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Abstract—This paper presents an analysis of a large trace
of user associations in a university wireless network, which
includes around one thousand access points over five campuses.
The trace is obtained from RADIUS authentication logs and
its merit is in its recency, scale and duration. We propose a
methodology for extracting association statistics from these logs,
and look at visiting time distributions and processes of user
arrivals to access points. We find that a large fraction of the
network—around half of all access points—experiences time-
varying Poisson arrival process, and association distributions
can be modeled by two-stage hyper-exponential distributions at
most of the access point. While network associations in campus
wireless networks have been extensively studied in the literature,
our study reveals changing patterns in user arrival processes
and association durations, which seem to be characteristic for
networks of predominantly mobile users, and allows the use of
tractable network occupancy models.

Index Terms—WLAN, user mobility, trace-collection analysis.

I. INTRODUCTION

The ubiquity of wireless local area networks (WLANs)
in today’s workplaces, universities, and other public areas,
increased the importance of the accurate characterization of
users’ access and usage patterns. Such characterization is
essential for network dimensioning and capacity planning, and
can support the design of efficient network algorithms, e.g. for
energy saving [1], or content caching [2]. While similar studies
have been done before [3], [4], [5], [6], [7], the proliferation
of mobile devices and the densification of the networks make
new evaluations necessary.

In this study we re-evaluate whether user associations can
be modeled by tractable Markovian models under these new
circumstances, utilizing traces of network associations in a
university campus wireless network based on Eduroam associ-
ation records. Our main contributions are the following. First,
we propose a methodology to use the RADIUS logs, that are
easy to acquire and are often available in production networks,
for the analysis of user association patterns. Second, as we
analyze a recent and relatively large trace, we can identify
the effects of the current trends in network usage. We provide
a thorough evaluation of the Poisson arrival hypothesis, and
identify the cases when it needs to be rejected. Furthermore, we
show that connection times can be fitted to relatively simple,
two-stage hyper-exponential distributions, thanks to the high
number of connected mobile devices.

In the remainder of the paper, we first give an overview
of the wireless network in question and the data collection
process, in Section II. Section III details the trace processing
methodology. The results of our analysis and modeling are
presented in Section IV. We discuss related work in Section V,
and conclude our study in Section VI.

II. DATA COLLECTION

A. Acquisition of the authentication events dataset
The data trace comes from the campus wireless network

of KTH Royal Institute of Technology. The KTH WLAN
provides coverage for buildings on one large and four small
campuses located within metropolitan Stockholm area. The
campus buildings are for non-residential use, housing class-
rooms, computer laboratories, libraries, offices, administrative
premises, cafeterias and restaurants. The largest site, the Main
Campus, includes 48 buildings with around 790 access points
(APs). Due to the high density of APs and proximity of campus
buildings, most of the outdoor areas are covered as well. All
APs in the network are Cisco Aironet models. At the time of
trace collection (2014–2015) the university had around 18000
active students and employees, most of them accessing the
wireless network via smartphones, laptops and other portable
devices. The number of active wireless users that connected to
the network for a weekday varied between 13000 and 15000.

The raw dataset consists of Eduroam associations collected
from the authentication server deployed in the university
network. These associations constitute 95 % of all associations
in the wireless network. User association in an Eduroam
network requires RADIUS authentication. The basic network
architecture is depicted in the diagram in Fig. 1.

Fig. 1. WLAN network diagram with authentication server.

The APs are managed by Cisco 5508 Series Wireless Con-
trollers (WLC). The central component in the secured WLAN
environment is the authentication server; it handles user access
requests either by processing requests itself or by proxying
them to another server in the user’s home institution. The
authentication server in the network is FreeRADIUS server.
For keeping record of all authentication events, FreeRADIUS
uses a syslog module linelog which reports events in the
F-Ticks format [8]. Each line corresponds to an authentication
event, called a tick, containing information about the user
device requesting authentication, the timestamp of the event
and the result—access accepted or rejected—as well as the
name (identifier) and MAC address of the access point. These
records are logged and reported to the national operator for col-
lecting statistics at national levels. Prior to sending the records,
client MAC addresses are anonymized through hashing, which
obfuscates the user’s identity, though keeps the hashed address
preserved throughout the trace. The trace does not contain the
exact locations of the users (e.g., GPS coordinates) but it gives
the identity of the access point that the client associated with.



