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Abstract—Accurate prediction of user mobility allows the effi-
cient use of resources in our ubiquitously connected environment.
In this work we study the predictability of the users’ next location,
considering a campus scenario with highly mobile users. We utilize
Markov predictors, and estimate the theoretical predictability
limits. Based on the mobility traces of nearly 7400 wireless
network users, we estimate that the maximum predictability of
the users is on average 82%, and we find that the best Markov
predictor is accurate 67% of the time. In addition, we show that
moderate performance gains can be achieved by leveraging multi-
location prediction.

Index Terms—mobility prediction, trace-collection analysis,
WLAN, entropy.

I. INTRODUCTION

Human mobility analysis and prediction has been topical
in diverse research areas: from ubiquitous computing to epi-
demiology, from transportation systems to social sciences. In
networking research, being able to model and forecast human
mobility helps predicting network resource availability for users
in wireless networks, while novel applications that are likely
to benefit from accurate mobility prediction are also emerging.
One such example is mobile edge computing, envisioned as a
solution to cater the increasing storage and computing demands
of mobile devices by exploiting the local resources in the
network and bringing them to end-users as near as possible [1].
However, to evaluate the potential gain of utilizing prediction
for such applications, a solid understanding of achievable
predictability of human mobility is necessary.

In this paper we evaluate the predictability of user move-
ments in a university campus scenario by means of Markov
model predictors. In summary, our contributions are:
• By using network association patterns of the users as the
proxy of their locations, we find that the next visited location
of the users in the analyzed trace can be predicted with 67%
accuracy. We obtain this result by using a Markov predictor,
specifically, the predictor of order one, which we find to be
more accurate than similar predictors of higher orders.
• Adopting the theoretical framework established in [2], we
estimate how predictable the mobility of the users is in
general, and quantify how close our predictions are to the best
achievable ones. While the average upper bound is almost 82%,
the prediction results are within 20% from the expected limits
for 87% of the users.
• We investigate multi-location prediction and find that the
gain diminishes rapidly, as the continuous exploration of new
locations significantly limits the performance.

In the remainder of the paper, we first survey mobility pre-
diction methods and previously reported results, in Section II.
The theoretical background of the paper is summarized in
Section III. Algorithms for mobility prediction are proposed in
Section IV. We describe the analyzed dataset and pre-processing
steps in Section V. In Section VI we evaluate the performance
of the mobility predictors. Section VII concludes this study.

II. RELATED WORK

Our work can be positioned along two axes: mobility predic-
tion methods in general, and the predictability of users in cam-
pus environment. Owing to their simplicity and high efficiency,
Markov family predictors are the most common means for
mobility prediction, utilizing the knowledge of the recent, short
location history of fixed length [3–5] or variable length [6]. The
second line of works utilizes naive Bayes models, with feature
selection including time and location [7], or additional features
extracted from communication patterns [8]. Jeong et al. [9]
use non-parametric Bayesian interference to cluster users with
similar mobility patterns to improve the prediction accuracy by
gathering more training data. In [10, 11] location prediction
is treated as a classification problem and the proposed solu-
tions are based on supervised learning, utilizing classification
methods such as decision trees, k-nearest neighbors, support
vector machines, and gradient boost. Recently, more complex
methods have been devised in a form of dynamic Bayesian
networks [12, 13] and recurrent neural networks [14].

Markovian mobility predictors are evaluated in [2, 3, 15],
with the conclusion that low order Markov predictors (order 2
and order 1 respectively) achieve highest prediction accuracy,
from 70% to 85%, depending on the considered mobility
trace. Common for [2, 15] are the formulation of the location
sequences, accounting for every change rather than considering
discretized time steps, but also the age of the datasets. As
users are becoming more mobile and networks more dense,
the achievable predictability of mobility may decrease. We
have analyzed a recent campus mobility trace in [16], showing
that user mobility is highly diverse, due to the proliferation of
handhold devices. Now we use the same trace to evaluate the
predictability of the next locations.

