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ABSTRACT
Epidemic content dissemination has been proposed as an
approach to mitigate frequent link disruptions and support
content-centric information dissemination in opportunistic
networks. Stochastic modeling is a common method to eval-
uate performance of epidemic dissemination schemes. The
models introduce assumptions which, on one hand make
them analytically tractable, while on the other, ignore
attested characteristics of human mobility. In this paper,
we investigate the fitness and limitations of an analytical
stochastic model for content dissemination by comparison
with experimental results obtained from real mobility traces.
Our finding is that a homogeneous analytic model is unable
to capture the performance of content dissemination with
respect to content delivery delays.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless co-
munication; C.4 [Performance of Systems]: Modeling
techniques

Keywords
Epidemic modeling, opportunistic networks, ad hoc networks,
content distribution

1. INTRODUCTION
Opportunistic networking is seen as a feasible way to

provide communication between mobile devices in absence of
infrastructure, or as a mean to off-load existing mobile net-
works. Both cases are seen as scalable solutions for content
distribution that adopts a store-carry-and-forward paradigm:
a node downloads and stores contents; it then carries the
contents through its mobility and shares the contents with
other nodes it encounters.

A variety of opportunistic routing schemes have been pro-
posed and epidemic spreading is central to many. Epidemic
content distribution schemes are able to achieve minimum
delivery delay at the expense of increased use of resources,
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such as buffer space, transmission power, and bandwidth.
In order to exploit trade-off between delivery delay and re-
source consumption, different schemes limit the number of
hops for contents to be carried. Adopting the principles of
epidemic modeling from the field of mathematical biology to
study spreading of diseases, stochastic modeling has become
a common approach.

In this paper, we empirically study the performance of epi-
demic content spreading by using real-world mobility traces.
Then, we consider an analytic model proposed in [8], and
examine if this homogeneous model can be utilized to evalu-
ate the performance of opportunistic networks. We consider
a basic epidemic scheme, where all nodes participate in
content forwarding.

The rest of the paper is organized as follows. In Sec-
tion 2 we describe the analytic model for epidemic content
distribution. We present the empirical study and compare it
with analytic evaluation in Section 3. Section 4 summarizes
related work and in Section 5 we draw main conclusions of
this study and give directions for our future work.

2. OPPORTUNISTIC CONTENT
DISTRIBUTION MODEL

2.1 Application scenario
The application scenario we consider here is that of dis-

seminating information by utilizing opportunistic contacts
and based on user interest. Sharing local news, traffic and
tourist information in public areas, public announcements
at massive events, or mobile advertisements are common
examples where this can be used. From the perspective
of a publisher, questions of interest could be: ”how many
users will the information reach in a period of one hour?”,
or ”what is the probability that the information will reach a
certain number of users?”. Such questions can be answered
by analytic modeling of information spreading.

2.2 Homogeneous system model
We consider a network N with |N | = N mobile nodes,

equipped with short-range radios and moving in a bounded
area. The network is assumed to be relatively sparse, with
node density insufficient to establish a connected network.
The data is stored and carried by nodes, and transferred
through intermittent contacts occurring owing to node
mobility. Let us introduce the definitions and assumptions
that we will use in this text. The contact time is the duration
of time when two nodes are in transmission range of each
other. The inter-contact time for a pair of nodes is defined
as the time elapsed between two consecutive contacts.
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We assume that the mobility of nodes is such that the
inter-contact times between any pair of nodes can be mod-
elled by independent identically distributed (i.i.d.) random
variables that are exponentially distributed. Then, we
assume that nodes in the network are homogeneous, that is,
all the nodes have the same mobility and contact patterns
that follows the same exponential inter-contact distribution
with average rate λ.

The content spreading scheme works as follows. At time
t = 0, there is a single node in the network that possesses
the content item and all other nodes in the network are
interested in obtaining it. Nodes that obtained the content
are willing to forward the content to other nodes they meet.
We study the performance by investigating the time it takes
for the content to reach all the other N − 1 nodes. The
transmissions are assumed to be instantaneous and every
contact results in a successful transmission.

