= 55%,
transparency for visible light T1 = 0.79 (3 mm thick film),
and T2 = 0.62 (6 mm thick film), reabsorption coefficient
αre = 0.007 cm−1, scattering coefficients αsc_1 = 0.04 cm−1

(3 mm thick film), αsc_2 = 0.06 cm−1(6 mm thick film), matrix
absorption coefficientαm = 0.04 cm−1, andη= 0.6.

Experimental results for the optical power efficiency were
obtained by measuring the short-circuit current of the attached
photodetectors [21]. In the experiment, antireflection photode-
tectors were realized by using solar cells with a porous polymer
film as a gradient-refractive-index coating. Those were attached
with index-matching optical glue to avoid an air gap. Measured
values of ∼3.7% for the 9 cm× 9 cm× 0.3 cm piece and
∼7.9% for the 9 cm× 9 cm× 0.6 cm device are indeed within
the experimental error from the predictions of Eq. (14).

A practically important electrical power output is charac-
terized by the power conversion efficiency (PCE, [%]). Using
Eq. (14) for the optical power efficiency, we can evaluate this
quantity. First, one should invoke external quantum efficiency



5720 Vol. 59, No. 19 / 1 July 2020 / Applied Optics Research Article

Fig. 5. Device efficiency and corresponding optical power output
for Si QD-based devices of square geometry with different transmis-
sion [from Eq. (14)]. Experimental points are from measurements of a
9× 9 cm2 device with 3 mm (red) and 6 mm (brown) thickness of the
active layer [21].

(EQE) of the solar cells, which is a photon-to-electron conver-
sion efficiency at the device readout. Then, a lower bandgap
of the solar cell material (εg ) needs to be considered (energy
conversion coefficient η1 = εg /εPL). Finally, a working voltage
point of a solar cell is lower than the bandgap and is character-
ized by the fill factor (FF) coefficient. Combining these loss
factors together for a square geometry, one can write

PCE= EQE · η1 · FF · γ s . (15)

For Si solar cells, such as the ones used in the experiment
[21], the EQE at the PL wavelength (850 nm) is∼0.8− 0.9, a
typical fill factor is∼0.7, and the energy conversion coefficient
is η1 ≈ 0.7. Thus, in this case, one can evaluate theoretically
PCE≈ 0.4 · γs , which becomes 1.6% and 2.8% for the two
cases in Fig. 5 (9 cm× 9 cm). Experimentally measured values
are 1.47% and 2.74%, respectively [21], which is again close

ph(r )=



4s−2(1−π
√

3/9)r
s 2π
√

3
, 0< r < s

2s
√

4r 2−3s 2
√

3πr s 2 −
2r

3π s 2 asin

(
s
√

3(2r 2
−3s 2)
√

4r 2−3s 2

2r 4

)
, s < r < s

√
3

2r 2
−8s
√

r 2−3s 2
√

3πr s 2 +
2r

3π s 2 asin

(
√

3(r 2
−6s 2

+2s
√

r 2−3s 2)

2r 2

)
, s
√

3< r < 2s .

to the theoretical predictions. For the reader’s convenience, we
have added Origin files with formulas for efficiency calculations
(both for square and for rectangle) as Dataset 1, Ref. [22] and
Dataset 2, Ref. [23].

5. CONCLUSION

We have derived analytical formulas for the optical path dis-
tribution for an isotropic emitter randomly placed in a planar
waveguide of different shapes. Resulting expressions were used
for the analysis of LSC performance as interplay between the
perimeter length and the propagation losses. Among regular

shapes, hexagons and squares have the best perimeter/loss
combination and can be considered as unit shapes for large
area tiling. On other hand, at the expense of somewhat longer
perimeter length, the same area rectangle yields better collection
efficiency due to suppression of the longer optical path lengths.
Simple criteria for the critical unit size were obtained. The effect
of the size increase on the total device power output was quan-
titatively demonstrated for a given material system with a good
match to the experiment.

APPENDIX A

1. DERIVATIONS OF THE PROBABILITY DENSITY
FUNCTION OF OPTICAL PATHS FOR A CIRCLE

Consider contributions to the length element dy from isotropic
emitters located on the arc at a radius r from dy . If θ1,2 are the
limiting angles of the arc the incoming signal to dy ,

F =
dy
2π

∫ θ2

θ1

sin(θ)dθ =
dy
2π
(cos(θ1)− cos(θ2)).

Integrating contributions over the whole perimeter edge gives
probability distribution for photons to travel path r :

p(r )=
1

2π

∫ 2πR

0
(cos(θ1)− cos(θ2))dy

= R(cos(θ1)− cos(θ2))=
√

4R2 − r 2,

where θ1 = 90− α; θ2 = 90+ α, for cos(α)= r /2
R . A properly

normalized probability density function can be then obtained
by dividing by the area under the curve:

p(r )=

√
4R2 − r 2

πR2
.