III. LOCATION PREDICTION METHODOLOGY

In this study we follow user mobility in discrete time steps
and discrete locations. The locations that a user visits belong to
a finite set of locations (of cardinality N ) and each location is
represented by a symbol xi from the alphabet A. Let us define978-1-5386-4533-8/18/$31.00 c© 2018 IEEE



{X} as a stochastic process that corresponds to the mobility
of a user, given by the ordered set of random variables Xi,
X={X1, X2, ..., Xn, ...}. The location x of the user at time
n is then a realization of the process X generated by Xn.
For a given user, the sequence of visited locations is called a
location history, represented by a string of n location symbols
and denoted by hn = x1x2...xn, xi∈A, for 1 ≤ i ≤ n.

We approach the prediction task by performing online pre-
diction, i.e., by recording and examining the entire history up to
the current point in time, to predict the next location based on
the current one and the history of visited locations. We consider
domain-independent, order-k (O(k)) Markov predictors.

A. Markov family predictors

The order-k (O(k)) Markov predictor [17] assumes that the
user’s future location depends only on the k most recent
samples from the location history. This sequence is called
a context. Denote by Xj

i =xi, ..., xj , i≤j a substring of the
location history. Then the context at the nth observation is
c = Xn

n−k+1 and the entire history hn = Xn
1 . Assuming

that the observed user mobility patterns are stationary, the
prediction problem can be abstracted as a prediction of the
next symbol in the time series generated by a source with a
stationary distribution. Hence, the probability of transition is
the same wherever the context is the same. The probability
that the location Xn+1=xl follows the history hn is then

P (Xn+1 = xl|hn) = P (Xn+1 = xl|Xn
n−k+1 = c) (1)

The probability values can be represented in the form of
a transition matrix M, such that the columns and rows
of the matrix M correspond to k-length strings from Ak:
P (Xn+1=xl|hn) = M(c, c′) where c=Xn

n−k+1 is the current
context and c′=Xn

n−k+2xl is the next context. However, the
matrix M is unknown and therefore the predictor needs to use
an approximation P̂ based on the current history hn and given
the current context c of length k. The probability of next symbol
being xl is then approximated by

P̂ (Xn+1 = xl|hn) ≈ N(cxl, hn)

N(c, hn)
(2)

where N(s1, s2) denotes the number of times substring s1

occurs in the string s2.
For the next location, the Markov predictor selects

the symbol with the highest probability estimate
Xn+1= arg max

xl∈A
[P̂ (Xn+1 = xl|hn)], that is the symbol

that most frequently followed the current context in the prior
history. The Markov predictor makes no prediction if the
current context has never been seen.

B. Entropy, entropy rate and maximum predictability

Before measuring the performance of mobility predictors on
a specific set of users, a more fundamental question needs
to be addressed: What is the best achievable accuracy? Or,
in other words: How predictable the users are? To approach
these questions, we consider the measure of predictability as the
mean probability of correctly predicting the user’s next location,
given knowledge of all possible trajectories that could have

led them to that point [18]. Define the maximum predictability
Πmax as the highest achievable value of predictability, assum-
ing that predictions were obtained by an algorithm that always
returns the most likely next location. In notation, let hk be one
realization of the user’s location history up to the time step k,
P (hk) the probability of this particular sequence, and πML(hk)
the probability of occurrence of the most likely next location.
Then, Πmax is the expected predictability for all values of k
and histories hk:

Πmax = lim
n→∞

1

n

∑n

k=1

[∑
hk

P (hk)πML(hk)
]

(3)

To assess the limits of predictability and to quantify how
much the location of users can be predicted, we utilize the
concept of information entropy. In information theory, the level
of randomness of a process can be measured by entropy, a
metric that represents the average information, provided by each
realization of a random variable. Given a discrete probability
distribution π = {p1, p2, ..., pN} of the symbols in the alphabet
A of size N , the entropy is defined as H = −

∑N
i=1 pi log2 pi.

The entropy measures the uncertainty of predicting the user’s
next location by considering only the frequency of previous
visits while ignoring the sequence of the visits, that is, the
correlation between consecutive locations. Terms such as non-
sequential or temporal-uncorrelated entropy (cf. [4]) usually
refer to this definition of entropy.

