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Abstract

In opportunistic networking, characterizing contact patterns between mobile
users is essential for assessing feasibility and performance of opportunistic ap-
plications. There has been significant efforts in deriving this characterization,
based on observations and trace analyses; however, most of the previously estab-
lished results were obtained by studying contact opportunities at large spatial
and temporal scales. Moreover, the user population is considered to be constant:
no user can join or leave the system. Yet, there are many examples of scenarios
which do not fully adhere to the previous assumption and cannot be accurately
described at large scales. Urban environments, such as smaller city districts, are
characterized by highly dynamic user populations. We believe that scenarios
with varying population require further investigation. In this paper, we present
a novel modeling approach to study operation of opportunistic applications in
scenarios where the population size is subjected to frequent changes, that is,
it exhibits churn. We examine two location-based content sharing schemes:
a purely opportunistic case and an infrastructure-supported content sharing
scheme, for which we provide stochastic models based on stochastic differential
equations (SDEs). We validate our models in five scenarios: a city area, subway
station, conference, campus, and a scenario with a synthetic mobility model
and we show that the models provide good representations of the investigated
scenarios.

Keywords: Opportunistic networks, churn, stochastic models, stochastic
differential equations, content sharing

1. Introduction

Opportunistic communication in urban areas is a promising solution for
infrastructure-free location-based services and content sharing. The topic of
urban opportunistic networking has resulted in a large body of research, with
a majority of studies basing their results on scenarios where a fixed number
of mobile users roams inside a closed area, following certain mobility patterns.
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However, the size of the geographical space where the communication happens
plays a significant role. As the region of interest shrinks—consider a small ur-
ban district, rather than an entire city—the assumption of a closed population
will no longer hold: there will eventually be users arriving into the area, staying
inside for a while and leaving. The population of users is no longer constant
and such a system is known as a system with open population (open system
in short), or in the networking parlance, a system with churn. Neglecting the
effect of churn in specific scenarios can be hazardous.

Understanding contact patterns between humans and modeling these pat-
terns realistically is essential for designing opportunistic communication schemes
and evaluating their performance. While the research towards this aim has
thrived over the past years, there has been little work considering opportunistic
systems with churn. In such systems, user population is in constant change, thus
previously obtained results (e.g. the distribution of inter-contact times) may not
be reliable. This study takes a step towards increasing our understanding by
characterizing user interactions in such dynamic systems.

Our initial work towards that aim has first been presented in [1]. Herein we
extend our study by investigating an additional scenario and providing more
detailed analysis. In particular, we examine the effects of node churn on oppor-
tunistic communication in the context of content sharing. By means of stochas-
tic differential equations (SDE), we model and evaluate two schemes: the first
scheme considers purely opportunistic communication and the second assumes
some fixed infrastructure. These scenarios set the scene for the modelling ap-
proach which, we envision, can be adapted for a variety of other applications.

The second objective of this study is to gain insights on how user heterogene-
ity can be tackled in a more tractable way than has been done before. Departing
from the traditional assumptions on the homogeneous contact patterns, the re-
cent modeling attempts have resulted in notable contributions such as the works
[2, 3]. In [2], the authors propose an analytic framework for evaluating perfor-
mance of delay tolerant networks in terms of delivery delays, allowing different
contact patterns for each pair of nodes in the system. The framework requires
exact knowledge of the connectivity properties in a specific scenario and it re-
lies on the exponential assumption for inter-contact times. More comprehensive
is the performance modeling framework of Boldrini et al. [3], assuming gen-
eral inter-contact times distributions. However, both frameworks are limited to
closed populations.

The main contributions of this study are the following:
• We establish stochastic models for two epidemic content spreading schemes

and we validate our models by means of simulation.

• We investigate five mobility scenarios including: realistic simulator-based
traces, two sets of real-life traces and synthetic mobility. Then, we an-
alyze the scenario-specific distributions of the contact rate and node so-
journ time, and we compare these empirical distributions with modeling
assumptions.
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• We study contact patterns in systems with churn and provide an approx-
imation of the contact rate for the system in the transient state.

• Based on the proposed modeling approach, we demonstrate an estimation
method for the system parameters.

This paper is organized as follows. In Section 2 we describe the first content
sharing scheme and present our modeling approach. Validation of this model
is given in Section 3. The model for the second opportunistic application is
developed in Section 4 and validated in Section 5. We review related work in
Section 6 and summarize our most important findings in Section 7.

2. Opportunistic location-based content sharing: distributed case
First we consider an opportunistic service for sharing geographically local-

ized contents. The service is targeted to mobile users in urban areas, where as an
example of content type one can think of local news, tourist information, trans-
portation schedules, traffic alerts, and the like. Content is geographically tagged
to the region of relevance either explicitly e.g. given a set of geo-coordinates of
a polygon that confines the region or the center and radius of the anchor zone
[4], or implicitly by specifying geographic areas such as "central train station".
Outside of the boundaries of the locale, content is considered irrelevant and will
not be distributed.

The area of interest is characterized by frequent user arrivals and departures.
We assume that mobile users are pedestrians equipped with mobile devices. Ap-
plications on user devices use services of a publish/subscribe middleware [5] to
publish new contents, or to find peers within communication range and down-
load or forward contents. Content can be classified into different distribution
channels, however for the purpose of our study, we assume all users are sub-
scribed to a single channel. Assume that initially there is a single user with a
content item who wants to share it with other users in the area, without support
of infrastructure. In addition to obtaining content, all nodes are willing to sup-
port further content spreading by contributing some amount of their resources
for a limited time. This results in a fully distributed, purely opportunistic con-
tent sharing scheme. This scheme employs the virtual storage effect [6], and has
also been referred to as floating content [7] or hovering information [8].