Our goal is to extract information about user connectivity
patterns over the observed time period. It is clear that deter-
mining such patterns from association events only—without
the complementary information of de-authentication—leads
to uncertainty. Therefore we resort to reconstructing user’s
associations to the network and the corresponding connection
time by utilizing the knowledge of the association process and
empirical measurements from the client side. In addition, we
performed war-walking to estimate the outdoor wireless trans-
mission range, and to discover areas not covered by any AP
and areas covered by several APs, which are fundamental to
determine the connection times of the mobile users moving
out from an AP area. The results of our measurements in
the Main Campus area are shown on Fig. 2. The size of the
points represents the signal strength, the opacity of the circles
represents the accuracy of the estimated GPS location, while
different colors correspond to different buildings on the map.
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Fig. 2. Coverage and received signal strength indication (RSSI) of access
points mapped by war-walking.

B. Details of RADIUS authentication
The access points in the network support IEEE 802.1X

authentication standard. 802.1X encompasses the use of the
Extensible Authentication Protocol (EAP), a container protocol
that carries the actual authentication data inside. Two authen-
tication scenarios can be distinguished. In the first scenario,
a user device joins the network by associating with an AP.
An EAP tunnel is established between the user and the server,
enabling the two end entities to mutually authenticate each
other. Then, the authenticator (RADIUS server) issues a chal-
lenge for the user, and grants access or rejects the request.
Entries in our dataset correspond to access granted events. The
server next closes the EAP tunnel and sends the key-generating
material to AP. Only the AP and the user participate in the re-
maining authentication steps. The other case of authentication
takes place when a client is already connected to an AP in the
network and roams to a different AP. In a wireless network
which does not support fast-secure roaming protocols—this is
our case—the client must go through the exact same process
and perform a full authentication. In addition, the following
times trigger the re-authentication of the users:
• User idle timeout, Tidle: When a user is idle without any
communication with the AP for the amount of time set by
this value, the client gets de-authenticated by the WLC, and it
must re-authenticate and re-associate to the WLC. The default
value of the user idle timeout is 5 minutes, which is confirmed
by the client side measurements.
• Session timeout, Tsess: As a part of a security precaution, all
active users need to re-authenticate at regular time intervals,

defined by the session-timeout value. The default value is
30 minutes, which is also confirmed by the RADIUS log.
• Periodic scanning, Tscan: Mobile devices perform periodic
scanning every 10–15 minutes, to find the AP with the best
wireless connection, and in every 5 minutes if they are in idle
state. The periodic scanning leads to re-associations to the
same AP, if the wireless channel conditions did not change.
Here we consider Tscan = 5 minutes.
• Broadcast key interval: When a user connects to the WLAN,
he receives a broadcast key, that allows encryption of broad-
cast/multicast traffic. To protect from attackers, the AP pushes
group keys to the clients at scheduled times, the default
interval is one hour.
• Device timeout: All wireless user devices have their own
settings for determining when and how to disassociate from
a WLAN, or disable the wireless network card. The default
values are device-dependent.

III. INITIAL TRACE PROCESSING

The dataset we collected spans over 16 months, during
which the number of active APs deployed in the network
varied from 934 to 985. For the purpose of this study, we
choose a subset of four term weeks, from September 22 to
October 19, 2014, when the network topology was stable and
the user behaviour was typical for the university network.
The total number of ticks during this period was 7040095,
comprising around 300–350 thousand lines for week days and
60–80 thousand lines for weekends, capturing 35649 unique
devices. Around 42% of the devices were active ten or more
days, and 8% of the devices appeared in the trace with just a
single association event.

As the available trace contains only (re-)association events,
it does not give direct information on how long a user has been
connected to an AP. Therefore, we derive heuristics to estimate
the connection times. The heuristics utilize the authentication
state machine, the wireless coverage map, as well as the
knowledge of the key timer values from Section II-B. In
addition, we consider the following time intervals:
• Tauth, the time required for the RADIUS authentication pro-
cess. Our client side measurements suggest Tauth = 1second.
• Tmin, the minimum association time when a device has
started moving away from the AP. Based on the coverage
map, we consider Tmin = 30 seconds.
• Troam = Tidle+Tscan = 10 minutes, the maximum interval
between consecutive associations under roaming, that is, when
the user is on the move. The maximum time happens when
the user is idle.
• td denotes the time difference of the consecutive association
events for a user, that is, the association interval, as recorded
in the RADIUS trace.

