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Undetectable Attacks
R. S. Smith, "Covert misappropriation of networked control systems: Presenting
a feedback structure," IEEE Control Systems, vol. 35, no. 1, pp. 82-92, Feb 2015.
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In This Work

Assuming full model knowledge is quite conservative...

• Inaccurate/Outdated model
• Fictitious uncertainty (multiplicative watermarking, Teixeira’18)

Condition: covert attack + partial knowledge of the attacker:

How to design a controller that performs well
in most of the feasible attacker scenarios?

Modeling the lack of knowledge of the attacker as uncertainty

Models the attacker might potentially pocess

Defender’s
confidence
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3 Comparison between different measures of risk

Matias Müller A Risk-Theoretical Approach to H2-Optimal Control under Covert Attacks 7



Introduction Setup Risk Theory CVaR Control Design Example Conclusions

Problem Formulation

Problem 1: H2RCA (H2-optimal Risk control under Covert
Attacks)

min
C∈H2

R(JC)

JC(θ) =

∥∥∥∥(1− [G−Πθ] C
1 + GC

)
GSKθ

1 + KθΠθ

∥∥∥∥2

2

+

∥∥∥∥(1− GC
1 + GC

)
R
∥∥∥∥2

2
+

∥∥∥∥ HGC
1 + GC

∥∥∥∥2

2

Contribution:
1 How to chooseR()

2 Risk theoretic framework for attack resilient controller design
3 Comparison between different measures of risk

Matias Müller A Risk-Theoretical Approach to H2-Optimal Control under Covert Attacks 7



Introduction Setup Risk Theory CVaR Control Design Example Conclusions

Problem Formulation

Problem 1: H2RCA (H2-optimal Risk control under Covert
Attacks)

min
C∈H2

R(JC)

JC(θ) =

∥∥∥∥(1− [G−Πθ] C
1 + GC

)
GSKθ

1 + KθΠθ

∥∥∥∥2

2

+

∥∥∥∥(1− GC
1 + GC

)
R
∥∥∥∥2

2
+

∥∥∥∥ HGC
1 + GC

∥∥∥∥2

2

Contribution:
1 How to chooseR()
2 Risk theoretic framework for attack resilient controller design

3 Comparison between different measures of risk

Matias Müller A Risk-Theoretical Approach to H2-Optimal Control under Covert Attacks 7



Introduction Setup Risk Theory CVaR Control Design Example Conclusions

Problem Formulation

Problem 1: H2RCA (H2-optimal Risk control under Covert
Attacks)

min
C∈H2

R(JC)

JC(θ) =

∥∥∥∥(1− [G−Πθ] C
1 + GC

)
GSKθ

1 + KθΠθ

∥∥∥∥2

2

+

∥∥∥∥(1− GC
1 + GC

)
R
∥∥∥∥2

2
+

∥∥∥∥ HGC
1 + GC

∥∥∥∥2

2

Contribution:
1 How to chooseR()
2 Risk theoretic framework for attack resilient controller design
3 Comparison between different measures of risk

Matias Müller A Risk-Theoretical Approach to H2-Optimal Control under Covert Attacks 7



Introduction Setup Risk Theory CVaR Control Design Example Conclusions

Risk Theory
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Conditional Value-at-Risk

Common choices ofR() are E {},

worst-case (robust), nominal.

Definition (Conditional value-at-risk)
For α ∈ [0, 1]:

CVaRα(Y) :=
1

1− α

∫
y:P{Y≤y}≥α

y p(y)dy

= E {Y|Y ≥ VaRα(Y)}

CVaR is convex→ easy to optimize

VaR0.8(Y) CVaR0.8(Y)

80% 20%

α = 0.8

y

p(y)
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An alternative expression for CVaR

Remark
By considering the dual problem (Rockafellar and Uryasev, 2000):

CVaRα(JC) = min
µ∈R

µ+
1

1− α
E {[JC − µ]+}
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CVaR Control Design

1 Reparametrize the cost function: Youla Parameter
Let Q := C

1+GC ⇐⇒ C = Q
1−CQ . Then

=: VQ(θ)

=

∥∥∥∥(1− [G−Πθ] Q)
GSKθ

1 + KθΠθ

∥∥∥∥2

2

+ ‖(1− GQ)R‖2
2 + ‖HGQ‖2

2

JC(θ) =

∥∥∥∥(1− [G−Πθ] C
1 + GC

)
GSKθ

1 + KθΠθ

∥∥∥∥2

2

+

∥∥∥∥(1− GC
1 + GC

)
R
∥∥∥∥2

2

+

∥∥∥∥ HGC
1 + GC

∥∥∥∥2

2

H2RCA is then equivalent to

min
Q∈H2

CVaRα(VQ)
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CVaR Control Design

2 Approximate the feasible setH2 in

min
Q∈H2

CVaRα(VQ)

≈ min
Q∈QL

CVaRα(VQ)

with QL = {Q : Q(z) =
∑L

k=0 xkz−k, x0, . . . , xL ∈ R}.

QL

H2

limL→∞QL = H2L

Matias Müller A Risk-Theoretical Approach to H2-Optimal Control under Covert Attacks 12
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CVaR Control Design

3 We approximate CVaRα(VQ(θ)):

CVaRα(VQ) = min
µ∈R

µ+

≈ min
µ∈R

µ+
1

1− α
1
N

N∑
i=1

[VQ(θi)− µ]+

=: CVaRα({VQ(θi)}N
i=1)

{θi}N
i=1: N iid samples from p(θ)

Problem 2:

min
Q∈H2

CVaRα(VQ) ≈ min
Q∈QL

CVaRα({VQ(θi)}N
i=1)
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µ+
1

1− α
E {[VQ − µ]+}︸ ︷︷ ︸

hard to compute!

≈ min
µ∈R

µ+
1

1− α
1
N

N∑
i=1

[VQ(θi)− µ]+

=: CVaRα({VQ(θi)}N
i=1)

{θi}N
i=1: N iid samples from p(θ)

Problem 2:

min
Q∈H2

CVaRα(VQ) ≈ min
Q∈QL

CVaRα({VQ(θi)}N
i=1)
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Lemma (Convergence of cost functions)
Let N = # iid samples from p(θ), and L = length of the FIR filter:

lim
N,L→∞

min
Q∈QL

CVaRα({VQ(θi)}N
i=1) = min

Q∈H2
CVaRα(VQ)
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Main Result

Theorem (QCLP)
Let N = # iid samples from p(θ), and L = length of the FIR filter.

Then
Q? := arg minQ∈QL CVaRα({VQ(θi)}N

i=1) =
∑L

k=0 x?k z−k,
x? :=

[
x?0 x?1 . . . x?L

]
, where

[x? µ? t?]> := arg min
[x µ t]>∈RL+N+2

µ+
1

N(1− α)
1>N t

subject to

ti ≥ k(θi) + x>M(θi)x− 2c>(θi)x− µ,
ti ≥ 0, i = 1, . . . ,N

H2RCA ≈ Problem 2→ QCLP (easy to solve)
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Example
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Conclusions

• Link between Control Design and Financial Theory of Risk

• WhenR = CVaRα, a QLCP approximates the solution
• Better control performance by using p(θ)
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CVaR Properties

VaR0.8(Y) CVaR0.8(Y)

80% 20%

α = 0.8

y

p(y)

0 1CVaR0(Y) = E {Y} CVaR1(Y) = max{support Y}

α
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