Users following certain mobility patterns will enter the area, move inside
for a while and eventually leave. Since their movements are not bounded to
the area, the feasibility and performance of such opportunistic scheme strongly
depends on user mobility and contact patterns.

We are interested in answering questions such as:

1. Under what conditions the content is likely to persist in the area (that is,
survive) for longer time, relying solely on the nodes’ capability to store the
content and forward it to other, intermittently encountered nodes?

2. What is the availability of the content, i.e. how many nodes currently carry
and share the content item, and how many others have downloaded it?
The modeling approach we propose herein provides answers to the posed

questions.
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2.1. Measuring node interaction
Before delving into modeling, let us define relevant contact metrics. For

characterizing closed systems, inter-contact time between specific node pairs
has become a standard metric for representing node contact patterns. In open
systems however, inter-contact times become immaterial as most node pairs
have none or few contacts. We instead define contact rates as follows.

Definition 1. Contact rate of a single node in an open system is defined as the
total number of contacts that the node established during its stay normalized by
its sojourn time, i.e. the number of contacts per unit time.

The mean contact rate of the system, c, is obtained from the individual
contact rates measured over a longer time interval. In particular, we denote by
cN the mean contact rate measured in a system with the average population of
N nodes.

Definition 2. Consider a snapshot of the system when the population equals
N . The total contact rate ΛN is given by ΛN = N

2 cN .

Definition 3. Pairwise contact rate η is the rate at which two arbitrary nodes
come into contact with each other.

The total contact rate alternatively can be represented via the rate ηN , as
ΛN = N(N−1)

2 ηN ≈ N2

2 ηN . Note that we use index N to indicate that rates ΛN

and ηN depend on the current population size.

2.2. Stochastic model
To study phenomena such as content survival and to find the probability

of this event, or to estimate the size of population that will carry the content,
we can observe a stochastic system comprising three populations: nodes that
currently carry and share the content, nodes that still have not obtained the
content and nodes that stopped spreading the content. The evolution of this
stochastic system can be analysed by considering stochastic processes of node
arrivals and departures and the contact process between nodes. However, mul-
tivariate stochastic systems often do not easily lend themselves to analysis, due
to multiple variables (in our case three) and many interacting factors that drive
transitions between states. A common approach for studying complex system
behaviour, which will also be utilized in our study, is by modeling by stochas-
tic differential equations [9]. This approach has been used in mathematical
epidemiology, where models are often referred to as compartmental models. Dif-
ferent population categories are called compartments and nodes within the same
compartment are considered indistinguishable from one another with respect to
their mobility and connectivity characteristics. By epidemic terminology, we
denote as susceptible nodes who have not obtained content, infected are nodes
who are still sharing the content, and those who have the content but are no
longer participating in spreading are denoted as recovered nodes. Thus, in our
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Figure 1: Division of the total population into three compartments: susceptible,
infected and recovered.

model we will have compartments of: susceptible (S), infected (I) and recovered
(R) nodes, Fig. 1. We will also refer to a content transfer event as an infection.

As a first step, we will introduce assumptions that allow us to consider the
content spreading as a Markovian process. Let us assume that nodes arrive to
the area according to a Poisson process with rate λ and that their sojourn time
inside is exponentially distributed with mean T = 1/µ. Upon arrival, all users
are initially susceptible. The system state at time t is ~X(t) = [S(t), I(t), R(t)]T .
To describe the system dynamics, we first need to consider all possible changes
from state ~X(t) to state ~X(t+ ∆t) in a small time interval ∆t. These changes,
denoted by ~∆X(t) are given in Table 1. During ∆t, a new (susceptible) node can
join the system, which results in arrival to the S compartment with probability
λ∆t. The total departure rates from the compartments are µS(t), µI(t), and
µR(t). We assume that the content item is small enough such that it can be
transferred in zero time. Probability β(t, ~X(t))∆t defines an encounter event
when a susceptible node becomes infected.

The rate of infection, β(t, ~X(t)) depends on the number of currently active
content spreading nodes I(t), the number of susceptible nodes S(t), and the
pairwise contact rate η (defined in Section 2.1). Denote by N(t) the total
number of users in the area, N(t) = S(t) + I(t) + R(t). In a dynamic system
where population is subjected to frequent changes, the contact rate c depends
on the population size: as it has been shown in [10], this dependence is linear for
a certain range of population sizes. Therefore, we will consider time-dependent
rates c(t) = c(N(t)) and η(t) = η(N(t)). We assume homogeneous mixing in the

Table 1: Population changes in a small time interval ∆t.

Possible change Probability

( ~∆X(t))1 = [1, 0, 0]T p1(t) = λ∆t+ o(∆t)

( ~∆X(t))2 = [−1, 0, 0]T p2(t) = µS(t)∆t+ o(∆t)

( ~∆X(t))3 = [−1, 1, 0]T p3(t) = β(t, ~X(t))∆t+ o(∆t)

( ~∆X(t))4 = [0,−1, 0]T p4(t) = µI(t)∆t+ o(∆t)

( ~∆X(t))5 = [0,−1, 1]T p5(t) = γI(t)∆t+ o(∆t)

( ~∆X(t))6 = [0, 0,−1]T p6(t) = µR(t)∆t+ o(∆t)

( ~∆X(t))7 = [0, 0, 0]T p7(t) = 1−
∑6

m=1 pm(t) + o(∆t)

( ~∆X(t))8 6= ( ~∆X(t))i=1,...,7 p8(t) = o(∆t)
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population and for the system in state ~X(t) we have β(t, ~X(t)) = S(t)I(t)η(t).
After substituting η(t) ≈ c(t)