For each user in the trace, we perform parsing of the
raw trace on a time window of one day to extract the user’s
trajectory defined by the (AP, visiting time) tuples. The parsing
includes the merging of successive associations, the removal of
short associations, and the estimation of the connection times.
Here are our rationales.
1) Merging successive associations with the same AP: Users
associate and re-associate with the same AP after user idle
timeout, after session timeout, or for mobile devices due to
periodic scanning. Observing a sequence of associations with



the same AP, within one hour, we assume that the client has
not moved away from the AP and we merge all the consecutive
associations into a single association.

2) Removal of short associations: Occasionally, multiple as-
sociation events with the same or nearly the same timestamp
are logged. Since this is not enough time to complete the post-
authentication steps, we ignore association intervals td≤Tauth
and keep only the last entry in the series of short associations.

3) Estimation of unknown connection times: Consecutive asso-
ciation events that are more than an hour apart or involve APs
that are not neighbors1 on the coverage map suggest that the
user was disconnected between the two associations, and we
estimate the connection time before disconnection as follows.

i) Short disconnections occur when consecutive associations
happen at non-neighboring APs, and the association interval
is longer than Tmin and shorter than Troam. In this case we
select the association time randomly uniformly in the interval
[Tmin,min(td, Tidle)].

ii) Medium disconnections happen when Troam< td ≤Tsess,
with successive associations at non-neighboring APs. Since a
new association eventually happens within a session timeout
time, the user is likely to be moving in the campus area, experi-
encing longer disconnection time. We calculate the association
time based on the wireless coverage map, by subtracting
the estimated walking time from the association interval. For
an estimation of the walking time we use Google Distance
Matrix API [9].

iii) Long disconnections occur when td > Tsess. This is the
case when the user is disconnected for a longer time, or even
leaves the area. We estimate the length of the last association
time based on the previous association interval. If the previous
association was longer than Troam, the user is likely to be
static, and we select the association time uniformly in random
from the interval of [Troam, Tsess]. Otherwise the user is likely
to be on the move, and we assign some random association
time from [Tidle, Troam].

Out of 7040095 association events in the four-week trace,
around 4% of the entries where short and another 4% long
disconnections, whereas the medium disconnections were ob-
served less frequently, amounting to 1% in total.

IV. ACCESS PATTERN MODELING AND VALIDATION

In this section, we present the main findings of our study.
We characterize access patterns of users at each individual AP,
first with respect to the arrival processes and subsequently
by modeling the user visiting times. Our main objective is
to evaluate the possibility to model association patterns in
a Markovian framework, that is, considering Poisson arrival
process and phase-type visiting time distribution.

Since the network exhibits very low activity during week-
ends we analyze only work days in the set—a subset of 20 days
of the initial 28 days—and consider the arrivals between 8 AM
and 6 PM, excluding the daily sets when the number of data
points (arrivals) is smaller than 20. We also exclude arrivals
that occur during the night and stay during the day, and the
opposite—arrivals that occur during the day and do not leave

1We consider that two APs are neighboring if they are located in the same
building or, otherwise, in two adjacent buildings not more than 100 m apart.

during the night, as they are re-association events generated by
stationary users. The fraction of the discarded, stationary users
ranges from 2% to 6% per day, or 3.6% on average, which
equals 521 users. The resulting set contains 913 access points
having at least one day of arrivals subjected to modeling.

A. Arrival process modeling and validation

Clearly, the intensity of arrivals to an AP changes in time,
and therefore, as earlier studies [4], [5], [6], herein we evaluate
whether arrivals can be modeled with a non-homogeneous
(also denoted as time-varying) Poisson process. The counting
process {N(t); t ≥ 0} is said to be a non-stationary or non-
homogeneous Poisson process with time-varying arrival rate
λ(t), t ≥ 0 if: i) N(0)=0, ii) N(t) has independent increments,
and iii) N(t)−N(s) ∼ Poisson

(∫ t

s
λ(u)du

)
for s < t.

This arrival process retains the property of independent and
exponentially distributed inter-arrival times. It should be noted
that the studies related to ours rarely consider both of these
requirements, usually focusing only on the assumption of ex-
ponential distribution, [5], [6]. Below we provide a procedure
that considers both the distribution and the independence of
the inter-arrival time samples.