We are interested in two metrics which characterize the
process of content distribution, namely overall and individ-

ual delivery time. Consider a network N and an arbitrarily
chosen node i, i ∈ N . Given that content is available at i
at time t = 0, the overall delivery time, denoted by Todt,
is the time until the content has reached all the other N − 1
nodes. The time until a node j, j ∈ N has obtained
the content is the individual delivery time, Tidt. From a
performance perspective, Todt measures the performance of
the entire system, while Tidt is a measure of the system per-
formance seen from an arbitrary node.

Borrowing the terms from epidemic modeling [3], we
denote nodes that carry contents as infected, and nodes that
are interested in obtaining contents as susceptible nodes. In
our model, once a susceptible node is infected, it stays in
that state for the remainder of the epidemic process.

2.3 Stochastic model
In the field of epidemic modeling, there are two main

approaches to analyse spreading: stochastic and fluid-based
modeling. Stochastic models are preferable when studying
networks of small scale, as they allow some randomness in
the final number of infected. The fluid models present a
deterministic approximation of the stochastic spreading and
can therefore only produce accurate results for networks
of larger scale. From an engineering point of view, only
stochastic models are able to predict the distribution of
time until a certain percentage of network has been infected.
Herein, we consider a stochastic model for content distribu-
tion, based on a continuous-time Markov chain. We present
only the basic description referring interested readers to [8]
for the complete analysis.

Let the random variable X(t) be the number of infected
nodes at time t, t ≥ 0 with X(0) = 1. Since all the i infected
nodes spread the content further, the process {X(t); t ≥ 0}
is a pure-birth process with with rates λi = i(N − i)λ for all
the states i = 1, ..., N − 1.

Todt is the time it takes the system to reach the absorbing
state X(Todt) = N . The time the system spends in each
transient state i is exponentially distributed with the ex-
pected value 1/λi, and the average absorption time is given
by the sum:

E[Todt] =

N−1∑

i=1

1

λi

=
1

λ

N−1∑

i=1

1

i(N − i)
=

2

λN
HN−1 (1)

where Hn =
∑n

i=1
1/i is the n-th harmonic number.

To obtain E[Tidt], denote by the random variable Tk,N−1

time until k out of the N −1 susceptible nodes have become
infected, and introduce the event K that a given node is the
k-th to become infected. Since all nodes are identical and
inter-contact times are i.i.d., the probability of this event is
Pr{K} = 1/(N − 1) and

E[Tidt] =

N−1∑

k=1

E[Tk,N−1]Pr{K} =
1

N − 1

N−1∑

k=1

E[Tk,N−1].

Omitting a few steps of derivation (complete proof in [8]),
the expected individual delivery time is

E[Tidt] =
1

λ(N − 1)
HN−1. (2)

Expressions (1) and (2) describe epidemic spreading with
respect to contents delivery times. In the next section, we
will empirically analyse the spreading in four scenarios, by
means of simulation.

3. ANALYSIS WITHMOBILITY TRACES

3.1 Mobility Datasets
To cover various scenarios, we use four experimental data-

sets different in time granularity, number of participants and
in duration. The datasets report pairwise contacts between
users moving in relatively restricted areas: a conference
venue, a university and office buildings. Note, however, that
the areas are not strictly bounded, thus users may leave the
areas and return after longer periods (even days). Below
we describe the contexts where the traces were collected,
the acquisition methodologies used, and our methodology of
pre-processing the traces.

Infocom mobility traces [12] were obtained during four
days at Infocom 2006. The dataset reports direct contacts
between a group of 78 attendees of a workshop, who were
carrying iMotes. The scanning interval was 120 seconds.
Thus, it is likely that many shorter contacts were not
recorded. Also, contacts between two users scanning simul-
taneously are missing. Therefore, we assume that two nodes
were in contact if either of the nodes reported that event.
As our model assumes a closed system (no nodes leaving),
we consider only the time intervals when most of the nodes
were active and seen by other users. The experiment lasted
for four days; we extracted from the trace only the contacts
during daytime: between 9:00 and 18:00 on the first and
the third day, between 9:00 and 21:00 on the second, and
between 9:00 and 16:00 on the fourth day.