N(t) , the rate at which susceptible nodes become
infected reads

β(t, ~X(t)) = S(t)I(t)
c(t)

N(t)
. (1)

When a node receives the content item, it sets a timer for how long it will
continue sharing content. Assuming an exponential timers with mean infective
time TE = 1/γ, the total recovery rate of infected nodes at time t is γI(t).
Note that the first infected node (publisher) is assumed to use the same timer.
Now that we have all transition probabilities, we can construct the SDE model.
We will use one of the methods described in [11]. The following SDE system
describes the dynamics of the content spreading:

dS(t) = [λ− β(t, ~X(t))− µS(t)]dt+ ~g1 ~dW (t)

dI(t) = [β(t, ~X(t))− (µ+ γ)I(t)]dt+ ~g2 ~dW (t)

dR(t) = [γI(t)− µR(t)]dt+ ~g3 ~dW (t)

~X(0) = [S(0), E(0), R(0)]T

(2)

where ~W (t) = [Wi(t)]
T
i=1,..,6 is a vector of six independent Wiener processes and

~gi=1,2,3 is the i-th row of the matrix

G(t, ~X(t)) =


√
λ

√
µS(t) −

√
β(t, ~X(t)) 0 0 0

0 0

√
β(t, ~X(t)) −

√
γI(t)

√
µI(t) 0

0 0 0
√
γI(t) 0

√
µR(t)

 . (3)

The SDE system (2) can be rewritten in the form:{
d ~X(t) = ~f(t, ~X(t))dt+G(t, ~X(t)) ~dW (t)

~X(0) = [S(0), E(0), R(0)]T
(4)

where the vector ~f(t, ~X(t)) is given by

~f(t, ~X(t)) =

 λ− µS(t)− β(t, ~X(t))

β(t, ~X(t))− (γ + µ)I(t)
γI(t)− µR(t)

 (5)

At the time when the content was first published there was a single infected
node in the area and S(0) = S0 susceptible nodes, thus the initial system state
is ~X(0) = [S0, 1, 0]T .

The solution to (4) gives the probability distribution p(t, ~x) which satis-
fies, [11]:

dp(t, ~x)

dt
=

1

2

3∑
i=1

3∑
j=1

∂2

∂xi∂xj

[
p(t, ~x)

6∑
k=1

gi,k(t, ~x)gj,k(t, ~x)

]
−

3∑
i=1

∂[p(t, ~x)fi(t, ~x)]

∂xi
(6)

Above, fi is the i-th entry of ~f and gi,j is the i, j entry of the matrix G. Eq. (6)
is known as the forward Fokker-Planck equation describing the time-evolution
of p(t, ~x).

6



(a) (b) (c) (d)

Figure 2: Topology of the simulation areas for: Östermalm (a), Subway (b), Open
RWP (c), Conference scenario (d).

3. Model validation and analysis

3.1. Mobility scenarios
Having derived the model which is based on rather favorable assumptions

(from the modeling perspective), we want to investigate how well it fits more
realistic mobility. To cover diverse cases, we consider four open system scenarios:
two scenarios with simulator-generated traces, a synthetic mobility model and
a real-life trace. Herein we give the most important details about the scenarios.

1. Legion mobility traces: For emulating realistic mobility, we use traces
generated with Legion Studio1, a multi-agent mobility simulator commonly used
for pedestrian traffic planning and public spaces design and dimensioning.

We recreate two scenarios2. The first scenario represents an outdoor urban
space, modeling a part of the downtown Stockholm, which we will further refer
to as the Östermalm scenario. The topology is represented by a grid of streets,
Fig. 2(a). There are fourteen streets (and eleven intersections) from where
pedestrians enter the area and depart; while inside the area, they are constantly
moving. The second scenario captures the movement of passengers in a subway
station. The simulation area comprises two levels: the upper, entry level and
the lower level with train platforms, which are connected by escalators, Fig.
2(b). Nodes can arrive either by walking in from one of the five entrance points
on the upper level, or when a train arrives at the platform. The mobility model
incorporates realistic behavior: nodes pausing in the coffee-shop and the store
at the entry level, queuing on the escalators, and congregating at the platforms.
A detailed description of these two scenarios can be found in [10].

2. Open random waypoint (RWP) [12] models nodes traversing a small con-
fined area such as a city square. The main difference between this form of
random waypoint and the traditional one is the varying population. Nodes en-
ter the area from one of the entrance points according to a Poisson process and
immediately start moving towards a randomly chosen point inside. Upon reach-
ing a waypoint, the node decides either to leave the area, with probability Pexit,

1Legion Studio software http://www.legion.com/legion-studio.
2Traces are available at http://crawdad.org/kth/walkers.
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Table 2: Scenario parameters: Distributed content sharing.

Östermalm Subway Open RWP Hope
λ [s−1] 0.43 1.04 0.20 0.062
T [s] 354 195 261 965
TE [s] 150 60 150 200
cN [s−1] 0.102 1.04 0.070 0.102

by choosing (uniformly in random) one of the exits as its next waypoint, or
chooses a new waypoint inside. The area in our setup is rectangular, with size
100 m by 200 m and there are four entrances (exits), one at each corner, Fig.
2(c). The exit probability is 0.75. Nodes travel at speed of 1 m/s, without
pausing between two consecutive waypoints.