The estimation of the rate function is often performed
by dividing the sample sequence—either inter-arrival times or
arrival count—into short time intervals and assuming that the
rate is constant during those intervals [4], [6]. We approach
the modeling task from a different angle, assuming that the
rate function of the Poisson process varies more slowly—
in order of hours. To this end, we deploy a change point
detection (CPD) algorithm [10] to split the sample sequence
of inter-arrival times into segments for which we postulate
that the process behaves as a homogeneous Poisson one. The
CPD algorithm searches for abrupt changes in the mean and/or
the variance of the sample sequence. The main parameter of
the algorithm is a threshold value, that ensures a constant
probability of a false positive occurring after each observation,
determining the Average run length (ARL) as the expected
number of observations received before a change is falsely
detected. For sequence processing we use the implementation
of Ross [10], available in the Change point model (cpm)
package [11], and we consider two ARL values, ARL=500 and
5000, to see the effect of how conservative the algorithm is.

Fig. 3 gives an example on how the CPD algorithm divides
a single day inter-arrival times observed at one AP (located
in the main library) into disjoint segments with different
intensities: in the top figure, the (yellow) dots represent the
inter-arrival times with the x−axis marking the time when the
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Fig. 3. Example of segmentation of a single day arrivals sequence:
Inter-arrival times (top) and arrival count (bottom).
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TABLE I. STATISTICS FOR ENTIRE DAYS

Days count; ARL
fraction of all days ARL1 = 500 ARL2 = 5000

Pass test 9068 (49.66 %) 9685 (53.04 %)
Long sparse sample 1915 (10.49 %) 1033 (5.66 %)
Not Poissonian 6078 (33.28 %) 6343 (34.74 %)
Sparse sample—entire day 1199 (6.56 %)
Total # days 18260

TABLE II. STATISTICS FOR SEGMENTS

Total # segments Average duration [minutes]
Segment categories ARL1 ARL2 ARL1 ARL2

Poisson 50990 34348 158.9 217.4
Independent and not Exp. 4048 4845 184.7 284.1
Exp., and dependent 3624 2716 135.2 209.1
Not Exp. NOR independent 283 400 137.8 281.0
Sparse sample segments 12962 5167 27.5 40.3

sample was generated; the vertical (red) lines correspond to the
time instances of the detected change point. A better insight
into this segmentation can be obtained from the lower plot in
Fig. 3, which depicts arrival counts in five minute intervals: the
vertical lines around 12 AM clearly mark a burst of arrivals.

While the applied algorithm assumes that samples are
independent and exponentially distributed, we need to verify
that this holds, hence we investigate each of the segments
independently using two tests. First, for each set of inter-
arrival times we perform Kolmogorov-Smirnov (KS) testing
with modified statistics table, that is, the Lilliefors test for
exponentiality [12] (corresponding to the 5% significance
level), to test whether the samples come from an exponential
distribution with the rate parameter estimated from the set.

For testing the independence of the inter-arrival sequences
in the generated segments, we use Brock-Dechert-Scheinkman
(BDS) test [13], which tests the null hypothesis that data comes
from a process that generates independent and identically
distributed (i.i.d) samples. The BDS test embeds the observed
sequence in high dimensional vectors, and the dependence is
examined by counting “near” points in space. We follow the
modified testing procedure for small sample sizes (which is
our case) given in [14]. Specifically, we consider dimensions
1, ..., 5, a distance limit of one standard deviation of the tested
sample, and a significance level of 5%.

B. Numerical results on arrival process modeling

In this section we evaluate the hypothesis that arrivals can
be modeled with a time-varying Poisson arrival process. For
change point detection we consider two values, ARL = 500 and
5000. We evaluate the segment durations to see whether they
are long enough for further analysis. The two segmentation
procedures produce, respectively, 71888 and 47482 segments
in total—over all days and all APs—with, on average, 4.21 and
2.78 segments per day. The distribution of segment lengths is
shown in Fig. 4(a). We see several characteristic peaks, due to
authentication timers, as well as the typical schedule of lectures
at the university. The peak at 10 hours represent APs with
stationary arrival process during the observed working hours.

1) Assessment of the Poisson arrival process hypothesis:
First we evaluate how often the assumptions of exponential
and independent inter-arrival times are met. We test only the
segments with more than ten samples, labeled as regular, since
segments comprising ten or fewer samples, denoted as sparse
sample segments, are too small for sound statistical analysis.
We consider that the entire day passes the test for time-varying
Poisson arrivals if all regular segments pass the test, and sparse
sample segments amount up to less that 5% of the AP’s daily
active time.