Since human mobility is not random, for a realistic repre-
sentation of it we cannot assume that the sequence of locations
is uncorrelated. Instead of entropy, the amount of randomness
in the realization of correlated random variables can be better
measured by the amount of new information expected from
each event, given the past events. The measure that captures
how the entropy changes with the number of observations is
the entropy rate, or “per-symbol” entropy. The entropy rate,
Hr(X) of a stochastic process [19] can be defined in terms of
the joint entropy of its n random variables as

Hr(X) = limn→∞
1
nH(X1, X2, ...Xn) (4)

when such limit exists. For a stationary process, as it has been
shown in [19], such limit always exists and equals

Hr
′(X) = limn→∞H(Xn|Xn−1, Xn−2, ..., X1) (5)

where the conditional entropy H(Xn|Xn−1, ..., X1) is defined as

H(Xn|Xn−1, ..., X2, X1) = H(Xn|Xn−1
1 ) (6)

=−
∑

hn∈An
P (hn) log2 P (Xn = xn|Xn−1

1 = hn−1) (7)

The maximum entropy rate from Eqs. (4), (5) is linked to
the upper bound of maximum predictability Π̄max, [18]:

Hr(X) = −Π̄max log2 Π̄max−(1− Π̄max) log2
1−Π̄max

N−1 (8)
Formula (8) generally describes relation between the entropy

rate and the maximum predictability of a symbol sequence.
However, the formula takes as an input Hr(X), and does not
consider that Hr(X) needs to be estimated. Therefore, the
bound will depend on the quality of entropy rate estimation,
as well as the number of possible next locations.



The problem of estimating the entropy rate of a stochastic
process has been widely investigated in information theory,
statistics, and machine learning. We adopt the often used
approximation, proposed by Kontoyiannis et al. [20] for the
design of lossless compression algorithms, to compute the
entropy rate as

Ĥr(X) ≈
(

1
S

∑S
i=2

Λi

log2 i

)−1

(9)

where Λi denotes the length of the shortest string starting at
location i which previously does not appear as a continuous
substring between locations 1 and i−1 and S is the length
of the sequence. This approximation is known to provide the
lower bound of the entropy rate, leading to an upper bound of
the maximum predictability according to (8).

IV. PREDICTION ALGORITHMS

This section details the prediction algorithm and defines the
performance metrics used for evaluation in Section VI.
A. Single next location predictor

We apply the method for learning and updating the estimates
of transition probabilities, given by formula (2). The predictor
keeps a running estimate of the transition matrix, to return the
most likely next location. After observing a new location, the
predictor adds this location to the list of symbols, and with each
newly learned transition it expands the transition matrix. Two
special situations may occur: First, when multiple locations are
returned with the same estimated transition probability and the
second, when the user visits a new location, and hence the
current context has not been observed previously. To deal with
the first case, we implement a tie-breaking method, suggested
in [2], which among the ties selects the location that was most
recently visited. In the case of a newly learned context, we
distinguish two sub-cases. For higher order predictors, i.e.,
k>1 our predictor relies on the fall-back feature, recursively
searching for contexts of shorter lengths until reaching k=1.
For k=1, a reasonable strategy is to predict that the user’s
location in the next time slot is unchanged from the current
one, since users tend to stay in the same location for times
longer than the considered 15-minute time slots. The algorithm
is summarized by the pseudo-code in Algorithm 1.

The output of the predictor is a sequence of predicted loca-
tions, each prediction associated with two possible outcomes:
correct or incorrect. We define the predictor accuracy as the
ratio of correct predictions and all predictions made up to the
current time step. We will occasionally refer to this definition as
the per-user accuracy to emphasize that the result was obtained
for individual users, as opposed to the per-slot accuracy under
which we will consider aggregate performance of the predictor
across all users and predictions made.