3. Conference scenario: To create an open, trace-based mobility model, we
use mobility traces collected at the HOPE conference in 2008 [13]. The traces
contain positioning data of attendees roaming on two floors of the conference
hotel. We focus only on the floor where attendees exhibited higher mobility
(roaming between a registration desk, exhibition area, commercial stands and
similar). By extracting an hour-long sample, we obtain mobility details of 233
attendees. Fig. 2(d) depicts the floor plan and the locations of the elevator and
escalators, where attendees could access or exit the floor.
3.2. Evaluation

In this section we validate our model via simulations, and we analyze the
results and the model’s applicability and limitations. To simulate the mobility
scenarios, we use the ONE simulator [14]. In the simulations, we limit the
transmission range for Östermalm and Open RWP to 10 m and for Subway and
Hope to 5 m, assuming that communication in outdoor scenarios has longer
range as compared to indoor scenarios. Since the time granularity of the Hope
dataset is 30 s, the actual node positions between two consecutive snapshot
locations were interpolated as if the nodes were moving at a constant speed. In
the Hope trace, some users are already in the system at time t = 0, while in the
other three scenarios, initially, the system is empty. For computing the scenario
parameters (listed in Table 2), we discard measurements from the warm-up
period, whose length we determine by applying Welch’s method as described in
[15]. We also use the calculated length of the warm-up period as a starting time
for simulations, since we assume the system was in the steady state when the
content was published.

First, we look into the average arrival rates for susceptible users, λ. The
Östermalm trace was generated such that both ends of each intersecting street3
feed the area with Poisson arrivals with rate of 0.04 s−1. Likewise, the Open
RWP generated arrivals with rate 0.05 s−1 at each of the corners. From Little’s
law, which for the average number of nodes reads N̄ = λT , we compute the
arrival rates: 1.04 and 0.062 s−1 for the Subway and Hope scenario, respectively.
Table 2 details other parameters: the average sojourn times T and the contact
rate cN .

3Note that there are eleven entrance points and fourteen streets.
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Figure 3: Simulated content sharing process and one sample path of the stochastic
model: Östermalm (a), Subway (b), Open RWP (c), Conference scenario (d).

We simulate the stochastic process ~X(t) by plugging the computed values
into Eq. (4) and plot the results in Figs. 3 and 4. The system evolution over time
is plotted in Fig. 3 and we observe that the modeled processes behave similarly
to those simulated from the traces in the Östermalm, Open RWP and Hope
scenarios. Our model accurately predicts the initial content spreading phase
with respect both to the size of the infected population and the time it takes
to reach that level of infection. The model also provides a good estimation for
the size of stochastic fluctuations; this is an improvement from a deterministic
approximation of the process, which would give only steady state population
distributions. In the Subway case, the model captures the decreasing trends in
the number of susceptible nodes, as well as the increase of the recovered node
population, but is unable to account for the burstiness of node arrivals and
departures when a train arrives.

Next, we compare the simulations with the analytic results with respect to
the estimated number of nodes of each type. Fig. 4 shows the median values
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(central marks in the boxes), as well as the 25th and 75th percentiles (edges of
the boxes), and the distribution outliers (cross marks) for the numbers of sus-
ceptible, infected and recovered nodes, and the total population size. The black
boxes represent the simulation results and the blue ones represent the model.
The model yields accurate estimations in all scenarios, slightly overestimating
the number of susceptible nodes for Östermalm and Hope trace (which is still
useful as a prediction of the performance lower bound).
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Figure 4: Susceptible, infected, recovered and the total number of users: simulation
results (black) compared with the analytic results (blue).

3.3. Model limitations
Since the model assumes constant arrival rate λ, batch arrivals, such as those

manifested in the Subway scenario, cannot be captured. Large batch arrivals
(and departures) of size 30 to 50 users are frequent: they can be identified
as peaks in Fig. 3(b). Although these short-lived events have an impact on
variations of node population distributions, we can still obtain a reasonable
estimation of the average numbers of each node type (measured over several
minutes). In cases where variable arrival rates had to be taken into account,
such requirement would modify Eq. (2) to allow for time-dependent λ(t) (in the
Subway case evidently periodic). This is however out of the scope of this study.

To summarize our first findings, we have shown that our model efficiently
counts users of different types in a varying population, and can be applied in
various mobility scenarios. The model relies on the Markovian property for
user sojourn times and the assumption of the Poisson arrival process—such
assumptions are the norm for analytical work, since modeling based on looser
assumptions easily gets more complicated or even intractable. Nevertheless, our
model still yields a reasonably good match with the simulations. To investigate
how justified the previous assumptions are, in the next section we take a closer
look at the properties of the examined traces.

3.4. Revisiting modeling assumptions
3.4.1. Contact rate distribution

We use the Kolmogorov-Smirnov (K-S) statistical test to compare the em-
pirical contact rate distributions with standard probability distributions: log-
logistic, logistic, log-normal, Gamma andWeibull distribution. The parametriza-
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Table 3: K-S statistics for distributions fitted with empirical contact rate distributions

Scenario Distribution Value
Östermalm Log-logistic 0.018

Subway Log-logistic 0.019
Log-normal 0.015

Open RWP
Log-logistic 0.038
Logistic 0.024
Weibull 0.038

Hope

Log-logistic 0.051
Logistic 0.090
Gamma 0.086
Weibull 0.079

tion of the reference distributions is based on the maximum-likelihood estima-
tion and the results are given in Table 3 (lower value of K-S statistic indicates
better fit). Fig. 5 shows only those distributions for which the null-hypothesis
was not rejected by the K-S test. Log-logistic distribution proves to be a good
fit for all empirical distributions. This distribution features a narrower peak and
a heavier tail than the other tested distributions, which signalizes that nodes
exhibit similar connectivity properties—a large fraction can be regarded as ho-
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Figure 5: Contact rate distributions: Östermalm (a), Subway (b), Open RWP
(c), Conference scenario (d).
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mogeneous to some extent—but there are also "more social" nodes with higher
contact rates.