2. OPTICAL PATH LENGTH DISTRIBUTION IN 2D

For a hexagon with a side length s

For a rectangle with aspect ratioβ and widthw (β > 1),

pr (r )=


2w+2βw−2r

πβc 2 , 0< r <w

2r−2
√

r 2−w2

πwr , w < r <βw

2r 2
−2βw

√
r 2−w2−2w

√
r 2−β2w2

πβw2r , βw < r <w
√
β2 + 1.

For a triangle with side length b,

pt(r )=

{
4
√

3b−(2
√

3+4π/3)r
πb2 , 0< r < b

√
3/2

u(r ), b
√

3/2< r < b.

https://doi.org/10.6084/m9.figshare.12338384
https://doi.org/10.6084/m9.figshare.12338387
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u(r )=
4
√

3

πb2

(
b −

(
1

2
−
π
√

3

18

)
r −

b
√

4r 2 − 3b2

2r

+
r
√

3

6

(
asin

(√
3(
√

4r 2 − 3b2 − b)
4r

)

+ asin

(√
3(
√

4r 2 − 3b2 + b)
4r

)
− 2 asin

(√
3b

2r

)))

3. OPTICAL PATH LENGTH DISTRIBUTION IN 3D

For a 3D case in hexagon, the properly normalized distribution
function can be considered the same as in a circle for the same
enclosed area: R = 33/4s /

√
2π = c 0 · s , c 0 ≈ 0.91 (k ≈ 1.14)

qh(l)≈

√
4c 0

2s 2 − (l/k)2

πkc 0
2s 2

, 0< l < 2c 0s k.

For a triangle, considering only the linear part of the optical
path distribution:

qt(l)=
4
√

3b −
(
2
√

3+ 4π/3
)
(l/k)

πkb2
, 0< l < bk

√
3/2.

For a square,

qs (l)=


4a−2(l/k)
πka2 , 0< l < ka

2l2/k−4a
√

l2−(ka)2

πa2lk
, ka < l < ka

√
2.

4. WAVEGUIDING EFFICIENCY

For a square (x is a loss parameter)

f s (x )=
2
(

2axk −
(
ka
√

2x + 1
)
· e−ka

√
2x
+ 2e−kax

− 1
)

x 2a2πk2

−
4

aπk

∫ ka
√

2

ka

√
l2 − (ka)2

l
exp (−xl) dl .

For a triangle,

ft(x )=
e−

kb
√

3x
2

(
6
√

3− 2
√

3bkx (6− π)+ 9bkx + 4π
)
+ 12
√

3bkx − 4π − 6
√

3

3x 2b2πk2
.

For a rectangle (height h , widthw, diagonal d ),

fr (x )= 2

(
(h +w) xk − (kd x + 1) e−kd x

+ e−khx
+ e−kwx

− 1

x 2hwπk2

−

∫ kd

kw

√
l 2 − (kw)2

wπkl
e−xl dl −

∫ kd

kh

√
l 2 − (kh)2

hπkl
e−xl dl

)
.

5. EXPANSION OF THE MODIFIED STRUVE
FUNCTION OF THE SECOND KIND (FIRST ORDER)
FOR ξ→∞ (see, e.g., https://dlmf.nist.gov/11.6)

M1(ξ)≈
1

π

∞∑
k=0

(−1)k+10
(
k + 1

2

)
0
(

3
2 − k

)(2

ξ

)2k

=−
2

π
+

2

πξ 2
− . . .

Funding. Energimyndigheten (46360-1).

Disclosures. The authors declare no conflict of interests.

REFERENCES
1. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar con-

centrators 2. Experimental and theoretical analysis of their possible
efficiencies,” Appl. Opt. 20, 3733–3754 (1981).

2. R. W. Olson, R. F. Loring, and M. D. Fayer, “Luminescent solar con-
centrators and the reabsorption problem,” Appl. Opt. 20, 2934–2940
(1981).

3. J. Sansregret, J. M. Drake,W. R. L. Thomas, andM. L. Lesiecki, “Light
transport in planar luminescent solar concentrators—the role of DCM
self-absorption,” Appl. Opt. 22, 573–577 (1983).

4. Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de
Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp,
and C. de Mello Donegá, “Tackling self-absorption in luminescent
solar concentrators with type-II colloidal quantum dots,” Sol. Energy
Mater. Sol. Cells 111, 57–65 (2013).

5. A. Anand, M. L. Zaffalon, G. Gariano, A. Camellini, M. Gandini, R.
Brescia, C. Capitani, F. Bruni, V. Pinchetti, M. Zavelani-Rossi, F.
Meinardi, S. A. Crooker, and S. Brovelli, “Evidence for the band-edge
exciton of CuInS2 nanocrystals enables record efficient large-area
luminescent solar concentrators,” Adv. Funct. Mater. 29, 1906629
(2019).

6. F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon,
L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area
luminescent solar concentrators based on ‘Stokes-shift-engineered’
nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics
8, 392–399 (2014).

7. L. R. Bradshaw, K. E. Knowles, S. McDowall, and D. R. Gamelin,
“Nanocrystals for luminescent solar concentrators,” Nano Lett. 15,
1315–1323 (2015).