If we consider all APs on all days, only around half of
the entire-day sequences pass the test, specifically 50 or 53%,
for the two ARL values. Fig. 4(b) shows the complementary
cumulative distribution function (CCDF) of the number of days
the APs pass the Poisson test. The figure shows as well the
distribution of active APs, and reflects that the number of days
discarded due to less than 20 samples is not negligible: only
760 APs, or 86% are considered active all 20 days. We observe
that the ARL value does not significantly affect the results. The
large gap between the two lower CCDF stair-plots and the tail
distribution of active APs clearly indicates that many of the
APs fail the test of the Poisson arrivals a large number of days.
For example, only 413 APs (less than half) observe Poisson
arrivals for more than ten days, and 148 (less than 20%) more
than 15 days. Some APs, in fact, rarely perform in accordance
with the assumed arrival process: 23 APs never pass the test,
and 242 APs pass only for 5 days or less.
2) Examining the structure of intervals that are not Poissonian:
Table I gives a quantitative comparison of the reason of failing
the test: 1) the total time duration of small-size segments
exceeds 5%—we label the days falling into this category as
days with long sparse sample (LSS) segments or 2) at least
one of the segments in a day does not exhibit homogeneous
Poisson arrival process—the day contains not-Poissonian (NP)
segments. We see that the main reason of rejection (for ca.
34 % of the days) is that latter one, that is, the day contains
NP segments.

To see how dominant sparse sample or non-Poissonian
segments are, Fig. 4(c) shows the CDF of the portion of
time a day these non-conforming segments cover, considering



8:00 10:00 12:00 14:00 16:00 18:00
0

10

20

30

40

A
rr

iv
a
l 
c
o
u
n
t

Arrivals per five minute intervals

8:00 10:00 12:00 14:00 16:00 18:00
Time

0

10

20

30

40

A
rr

iv
a
l 
c
o
u
n
t

Number of arrivals Change points, ARL1 = 500 Change points, ARL2 = 5000

Single segment
Inter-arrival times are not Exp.

6 segments with
Exp. Inter-arrival times

(a) Independent and not exponential samples.

8:00 10:00 12:00 14:00 16:00 18:00
Time

0

10

20

30

A
rr

iv
a
l 
c
o
u
n
t

Number of arrivals Change points, ARL1 = 500 Change points, ARL2 = 5000

8:00 10:00 12:00 14:00 16:00 18:00
0

10

20

30

A
rr

iv
a
l 
c
o
u
n

t

Arrivals per five minute intervals
2 segments with
indep. inter-arrival times

Single segment with
correlated inter-arrival times

(b) Exponential and dependent samples.
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the days when these segments are present. We see that the
ARL value does not significantly affect the detected small size
samples interval, and the LSS segments in general cover a
small part of the day only. On average, considering all LSS
days, LSS segments contribute to less than 20% of the day.
Looking at the time span of non-Poissonian segment, we see
that it is significantly affected by the ARL value: higher ARL
means less frequent change detection, and as a result, longer
non-Poissonian segments. Non-Poisson segments can be rather
dominant in a day, the average portion of the time consumed
by NP segments is 37 respective 57%.

By looking at NP segments only, next we analyze which
of the conditions—non-exponential or dependent inter-arrival
times—is more likely to reject the hypothesis. As Table II
shows, non-exponential distribution is the main reason for
rejection, but overall, the two categories are comparable with
respect to the number, and the average lengths of the segments.

Finally, we demonstrate the effect of the ARL parameter
in Fig. 5. We select a busy AP in one of the main buildings of
the Main Campus, that has also large outdoor coverage. The
usual number of users that associate with this AP is between
1100–1200 per day. Fig. 5(a) shows the arrival count per five
minute intervals and the time instances of change points for
two ARL values. From 8 AM to around 10 AM there are 269
samples and the longer segment, under ARL2 = 5000 (lower
figure) fails the test for exponential inter-arrivals. As opposed
to this, when ARL1 = 500, the same time interval is split
into six segments (figure above) and apart from the one small
segment, comprising a batch arrival of 10 users within 161
seconds, all other segments pass the exponential distribution
test. A similar example, from another day, is illustrated in
Fig. 5(b). The second segment in the lower plot, from 10 AM
to 12 AM, fails the test of independence, showing a weak
linear dependence among inter-arrival times. The lower ARL
value (figure above) splits the interval into half, and breaks the
dependence. As a conclusion, we see that the ARL value needs
to be selected with some care, to balance between rejecting the
hypothesis due to too long sequences, and generating segments
that contain two few samples.

C. Analysis of the visiting time distribution

In this section we study the visiting time duration which
we define as a continuous time that the user is connected to the
same AP. Again, we consider only sessions that are limited in
time by the work day window of 10 hours, and we characterize
the visiting times at separate APs.