3.4.2. Homogeneous mixing
The assumption on homogeneous mixing implies that all susceptible nodes

are equally likely to be in potentially infective contact. Such assumption is
obviously too lax in the beginning of the epidemic process: nodes that establish
more contacts are more likely to contract the infection. However, after the
content has been present in the population for some time, nodes’ mobility will
contribute to more spatially uniform spread of content. This can be recognized
as a drop in the number of susceptible nodes (Fig. 3), which is sharper for the
model-generated path than the for simulation results.

3.4.3. Sojourn time distribution
Fig. 6 depicts the sojourn time distributions for the four scenarios. Clearly,

only in the Hope trace node sojourn times appear to be exponentially dis-
tributed. K-S test with the the statistics of k = 0.055 verified the assumption
of exponentially distributed sojourn times. For other scenarios, the figure also
shows hypothesized distributions, which however were all rejected by the K-S
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Figure 6: Distribution of node sojourn time: Östermalm (a), Subway (b), Open
RWP (c), Conference scenario (d).
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test. Empirical distributions implicate that nodes stay longer than assumed,
which results in a higher number of recovered nodes.

3.4.4. Node heterogeneity
In previous sections, we observed that nodes exhibit heterogeneous connec-

tivity, however, in the investigated scenarios, the average metrics seem to be
sufficient to describe the system behaviour. This may not be the general case.
In particular, when there is a significant variability in contact rates, contacts
between infected and susceptible individuals will initially be more frequent than
predicted by homogeneous-mixing models.

3.4.5. Discussion
Since our scenarios are characterized by moderate node heterogeneity, the

model has not exposed itself as sensitive to exact distributions and their devi-
ations from Markovian assumptions. We have noticed however, that in order
to achieve good fit with the simulation results, it is of utmost importance to
accurately estimate the parameters, particularly the contact rate. Given the
large number of nodes in all scenarios, inaccuracy in contact rate estimation
will result in the miscalculation of the infection rate, which is essential for pre-
dicting the course of the content spreading, as well as the final sizes of different
sub-populations.

3.5. Probability of content survival
For the content to survive in the area, it is crucial that the publisher first

meets enough nodes and replicate the content, and that, subsequently, other
infected nodes continue spreading it. Due to the probabilistic nature of node
contacts, it may happen that all nodes with content either leave the area or
stop spreading the content; in that case no further spreading is possible and the
content is lost. Probability of such events depends on the frequency of contacts,
as well as the number of nodes in the area (occupancy) and the infectious period.
However, contact rate and occupancy cannot be engineered. The only remaining
parameter is the length of the infectious period TE , that is, the time that nodes
are willing to allocate their resources in support of content spreading. In the
most generous case TE would equal the node’s sojourn time. The objective of a
node, expectedly, is to minimize its own cost, while still supporting the system.
Thus, for the contents to survive, or to achieve a certain level of availability
measured as the number of nodes that have obtained the content, TE should be
chosen appropriately.

In a deterministic model, content spreading definitely occurs as soon as there
is at least one node with the content. In a stochastic model, the content may
disappear before it reaches enough nodes to support new infections. We are
interested in finding the probability of content survival. Although there are
available methods for approximating the spreading process during its early stage
(e.g. as a birth-death process), for our model such approximations become
non-trivial, due to the state-dependent infection rate and existence of recovered
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nodes. We resort to simulating the processX(t) to find the empirical probability
of content survival, plotted in Fig. 7 (we show only results for the Östermalm
case). At a certain threshold for the timer T th

E (around 100 s), the probability
of survival reaches 0.8 and increases only marginally beyond that threshold.
Thus, above the threshold T th

E , content is equally likely to survive, whereas the
availability of content still depends on the value TE .
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Figure 7: Probability of content survival as a function of the infectious period.

4. Opportunistic content sharing with infrastructural support

Earlier, we have assumed that the system parameters (user arrival rates,
sojourn times and contact rates) were known. In this section we present an ex-
ample application, a tool which can be used to gather mobility and connectivity
data about users in the observed area. We do not address the technical details
of the application, but merely propose the concept of how the data collection
can be realized.

The communication scheme we consider is infrastructure-supported oppor-
tunistic content spreading. The setup is similar to the distributed case in Sec-
tion 2: nodes arrive to the area, spend some time inside and eventually leave;
additionally, a stationary node—access point—is deployed in the area. The
publisher here is the access point, which is able to reach only a fraction of the
mobile population that can be found in the access point’s vicinity. Nodes that
obtain contents from the access point, due to their mobility and by means of
opportunistic communication, extend the content availability in the rest of the
area. Further, mobile nodes are able to determine their approximate position
(e.g. from GPS coordinates or by WiFi triangulation methods).

The access point publishes content of relevance for larger audience (e.g.
weather updates, news, or announcements). We can assume that all nodes
traversing the area are interested in obtaining content, which is done through an
application that also collects logs about content dissemination. The application
imposes little intrusion on the user privacy, collecting only the timestamps when
the content was downloaded and when the user departed from the area, as well
as the number of encountered users. The content itself can be regarded as
accessible for download only within the locale, which could be one of the ways
to incentivize users to collect and contribute their measurements.
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Table 4: Population changes in a small time interval ∆t.