8. M. Rafiee, S. Chandra, H. Ahmed, and S. J. McCormack, “An
overview of various configurations of luminescent solar concen-
trators for photovoltaic applications,” Opt. Mater. 91, 212–227
(2019).

9. Y. You, X. Tong, W. Wang, J. Sun, P. Yu, H. Ji, X. Niu, and Z. M.
Wang, “Eco-friendly colloidal quantum dot-based luminescent
solar concentrators,” Adv. Sci. 6, 1801967 (2019).

10. X. T. Wang and A. Barnett, “The evolving value of photovoltaic mod-
ule efficiency,” Appl. Sci. 9, 1227 (2019).

11. E. Loh and D. J. Scalapino, “Luminescent solar concentrators—
effects of shape on efficiency,” Appl. Opt. 25, 1901–1907
(1986).

12. B. Rowan, S. McCormack, J. Doran, and B. Norton, “Quantum
dot solar concentrators: an investigation of various geometries,”
Proc. SPIE 6649, 66490A (2007).

13. F. Meinardi, S. Ehrenberg, L. Dhamo, F. Carulli, M. Mauri, F. Bruni, R.
Simonutti, U. Kortshagen, and S. Brovelli, “Highly efficient lumines-
cent solar concentrators based on earth-abundant indirect-bandgap
silicon quantum dots,” Nat. Photonics 11, 177–185 (2017).

14. O. M. ten Kate, K. M. Hooning, and E. van der Kolk, “Quantifying self-
absorption losses in luminescent solar concentrators,” Appl. Opt. 53,
5238–5245 (2014).

15. N. D. Bronstein, L. F. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, and
R. G. Nuzzo, “Luminescent solar concentration with semiconductor
nanorods and transfer-printedmicro-silicon solar cells,” ACSNano 8,
44–53 (2014).

16. I. Sychugov, “Analytical description of a luminescent solar
concentrator,” Optica 6, 1046–1049 (2019).

17. R. Soti, E. Farkas, M. Hilbert, Z. Farkas, and I. Ketskemety, “Photon
transport in luminescent solar concentrators,” J. Lumin. 68, 105–114
(1996).

https://dlmf.nist.gov/11.6
https://doi.org/10.1364/AO.20.003733
https://doi.org/10.1364/AO.20.002934
https://doi.org/10.1364/AO.22.000573
https://doi.org/10.1016/j.solmat.2012.12.028
https://doi.org/10.1016/j.solmat.2012.12.028
https://doi.org/10.1002/adfm.201906629
https://doi.org/10.1038/nphoton.2014.54
https://doi.org/10.1021/nl504510t
https://doi.org/10.1016/j.optmat.2019.01.007
https://doi.org/10.1002/advs.201801967
https://doi.org/10.3390/app9061227
https://doi.org/10.1364/AO.25.001901
https://doi.org/10.1117/12.733572
https://doi.org/10.1038/nphoton.2017.5
https://doi.org/10.1364/AO.53.005238
https://doi.org/10.1021/nn404418h
https://doi.org/10.1364/OPTICA.6.001046
https://doi.org/10.1016/0022-2313(96)00004-X


5722 Vol. 59, No. 19 / 1 July 2020 / Applied Optics Research Article

18. M. S. Decardona, M. Carrascosa, F. Meseguer, F. Cusso, and F.
Jaque, “Edge effect on luminescent solar concentrators,” Solar Cells
15, 225–230 (1985).

19. A. Marinins, R. Shafagh, W. Van der Wijngaart, T. Haraldsson, J.
Linnros, J. G. C. Veinot, S. Popov, and I. Sychugov, “Light con-
verting polymer/Si nanocrystal composites with stable 60–70%
efficiency and their glass laminates,” ACS Appl. Mater. Interfaces 9,
30267–30272 (2017).

20. S. K. E. Hill, R. Connell, C. Peterson, J. Hollinger, M. A.
Hillmyer, U. Kortshagen, and V. E. Ferry, “Silicon quantum dot–
poly(methylmethacrylate) nanocomposites with reduced light

scattering for luminescent solar concentrators,” ACS Photon. 6,
170–180 (2019).

21. J. Huang, J. Zhou, A. Clemments, H. Sugimoto, M. Fujii, T.
Haraldsson, B. Xu, and I. Sychugov, Triplex glass laminates with Si
quantum dots for luminescent solar concentrators, arXiv:2003.12131
(2020).

22. I. Sychugov, Origin file with formulas for a square (2019):
https://doi.org/10.6084/m9.figshare.12338384

23. I. Sychugov ,Origin file with formulas for a rectangle (2019):
https://doi.org/10.6084/m9.figshare.12338387

https://doi.org/10.1016/0379-6787(85)90079-1
https://doi.org/10.1021/acsami.7b09265
https://doi.org/10.1021/acsphotonics.8b01346
https://doi.org/10.6084/m9.figshare.12338384
https://doi.org/10.6084/m9.figshare.12338387