B. Multi-location predictor

The accuracy of the mobility prediction can be increased by
selecting more than one possible next locations, with the use
of a multi-location predictor. While this reduces uncertainty,
from the practical perspective it also incurs additional costs
considering the predictor’s memory, and more importantly

Algorithm 1 Predict Next Location
1: procedure PREDICTNEXT(k, L)
2: . k: order of the Markov predictor, k ∈ Z+

3: . L: sequence of previous symbols, |L| ≥ k
4: n← |L|
5: A← L.UNIQUEMEMBERS()
6: C ← [Ln−k+1, · · · , Ln]
7: Nc ← L.SUBSEQUENCECOUNT(C)
8: p← nil, V ← ∅
9: if k = 0 then

10: return L.CURRENTLOCATION()
11: end if
12: for all a← A do
13: C′ ← [C, a]
14: p̂← L.SUBSEQUENCECOUNT(C′)/Nc

15: if p̂ > p and p̂ > 0 then
16: p← p̂, V ← {a}
17: else if p̂ = p then
18: V ← V ∪ a
19: end if
20: end for
21: if |V | = 0 then
22: return PREDICTNEXT(k-1, L)
23: else if |V | > 1 then
24: return TIEBREAKSELECTION(V )
25: else
26: return V [0]
27: end if
28: end procedure

additional costs for the resource allocation applications that
utilize the predictor. We assume that n locations are chosen as
the possible next locations, the associated cost of prediction is
then n. The multi-location predictor utilizes an order 1 Markov
predictor, and is therefore denoted as O(1, n).

We implement the n-locations selection method as follows.
• For n = 1, Algorithm 1 is followed.
• Prediction for n=2 relies on the Markov predictor, selecting

the two most probable locations.
• For n>2 the prediction set contains the current location, and
n−1 other, most probable next locations.
Similarly as in the single-location setup, the multi-location

predictor may find equally likely transitions, but including all
those in the prediction set would exceed the required n. The
predictor then returns most recently visited locations among the
ties. As n increases, the number of known transitions m will
become smaller than n at some prediction steps. To compensate,
additional n−m most frequently visited locations, denoted as
top locations, are added to the prediction set.

V. MOBILITY TRACE AND BASIC STATISTICAL PROPERTIES

A. Dataset collection
The mobility trace comes from the wireless network as-

sociation records collected at the KTH Royal Institute of
Technology during 2014 [16]. The wireless network provides
coverage on one large and four smaller campuses in the larger
Stockholm metropolitan area. The largest site is covered by 790
wireless access points (APs) located in 48 buildings; the smaller
sites have a single building per site with 19, 22, 23 and 77
deployed APs. While APs are mainly located inside the campus
buildings, most of the outdoor areas are covered as well, due
to the proximity of buildings and the dense AP deployment.
B. Trace preparation and preprocessing

Since the raw dataset contains network association events
only, the first step of the trace processing is to assign to each



entry the duration of the association. Details of the applied
processing methodology can be found in our earlier study [16].
Users’ trajectories are then defined by the tuples containing
the access point the user was associated with, the timestamp of
the association event and the estimated association time. The
association time samples vary from several hours to several
seconds. To capture relatively stable transitions, that could be
used for the optimization of networked services like content
distribution, we discretize time into 15-minute time slots and
assign the location with the longest association time to each of
the slots. Since the considered network is very dense the same
physical location is often covered by many APs. Therefore, for
the mobility trace we do not record the AP identifier, but the
corresponding location, such as a given room or a corridor. We
introduce an additional “offline” location to represent the user’s
departure from the network. This location is assigned to the slot
at the end of the user’s daily trace. A single offline slot is added
to the trace as well, when the user is disconnected for a longer
time during the day. Offline slots are however not considered
under the evaluation of the predictor accuracy.
C. First look at the campus mobility