Humanet trace [1] describes human mobility of partici-
pants in an office building. The data collection was carried
out in a company building and contains traces of 52 partic-
ipants, company employees, during one working day. The
users were carrying Bluetooth devices, which were scanning
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Figure 1: CCDF of aggregate inter-contact times.
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Figure 2: (a) CDFs of the delivery times. Comparison of the (b) overall and (c) individual delivery times.

every 5 seconds to capture direct contacts with other de-
vices. For each user, contact entries contain the time when
the contact started and when it ended. First, we processed
the trace to account for all the contacts recorded by either
of the two nodes, and when both nodes recorded the same
event, we took the entry with longer contact duration. Some
entries contained contacts of zero duration; if either of two
nodes reported a contact with non-zero duration, we chose
that entry. The next step was to merge multiple consecu-
tive contacts of zero duration if their inter-contact time was
shorter than one second into a single contact with the dura-
tion equal to the sum of their inter-contact times, and finally,
omit contacts that occurred before 10:00 or after 19:00.

Supsi dataset [4] includes contacts between 39 partici-
pants from three institutes, located in two buildings. The
experiment was carried out in December 2010 and lasted
more than three weeks. We use records of eleven days when
the largest number of contacts was recorded. Proximity
information was collected by sensor nodes, carried by the
users. The nodes were configured to have a transmission
range of 5 meters and perform neighbour discovery every
10 milliseconds. Similarly as with the previous traces, we
consider only contacts from 9:00 to 18:00. This comes from
the assumption that the contacts took place in the area of
interest, and that they represent real mobility of people, as
some devices collected contact information during the night
when left by the users in the offices. This leaves records of
34 users in total; the number of active users per day varied
from 13 to 27.

Milano dataset [5] was collected at the University of
Milano in November 2008 from 44 mobile devices carried
by faculty members, graduate students, and technical staff.
The experiment area comprised offices and laboratories
located in a three-floor building, and nearby premises where
participants took breaks during lunch times. Contacts were
logged by devices operating with a transmission range of
10 meters and a configurable scanning interval of around
one second. By using the same procedure of filtering out
sparse contacts during the night or during the days when
few participants were active, we extract only the contacts
during work hours from 9:00 to 18:00 over twelve days.

Note that all traces capture direct contacts between the
experiment participants, and, aside from the Infocom trace,
with scanning intervals in the order of seconds. Due to the
long scanning interval, the Infocom trace may be missing
shorter contacts.

3.2 Aggregate inter-contact time distributions
We calculate the inter-contact times between any two nodes,

and assume that all the samples come from one and the same
distribution, the aggregate inter-contact time distribution.

The distribution of samples of inter-contact times for a
specific pair of nodes is denoted by pair-wise inter-contact
time distribution. The aggregate distributions are plotted
in Fig. 1. The average inter-contact times of these distribu-
tions are: 2347 (Infocom), 312 (Humanet), 323 (Supsi) and
7996 seconds (Milano) (τ̄ag in Tab. 1). Only the Milano

trace seems to resemble exponential distribution, and only
up to around 6 hours (found by looking carefully into a lin-
log scale). All distributions exhibit fast decay after a certain
value (usually order of hours), which however, could simply
be an artefact of the finite duration of the traces.

In opportunistic networking, accurately characterising
inter-contact times between nodes is crucial for evaluating
system performance. In earlier works, the common approach
has been to look at aggregate distributions. However, recent
studies such as [2], [10] indicate the risk of treating
aggregate distributions as representative of pair-wise distri-
butions. The authors in [10] prove that aggregating various
pair-wise distributions can lead to false conclusions on the
characteristics of node interactions on a pair level. We con-
firm this in the following section.

3.3 Experimental evaluation
In this section, we assess the capability of the homoge-

neous epidemic model to capture the process of content
spreading in real-life scenarios.

We simulated four scenarios by replaying the pre-processed
traces in 3.1. For each of the traces, we choose a single day
when the nodes were most active, seen as the number of
contacts recorded during that day. The reason for this is
twofold: first, to observe the spreading we needed enough
interaction between users, and the second, some nodes were
missing from the traces during multiple days. Humanet

trace is only one day long; for Infocom and Milano we choose
the first day and for Supsi the eleventh. The number of
nodes during those days was 72, 52, 19 and 32, for Infocom,
Humanet, Supsi and Milano, respectively. The spreading
works as follows. We start by infecting a single node and
evaluate the time until it infects all other nodes. The same
process is repeated for all the nodes in the trace. To account
for the daily variations, nodes spread new content every hour
during the active part of the day. We consider only the sim-
ulation runs when all the nodes were eventually infected
and find the average overall delivery times and individual
delivery times. Cumulative distribution functions (CDFs)
for individual delivery times are plotted in Fig. 2(a).

