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For a € [0, 1]:

CViR,(Y) i= = [ yp()dy = B{¥IY > VaRa(D))
1 —a Jypir<y}za
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CVaR is convex — easy to optimize
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1
CVaR,(Vy) = mi — E{[Vy—
aRq (Vo) min p+ {Vo —ul4}

hard to compute!
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1
CVaR,(Vy) = mi — E{[Vy—
aRq (Vo) min p+ {Vo —ul4}

hard to compute!

i—1
=: CVaRa ({Vo(6)}L1)
{6;}Y_,: N iid samples from p(6)
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(Convergence of cost functions)
Let N = # iid samples from p(0), and L = length of the FIR filter:
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CVaR Control Design

Lemma (Convergence of cost functions)

Let N = # iid samples from p(0), and L = length of the FIR filter:

s i (VS (il iy = i CVARL ()
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Theorem (QCLP)

Let N = # iid samples from p(6), and L = length of the FIR filter.
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Let N = # iid samples from p(6), and L = length of the FIR filter. Then
Q* := argminge, CVaR, ({Vo(B)}L,) = Xio ¥z

77 o= [x6 XK. xf], where
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[x p fTERLIN+2 N(l = a)
subject to
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>0, i=1,...,N

H2RCA = Problem 2 — QCLP (easy to solve)
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Conclusions

e Link between Control Design and Financial Theory of Risk
e When R = CVaR,, a QLCP approximates the solution

e Better control performance by using p(6)
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