Possible change Probability

( ~∆X(t))1 = [1, 0, 0]T p1(t) = λp∆t+ o(∆t)

( ~∆X(t))2 = [−1, 0, 0]T p2(t) = µpP (t)∆t+ o(∆t)

( ~∆X(t))3 = [0, 1,−1]T p3(t) = β(t, ~X(t))∆t+ o(∆t)

( ~∆X(t))4 = [0,−1, 0]T p4(t) = µuS(t)∆t+ o(∆t)

( ~∆X(t))5 = [0, 0, 1]T p5(t) = λu∆t+ o(∆t)

( ~∆X(t))6 = [0, 0,−1]T p6(t) = µuU(t)∆t+ o(∆t)

( ~∆X(t))7 = [0, 0, 0]T p7(t) = 1−
∑6

m=1 pm(t) + o(∆t)

( ~∆X(t))8 6= ( ~∆X(t))i=1,...,7 p8(t) = o(∆t)

The data gathering application operates as follows. Whenever a new user
arriving to the area passes by an access point, which is located at some of the
entrance points, the user will receive the content. This user will be denoted a
primary infected user. The application on the access point logs user details with
the time of arrival and the location of the node’s entrance point. While infected
users roam inside the area, they will meet uninfected users and forward the
content. Upon such event, the uninfected become secondary (infected) users4.
The application on the newly infected node then sends to a server (e.g. via
cellular network) timestamp of the new infection event. There will be a number
of users who do not meet any infected users during their stay, and eventually
leave the area without finding the content. We label these as unreached users
(also uninfected). Infected users, primary and secondary, will continue spreading
the content, and count the users they encounter—both infected and previously
uninfected. Finally, when an infected user leaves the area, the user application
again uploads information about the user: the exit location, departure time and
the measured number of encounters; these new data is matched with the time of
infection for each infected user. Optionally, the application can periodically send
collected measurements while the user is still in the area. As we will describe
later, the encounter information will be used to compute contact rate between
users.

With this method, we can also answer the following:

1. What is the number of users currently residing inside the area, and how
does this number vary over time?

2. How many users cannot be reached by this content sharing scheme?

Unlike in the purely opportunistic case, in this scenario there is no risk of
irreversibly losing the content. As long as there is an inflow of infected users to
the area, if the content vanishes from the area, i.e. when all infected users have
left the area, the content will be re-injected with an arrival of a user infected by
an access point.

4We will interchangeably use the short and the full denotation.
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4.1. Model
We want to estimate the number of users, which can be one of the three

aforementioned types, their sojourn times and contact rate of users in the areas.
Denote by P (t) the number of primary infected users, by S(t) the number of
secondary infected5, and by U(t) the number of unreached users at time t. Let
us assume that primary users arrive to the area according to a Poisson process
with rate λp and that their sojourn time inside is exponentially distributed with
mean Tp = 1/µp. Assume also that the total arrival rate of all other (non-
primary) infected users is λu. The sojourn time of both the S and U type
comes from the same distribution with mean value Tu = 1/µu

6. Then, arrivals
to the area constitute a Poisson process with the total rate λp +λu and all node
sojourn times are exponentially distributed.

The system state at time t is ~X(t) = [P (t), S(t), U(t)]T ; it is not fully ob-
served since we do not know the number of unreached users U(t). We can how-
ever infer their approximate values by modeling the system dynamics, governed
by stochastic processes which include arrivals, departures and transitions from
uninfected to secondary infected users. Transitions between the compartments,
as well as the external arrivals and departures in the model are illustrated in
Fig. 8.
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Figure 8: Compartmental model with transition rates.

Similarly as in Section 2.2, we find all possible state transitions in ∆t (Ta-
ble 4). An arrival can occur either in the P or U compartment with probabilities
of these events λp∆t and λu∆t, respectively. The total departure rates from
the three compartments are µpP (t), µuS(t), and µuU(t). An unreached node
becomes secondary infected with rate β(t, ~X(t)) (transition U → S). This is,
again, the rate of infection, which herein is a function of the total number of
infected users, I(t) = P (t) + S(t), the number of unreached users U(t), and the
contact rate c(t), β(t, ~X(t)) = I(t)U(t) c(t)

N(t) .
Following a similar approach as in Section 2.2, we get the SDE system:
5Remark that S here stands for (secondary) infected users, not for susceptible users as in

Section 2.
6For the purpose of modeling, we allow different sojourn times Tp and Tu, but it is

justifiable to assume Tp = Tu.
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dP (t) = [λp − µpP (t)]dt+ ~g1 ~dW (t)

dS(t) = [β(t, ~X(t))− µuS(t)]dt+ ~g2 ~dW (t)

dU(t) = [λu − β(t, ~X(t))− µuU(t)]dt+ ~g3 ~dW (t)

~X(0) = [P (0), S(0), U(0)]T

(7)

keeping the same denotation for ~W (t) and ~g as in Eq. (2), whereas the matrix
G(t, ~X(t)) is given as

G(t, ~X(t)) =


√
λp

√
µpP (t) 0 0 0 0

0 0

√
β(t, ~X(t))

√
µuS(t) 0 0

0 0 −
√
β(t, ~X(t)) 0

√
λu

√
µuU(t)

 . (8)

The initial state ~X(0) is (partially) known. Expression (7) can be shorten as:{
d ~X(t) = ~f(t, ~X(t))dt+G(t, ~X(t)) ~dW (t)

~X(0) = [P (0), S(0), U(0)]T
(9)

where the vector ~f(t, ~X(t)) is now given by

~f(t, ~X(t)) =

 λp − µpP (t)

β(t, ~X(t))− µuS(t)

λu − β(t, ~X(t))− µuU(t)

 . (10)

Note that although Eqs. (2) and (7) appear to be similar, the main insights
into the system behaviour can be obtained from the Eq. (6).

5. Evaluation

Now we validate the second model and in addition to the previously used
traces, we use one more real-life trace.