The analytic model is an efficient tool to estimate the
system performance; its simplicity stems from the fact that
it requires only two input parameters: the number of nodes
in the network and the node inter-contact rate. In order to
validate the analytic model, we compute the same metrics,
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Figure 3: CCDF of average pair-wise inter-contact times: (a) Infocom, (b) Humanet, (c) Supsi, (d) Milano.

overall and individual delivery times given by formulas (1)
and (2), and assume that node interactions can be described
by the aggregate inter-contact time distributions. The inter-
contact rates are reciprocal to average inter-contact times.
Fig. 2 (b, c) depicts the simulation results and the computed
delivery times (denoted by modela).

We observe large discrepancies between simulation results
and the delivery times predicted by the model. The average
overall delivery times obtained from the simulations are:
359, 74, 275 and 278 minutes; while the model predicts
delivery times: 316, 54, 118 and 2012 seconds. Clearly, the
model does not match any of the scenarios, and it underesti-
mates the overall delivery time for the Supsi trace by three
orders of magnitude. With respect to the average individual
delivery times, the situation is similar; the simulation yields:
2089, 993, 4264 and 4291 seconds, and the model gives:
160, 28, 62 and 1039 seconds.

The explanation for this lies in several factors:

1. The aggregate inter-contact time distribution is not
representative of the pair-wise inter-contact distributions
in any of the examined traces. This can be seen from
the aggregate distributions for Humanet and Supsi in
Fig. 1. Their average inter-contact times are relatively
short (order of minutes), while the distributions are long
tailed. This is due to finite duration of the traces: pairs
that meet more frequently will contribute more samples
of their inter-contact times.

2. Many node pairs never meet. In some scenarios, we see
that even the most ”social” nodes meet very few other
nodes and hence, all of their inter-contact times are not
observable.

3. To estimate spreading times, we calculated the delivery
times by averaging only over those simulations in which
all the nodes were infected. In theory, the average overall
delivery times would be infinite, since some nodes never
get infected.

We investigate the first two findings in further detail in
the following sections.

3.4 Pair-wise inter-contact time distributions
In all four traces, we have seen that the aggregate inter-

contact time distribution does not give a complete view of
the contact patterns in the network. Thus, we look at inter-
contact times on a node-pair level. However, fitting different
distributions for each node pair would lead to an intractable

Table 1: Estimated average inter-contact times.
Infocom Humanet Supsi Milano

τ̄ag 2347 312 323 7996
τ̄i,j 4386 1473 2397 14841
τ̄C

i,j 15187 16346 4495 66445
∗all times are given in seconds

model. Hence, on a node-pair level some approximation is
usually assumed. The important is that all distributions
have exponential decay or at least exhibit exponential tails.
For each pair of nodes in a trace, we find the average inter-
contact time and plot the distributions of these average
times in Fig. 3. For all the traces, log-normal distribu-
tion seems to be a good fit; we observe that tails of empiri-
cal data are bounded by log-normal and Weibull curves. We
then applied curve fitting with log-normal and estimated the
average inter-contact times. The average values are given in
Tab. 1, denoted by τ̄i,j . By plugging these values in the
formulas, we find that the delivery times are still underesti-
mated, although they yield better estimates than in the case
of inter-contact rates calculated from the aggregate distri-
butions. The overall delivery times are: 591, 256, 882 and
3736 seconds, and the average individual delivery times are:
300, 130, 465 and 1928 seconds (modelb in Fig. 2 (b, c)).

Clearly, node contacts are too heterogeneous: notice from
Fig. 3 that average inter-contact times for different pairs
differ by two orders of magnitude. Still, we want to examine
if, by simply treating the traces in a different way, we can
improve the estimation using the homogeneous model.