We extract a subset of the trace, spanning four months at the
end of 2014—a period containing one academic semester, long
enough for users’ movement patterns to exhibit stationarity, but
also limited to avoid seasonal changes which may be incurred
by modified semester schedules.
1) Location visiting patterns: During the observed time period,
36561 unique devices were recorded, out of which 20225
were active each of the four months. We consider the latter
group of user devices, denoted as regular (WLAN) users. We
want to measure how often these users access the network,
therefore for each user we count the number of active days
when they appeared in the trace, and the number of active days
per month, Dm. Fig. 1(a) shows the number of users active
for Dm days in each month and we find, as expected, that
users were less active during December, with Dm less than
9 days on average, than during the other months, when the
average Dm count was around 12. To examine how mobile
the users are, we refer to Fig. 1(b) which shows the cumulative
distribution functions (CDFs) of the number of unique locations
visited by regular users during the period of one to four months.
The number of unique locations increases throughout the four
months; after four months, the maximum and mean number of
visited locations are 412 and 85.9, respectively.
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Fig. 1. (a) Distribution of active days for users that accessed the network
during experimentation period. (b) CDF of the number of visited locations.

In the remainder of this analysis, we will focus on a selected
group of regular users that exhibited higher activity, termed
highly mobile users. A user is classified into this group if they
had at least five active days each month, during which they
visited 15 or more locations. The highly mobile subset contains
7379 users, who visited, on average 155.8 locations during four
months; their location visiting CDFs are plotted in Fig. 1(b).
2) Entropy rate and empirical predictability: To understand
first how the entropy and entropy rate of the users’ location
sequences depend on the length of observation, we plot the
corresponding density functions (PDFs) in Fig. 2. The entropies
increase with the observation period while the entropy rates
show little dependence. With respect to the degree of random-
ness in users’ movements, large entropy values at first hint at the
high degree of randomness; however the entropy rate estimates,
Fig. 2(b), show that the temporal order of the samples greatly
reduces the uncertainty in users’ next movements. We use these
estimates and numerically solve (8) for Π̄max for each user. The
distribution of the resulting maximum predictability is shown in
Fig. 2(c). With the densities peaking at around 75%, we expect
that the users’ movements will be highly predictable.

VI. PREDICTOR PERFORMANCE EVALUATION

Following the procedure described in Section V-B we trans-
form user association records into sequences of visited loca-
tions. We first allow the algorithm to obtain initial estimations
of transition probabilities during the training period, upon
which the predictor starts forecasting in an online manner, by
updating the transition matrix at each time step with the new
observation, and subsequently making a prediction for the next
time step. The training period covers the first two weeks from
the first day when a user was seen in the trace. In order to detect
potential abrupt changes in user mobility patterns or divergence
of prediction results, we take snapshots of accuracy estimations
at different times, specifically after two and four months.

A. Accuracy of the O(k) predictors

Taking the first step towards investigating how the length of
the context affects the accuracy, we look at the performance
of predictors of different orders for a sample user’s sequence.
Fig. 3 shows the running accuracy of prediction for a single
user, for the predictors of orders k={1, 2, 3}. There are minor
differences in the predictors’ performance with asymptotic
accuracy values ranging from 65.9% (k=1) to 64.6% (k=2)
and to 63.7% (k=3). We can also see that the accuracy
quickly converges to the asymptotic value; in this particular
example after around 250 steps. Convergence, though, cannot
be guaranteed: we observed that for some users the accuracy
curve starts to diverge after a certain time, indicating that their
mobility patterns changed during the experimentation period.

Fig. 4 shows the CDF of the prediction accuracy considering
all highly mobile users. We sample the values of the accuracy
after two months (history h1) and four months (history h2). For
each of the three predictor orders, the distribution curves for the
two location histories are very close to each other, and for each
pair the accuracy after four months has only increased for 0.5%.
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Next, as the predictor order increases, the accuracy deteriorates
from the lowest to the highest order: each order incurs around
1–1.5% loss in accuracy as compared to the previous one.
Overall, the O(1) predictor achieves slightly better results than
the other two predictors. Considering the accuracy values for
each user over the entire trace duration, for most users O(1)
performs better than the other two predictors; for less than 2%,
or 126 users, the highest accuracy is achieved by O(2) and
only for 12 users O(3) performs best. We have also tested
higher order Markov predictors (up to order 5) and observed
the trend of decreasing accuracy with increased order, therefore
we excluded those predictors from further analysis.