Figure 9: Simulation area for the Campus scenario.
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Campus scenario: This dataset comprises mobility traces collected from a
campus-wide WLAN. We concentrate on mobility inside a student union build-
ing (Fig. 9) and extract 1.5 hours of associations. The wireless network inside
the building comprises of 28 access points located on three floors. The sampled
trace captures movement of total 442 wireless network users over the observed
period, with the average occupancy of 82 users. Users can leave the area and
return later: we consider such users as new arrivals, rather than returning users.
Since we do not have exact positions, nor the contact traces of users in this set,
we assume that two users are able to establish contact when associated with the
same access point.

5.1. Model validation
In each scenario, there is a single access point located as depicted in Fig. 2

(a)–(d) and Fig. 9. We keep the same transmission ranges as in the previous
simulations (10 m for indoor and 5 m for outdoor scenarios). Access points have
the same transmission range as mobile nodes. The area of the Campus trace
is a multi-floor building. When simulating this scenario, we choose an access
point that is located near one of the entrances.

We first estimate the average arrival rates for primary users, λp. In the
Östermalm and Open RWP trace these rates represent arrivals at one of the
entrance points, thus their values are 0.04 s−1 and 0.05 s−1 (see Section 3.2).
Applying Little’s law to the average number of primary users P̄ = λpTp, we
compute the arrival rates: 0.195, 0.012 and 0.010 s−1 for the Subway, Hope
and Campus scenario. Similarly, from the simulation results we find the ar-
rival rates for non-primary users λu: 0.424, 0.956, 0.150, 0.049 and 0.072 s−1.
When computing the contact rate cN , in order to achieve higher confidence,
we utilize the encounter information both from primary and secondary infected
users. The contact rate measured by a secondary user is then the number of
encounters normalized with its sojourn time in the S state. Note that in the
model validation step all parameters were computed offline. Parameters for the
five scenarios are summarized in Table 5.

It can be interesting to study the stochastic process in Eq. (9) in the tran-
sient state. In three scenarios, the system starts from an empty state; thus,
before reaching the steady state, the average contact rate will be lower than cN .
Since we can measure only the contact rate cN , we will introduce a heuristic
approximation c(t) = cN

N(t)2

2N2 for the contact rate in the transient state, while

Table 5: Scenario parameters: Infrastructure-supported content sharing.

Östermalm Subway Open RWP Hope Campus
λp [s−1] 0.040 0.195 0.050 0.012 0.010
λu [s−1] 0.424 0.956 0.150 0.049 0.072
Tp [s] 360 188 266 1016 489
Tu [s] 307 191 259 954 980
cN [s−1] 0.102 1.04 0.070 0.102 0.039
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Figure 10: Simulated counting process and one sample path of the stochastic model:
Östermalm (a), Subway (b), Open RWP (c), Conference scenario (d), Campus (e).

19



in the steady state, the contact rate is calculated as c(t) = cN
N(t)
N . Note that, in

a real deployment, the population size estimation would not be possible without
any prior knowledge of system parameters, e.g. the expected contact rate in the
observed area. The estimation requires an initial data acquisition period, whose
length depends on the arrival rates and sojourn times. Once we have obtained
the contact rate for a specific setup, this estimation will be readily available
for future uses: for example, if we wanted to model the occupancy of the space
during different times of the day.

Now we compare the simulation results for the system evolution with the
analytic predictions of the stochastic process ~X(t). The results are depicted in
Fig. 10. For the Östermalm, Subway, Open RWP and Hope scenario we simulate
realizations of the content spreading directly from Eq. (9). For the Campus
scenario, after the initial tests we recognized that a minor modification in the
system equation is required. Namely, we noticed that the analytic expression
Eq. (7) for the Campus trace predicts much faster spread of infection than what
was observed from the simulations. The cause of this discrepancy is the overly
optimistic estimation of the infection rate β(t, ~X(t)). Relying on the assumption
of homogeneous mixing, the infection rate incorporates the possibility that a
pair of any two users (where one is infected and the other is not) in the entire
population currently roaming in the area, is equally likely to establish a contact.
By examining the trace, we found this assumption insupportable: not just that
users do not mix homogeneously, they appear to be spatially separated into
groups and only some users roam from one group to another. As a result of
such mixing, the infected nodes will be more likely to meet other infected users
and contribute less to the spreading. Thus, the infection rate has to be scaled
down to represent sparse mixing. We arrive at a new expression for the infection
rate:

β(t, ~X(t)) = I(t)
U(t)

κ

c(t)

N(t)
, (11)

where κ is introduced as a scaling factor. For the campus trace, we found
empirically that with κ = 8, Eq. (11) approximates the infection rate observed
in simulations. Returning to the Fig. 10, we observe a quite good match between
the modeled and the simulated processes in the Östermalm, Open RWP and
Hope scenarios. First, observe that the model accurately predicts the system
behavior in the transient state, matching the duration of the transient period,
and the population size changes for all user types. In the steady state prediction
works equally well, except for the Subway trace were the model is again unable
to cope with non-Poissonian arrivals but it accurately captures the average
numbers of different user types.

Looking at the population distributions for the primary, secondary, un-
reached users and the total population size (Fig. 11) the model achieves good
predictions in all scenarios, slightly overestimating the number of unreached
users for Östermalm, Open RWP and Campus traces, and underestimating their
number in the Subway case. These numbers are low in all cases, ranging up to
several users: due to the high node density, in the simulations there are very
few (in fact, close to zero) users who never meet anyone.
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Figure 11: Primary, secondary, unreached and the total number of users: simulation
results (black) compared with the analytic results (blue).