Previously established results indicate that the visiting time
at APs in a campus network is long-tailed [3], [5], [7]. As
shown in [15], phase-type distributions, and specifically, the
hyper-exponential distribution, provide suitable approximation.
After testing different number of phases, we found that for our
case the two-phase, that is, the H2 distribution provides the
best goodness-to-fit statistics. That is, we fit the visiting time
duration at an AP with the function fH2

= p1fY1
+ p2fY2

,
where p1 + p2 = 1 and Y1|2 are exponentially distributed
random variables with parameter λ1|2.

We apply the expectation-maximization (EM) algorithm
to estimate the parameters p1|2, λ1|2. To ensure a sufficient
sample size, still allowing the EM algorithm to converge, we
use visiting time samples from a single week. For APs with
very sparse samples we consider all four weeks, while for some
very busy ones only a single day. We do not model 17 APs
with less than 50 arrivals in the four weeks.

We find that at 880 out of 896 APs the visiting time
distribution can be modeled with H2 distribution with high
accuracy, as exemplified in Fig. 6. The average visiting times
for these APs are plotted in the top graph of Fig. 7(a), with the
parameters of the H2 distributions shown in the bottom graph:
the p1|2 values are represented by the heights of the bars and
1/λ1|2 values are color coded. We see that the connections can
be split in two groups, one with very short visiting times, in the
range of minutes, and another one with long visiting times, up
to a couple of hours. Short visiting times clearly correspond to
associations when the user is likely on-the-move or the device
is searching for a stable connection. Short associations are
present at all APs, often with high probability, which shows
the large penetration of handhold mobile devices.

The third group, counting 16 APs, observes visiting times
that can not be fitted with the proposed H2. Looking at the
plots of these distributions, we can identify three possible
reasons. First, a mismatch can be caused by excessively
long visiting times, which the exponential components do not
capture. An example is given in Fig. 7(b) (top) which compares
fitting of the empirical visiting time distribution, representing
samples of a single day, one-week and all-days associations.
The CCDFs of empirical and fitted H2 show that the fit for
this AP has a shorter tail than the empirical distribution. The
second reason for poor fitting is the occurrence of very short
associations; these associations are shorter than 20 seconds and
result from the mobility of users in a dense AP deployment.
Fig. 7(b) (bottom) shows the probability density of visiting
time distribution that falls into this category. Finally, a few APs
with many, dominantly idle users fail due to smaller peaks at
multiples of Tidle, while showing good fit otherwise.
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V. COMPARISON WITH PREVIOUS RESULTS

User access and association patterns have been investigated
both in university [3], [6], [7], [4], [16] and in urban WLAN
scenarios [5], [6], with network traces from 2003 to 2011,
demonstrating the changes in the network usage patterns. The
time-varying Poisson arrival process has been shown to be
accurate in many scenarios in [4], [5], [6]. In this work we eval-
uate the exceptions in detail, and conclude that the exponential
inter-arrival time assumption may need to be rejected due
to the re-association events triggered by infrastructure timers,
while the independence assumption may not hold due to users
arriving in a batch.

Association times are found to be Weibull distributed in [3],
in a campus trace from 2003, while biPareto distribution is
demonstrated already in [7]. Instead, [5] models the association
times with order 5 phase-type distribution in a large public
hot-spot trace from 2010. In our analysis, only a very few
APs showed heavy tail association times, and two-stage hyper-
exponential distribution provided an accurate model in most of
the cases, reflecting the presence of temporally static users and
users on the move [16]. The main reason for non-compliance
is the dominance of very short visiting times, most likely due
to users’ mobility in a dense AP deployment.

VI. SUMMARY AND DISCUSSION

This paper presents a study of access patterns in a univer-
sity wireless network, based on a relatively recent and pre-
viously unexplored wireless data measurement. We introduce
and describe a detailed methodology for processing Eduroam
traces, which are readily available in authentication servers
in wireless networks supporting Eduroam. The main contribu-
tions of our work are the characterization of user arrivals at the
network APs and the model of user visiting times. Our findings
are partially in accordance with previously established results
regarding the observed arrival processes at APs, which often
can be modeled with time-varying Poisson process; however,
we identify the cases and the reasons when the model is not
suitable. With respect to modeling user visiting time, we find
that in a large majority of APs, the visiting time distribution
can be fitted with two-stage hyper-exponential distributions,
reflecting the dominance of mobile and handheld devices in
the network.
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