Next we compare the performance of the most accurate
predictor, O(1), with the estimated maximum predictability
values, shown on Fig. 2(c). Fig. 5 depicts the accuracy (dots)
and the predictability bound (solid line) for each individual
user. We can infer that the predictor does indeed approach
the expected upper bounds of predictability. The absolute
differences between these two measures closely follow a normal
distribution, with the mean value of 14% and the standard
deviation of 5.3%. We also observe few data points above the
predictability line. This counterintuitive result indicates that the
accuracy can surpass the estimated limit of predictability, when
the entropy rate estimate is not accurate due to too few samples.

B. Performance gain from multi-location prediction
Next we investigate how much the prediction accuracy

improves if multiple possible next locations can be selected.
Fig. 6 shows the results for multi-location prediction with
1≤n≤10 locations. As expected, we see that increasing n
markedly improves the prediction accuracy for all users: while
for 75% of users single-location prediction achieves at least

60% accuracy, adding only one additional location increases the
accuracy to 70% for the same portion of users and adding four
locations, n = 5, increases the accuracy to 75%. Considering
the most predictable users, specifically the 25% users with best
prediction results, the minimum accuracy increases from 73%
for n = 1 to 75% and 81% for n = 2, respective n = 5.

To evaluate the overall performance gain achieved by predict-
ing multiple locations, Fig. 6(b) shows the average accuracy
across all users, as well as the average per-slot accuracy for
all performed predictions. The latter result serves to mitigate
the impact of low prediction accuracies for users with short
location histories, and indeed, these values are slightly higher
for all n. From the figure we can conclude that selecting more
than one possible next location quickly boosts the accuracy,
however the accuracy gain diminishes quickly, and the achieved
average accuracy seems to settle right above 80%.

To uncover the causes of the diminishing accuracy im-
provements, we inspect the prediction process in more detail.
One of the major challenges for online prediction is that
users often visit, or discover new locations. For the prediction
attempts in time steps when a discovery happens, the result is
always incorrect. To quantify how much discovering new places
contributes to predictors’ inaccuracies, we consider the ratio of
new locations and the total number of samples, Rnewloc, for
each user. For 40% of users, this ratio is more than 0.1, thus
the highest accuracies that can be achieved for these users, with
the current implementation of our algorithm, is not more than
90%. Let us explore what other properties of the users’ location
sequences may affect the prediction performance. Fig. 7 depicts
the relation between Rnewloc and the accuracy for n=1 and
n=10. The color of the data points represents the number
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of samples. The plots imply that the multi-location prediction
accuracy heavily depends on both Rnewloc and the number
of samples. In particular, this method of prediction is more
likely to improve with n for users with low Rnewloc and large
number of samples, since such users are likely to be found in
few locations, where they spend long visiting times. Comparing
users with the same Rnewloc, the predictor is likely to benefit
less when the number of samples, and hence the number of
observed transitions are lower. Finally, the limited predictor’s
performance seem to be rooted in the suboptimal selection
method when numerous transitions from the given location
are possible. The predictor then favors previously observed
transitions—even with very low transition probabilities—over
the user’s top locations. This suggest a possible future improve-
ment of the prediction algorithm, where a mix of popular next
locations and top locations could be selected.

VII. CONCLUSION

We examined predictability of users’ locations in a university
campus scenario by analyzing traces of nearly 7400 wireless
network users over a period of four months. Specifically, we
focused on predicting the users’ next location, given the history
of their previous visits. By implementing online, low-order
Markov predictors we were able to correctly predict users’
next location 67% of the time. This is a reasonable result,
considering the simplicity of the predictor and the empirical
limits of predictability, and it will serve as the baseline for
comparison with more advanced predictors based on machine
learning techniques as part of our future work. Regarding the
multi-location prediction, we have shown that adding a few
more locations effectively increases accuracy, but the perfor-
mance is limited by the frequent discoveries of new locations.
For reproducibility purposes, we are planning to make the
dataset used in the study publicly available.
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