5.2. New findings
In this section, we validated another example of an epidemic-like, oppor-

tunistic content sharing scheme, which can be modeled by our SDE modeling
approach. We also discovered that neglecting the heterogeneity of contacts can
give misleading results. However, in certain cases such as the Campus scenario,
heterogeneous mixing can be approximated by introducing a scaling parame-
ter when calculating the infection rate. This minor modification to the model
comes at a cost of estimating the best-fit scaling parameter for the scenario in
hand, but it also brings the advantage of using a relatively simple and tractable
model.

5.3. Application
Now that we have a better understanding of when and how the model can

be applied, we revisit one of the initial objectives to estimate the number of
unreached users, U(t).

Since the application logs the arrival and the departure times, as well as P (t),
the arrival rate λp and the departure rate µp can be readily computed. Likewise,
the average time a node spends as a secondary infected user can be found from
the node’s infection and departure timestamps. The remaining challenge is
to estimate the arrival rate λu. To this end, we use approximate Bayesian
computation (ABC) implemented in the abc-sde software tool [16, 17]. ABC is
a "likelihood-free" methodology for Bayesian inference, particularly suitable for
models with intractable or computationally demanding likelihood function, as
well as partially observed models, like the one we consider. ABC takes as input
a (partially observed) trajectory sample and estimates the model parameters by
targeting an approximation to their posterior distributions (with respect to the
observed sample). Our goal is to estimate a single parameter, λu. The method
is not restricted to inference of a single unknown parameter, but can be used
for a set of parameters; this however becomes more computationally expensive
and less reliable for partially observed systems.

For the Campus scenario we use a 200 s long sample and for all other scenar-
ios, a 150 s long sample Y (tn) = [P (tn), S(tn)]T , n = 1, ..., Ns, Ns ∈ {150, 200}
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and run the estimation algorithm. The estimated arrival rates are: 0.329, 0.914,
0.126, 0.055 and 0.078 s−1. Compare these rates with the corresponding λu from
Table 5: while we have very accurate estimations for the Subway and the Hope
scenario, in the Östermalm case underestimating λu results in the difference of
16 users (out of around 151 in the system) during the observed time interval.
Nevertheless, an approximate estimation can be sufficient to determine the pa-
rameter space, and then iteratively improve the estimation by fine tuning. This
is done by simulating the counting process ~X(t) with the estimated parame-
ters, and then comparing the simulation results for the number of primary and
secondary users with the measured data. In this way, it can be easily inferred
whether the actual arrival rate is higher or lower than the estimated value; this
inference is subsequently used to iterate simulations until the simulated process
is fitted to the measurements.

6. Related Work

This paper revisits an epidemiological approach to model opportunistic mes-
sage spreading, and presents new findings in opportunistic contact characterization—
specifically when considering user population with churn—and we position our
work with respect to these contributions.

Modeling spread of messages in mobile ad hoc networks inspired by the
spread of infectious diseases between humans was first applied to epidemic rout-
ing in [18]. This approach has been further extended in [19], where the authors
proposed a framework for studying a variety of epidemic routing schemes. Their
common starting point is the use of ordinary differential equation models in per-
formance evaluation. Following these studies, there has been a wealth of work
considering various content spreading schemes through the deterministic ap-
proximations of Markovian chains representing content epidemics. While the
deterministic models can be useful for estimating important characteristics of
epidemics (e.g. conditions under which they occur, the rate at which they grow,
the expected number of infections in equilibrium), such models become unreli-
able when the population is small, and the process exhibits stochastic fluctua-
tions that cannot be neglected. Furthermore, ignoring the stochastic nature of
an epidemic, such models are unable to provide information about other impor-
tant features of the dynamics, including the size of fluctuations in the number of
infected individuals and the possibility that fluctuations will result in extinction
of the infection.

We resort to the field of mathematical epidemiology, and adopt the stochastic
differential equation (SDE) modeling approach. There, the SDE approach has
already produced a substantial amount of work, encompassing studies on both
open and closed populations, different disease transmission patterns, derivation
of the stability conditions and so on [20]. To the best of our knowledge, our
approach is the first to propose the use of SDE models for opportunistic networks
analysis.

Characterization of node interactions in open opportunistic systems is a
relatively new topic. An empirical study on the impact of pedestrian mobility
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on connectivity in wireless systems was presented in [10]. Implications of the
population churn on the system performance have been investigated in [7, 12];
while these works consider a particular content sharing scheme, our aim is to
provide models which can be adapted to various use-cases.

Heterogeneity has been recognized as one of the important features to pro-
duce realistic scenarios. We show for a range of mobility scenarios and two
communication schemes that a detailed overview of nodes’ contact patterns is
not essential and can be represented by measuring average contact rate of nodes.
We however refrain from ascertaining that this would hold in general: some rout-
ing schemes, for example, explicitly exploit node heterogeneity to find the best
candidates for fast and resource-efficient delivery. Capturing contact rate vari-
ability for such purposes is advantageous. Spyropoulos et al. show in [21] how
heterogeneity can be introduced by separating nodes into different communities.
As we have seen, it is enough that nodes in a community share similar proper-
ties. Thus, heterogeneous population can be subdivided into a small number of
distinct communities; some nodes may belong to multiple communities, acting
like bridges between those.

7. Conclusion

In this paper we studied the operation of two opportunistic content shar-
ing schemes in systems with varying population. The schemes—a completely
distributed scheme and a scheme which incorporates infrastructural nodes—
deploy epidemic-style content spreading. By using the stochastic differential
equations modeling approach, we developed models for the operation of these
schemes. We analyzed the models, validated them against both synthetic and
real-life mobility traces, and we demonstrated that the models prove to be a
good match for the examined scenarios. Since the scenarios have quite diverse
features, we believe that the modeling approach is suitable for a broad range
of applications, under certain assumptions on the user mobility behavior and
connectivity properties.
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