3.5 Compensating for the missing contacts
In a network of N nodes, there are

(
N
2

)
node pairs, and

each pair can generate different pair-wise inter-contact time
distributions. Our idea is to model contact patterns with an
average inter-contact time for each node pair. Then, contact
patterns in the network can be described with the contact

matrix T=[τ̄i,j ], where τ̄i,j is the average inter-contact time
for a pair of nodes (i, j). T is a symmetric, zero-diagonal
matrix since τ̄i,j = τ̄j,i,∀(i, j). Thus, to describe a network
we need n(n − 1)/2 matrix elements, but many node pairs
are missing from the traces. For example, only 30% of all
node pairs in the Supsi trace are observable. This raises the
question how to model interaction between those node pairs
and to fill in the missing elements of the contact matrix.

We use the following method: assume that all the nodes
i and j, whose contact is not captured in the processed trace,
meet with some average inter-contact time Tm. First, we
set the value Tm to be equal to the duration of the entire
trace: 36, 9, 103 and 62 hours. Then, we calculated the
average inter-contact times for the traces by averaging over
the elements of the contact matrix; these values are given in
Tab. 1, denoted by τ̄C

i,j . The results for delivery times are
plotted in Figs. 2 (b, c) and 4 (modelc). Fig. 2 shows that
the proposed method is unable to accurately estimate the
delivery times in any of the scenarios. In case of the Infocom

trace, the analytic model underestimates both overall and
the individual delivery times, while for the Supsi trace, both
times are overestimated. For the Milano trace, the model
gives good estimation of the overall delivery time, while it
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Figure 4: CDF of infected population: (a) Infocom, (b) Humanet, (c) Supsi, and (d) Milano trace.

significantly overestimates the individual delivery time. The
only scenario were we observe a fairly good approximation
for both delivery times is the Humanet scenario. However,
the inconsistency of the method makes it unsuitable for use
on an arbitrary trace, when the properties of the trace are
not known a priori. This implication is also evident from
Fig. 4; the model does not capture the evolution of the epi-
demic process. We also tested if filling the contact matrix
with a different value for Tm would give a better fit. Curves
in Fig. 4 (a, b, d), denoted by modelc

∗

, correspond to the
cases where inter-contact times Tm are equal to the length
of a work day (around 9 hours). Although the curves in
Fig. 4 (c, d) show asymptotic behaviour in the beginning, it
cannot be estimated when the simulated spreading starts to
deviate from the model. For example, an accurate estimation
of the time until a certain fraction of the network is infected,
e.g. 80% of nodes in the Milano scenario, would not be
possible by using this model.

The usefulness of the homogeneous model is in its
simplicity, as it requires only two input parameters. However,
we conclude that the homogeneous model is not accurate
enough to be used for studying epidemic spreading in general,
and we show methodologically, what recent studies use as
a starting point and assumption but without proving, that
node heterogeneity cannot be neglected when evaluating the
network performance.

4. RELATED WORK
This paper mainly relates to the performance evaluation of

epidemic content spreading. Epidemic models, adopted from
the field of mathematical biology, are widely used in net-
working to study spreading of messages. Our study focuses
on a stochastic Markov model for epidemic content distribu-
tion in opportunistic networks, proposed in [8]. A Markov
model was also used in [6] to model the message delay in
ad hoc networks until a specific destination was reached.
The other line of work in stochastic modeling uses transient
analysis of random graphs, as in [14], where the hop-limited
broadcasting of messages was analysed. Studies such as [7],
[15] use ordinary differential equation models, and consider
the epidemic spreading process as a fluid flow. Common
for all these works is that they assume homogeneous sys-
tem. Heterogeneity is introduced by separating network
nodes into multiple mobility classes in [9], [13], or modeling
completely heterogeneous networks, as in [11]. However, it is
debatable whether using these analytic models gives enough
insight over simulations to account for their complexity.

5. CONCLUSION
We empirically evaluated the content delivery times by

using four mobility datasets, chosen to represent a small
system of pedestrians, moving in a relatively bounded area,

and compared the empirical results with analytic model.
We proposed three methods of treating the statistical data
obtained from the traces. Our main finding is that a homo-
geneous model is unable to accurately capture the epidemic
process in real-life scenarios and our future work will aim at
modeling epidemic spreading in heterogeneous systems by
using stochastic models.
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