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The emerging device-to-device communication solutions and the abundance of mobile applications and

services make opportunistic networking not only a feasible solution, but also an important component of

future wireless networks. Specifically, the distribution of locally relevant content could be based on the

community of mobile users visiting an area, if long term content survival can be ensured this way. In this

paper we establish the conditions of content survival in such opportunistic networks, considering the user

mobility patterns, as well as the time users keep forwarding the content, as the controllable system parameter.

We model the content spreading with an epidemic process, and derive a stochastic differential equations

based approximation. By means of stability analysis we determine the necessary user contribution to ensure

content survival. We show that the required contribution from the users depends significantly on the size of

the population, that users need to redistribute content only in a short period within their stay, and that they

can decrease their contribution significantly in crowded areas. Hence, with the appropriate control of the

system parameters, opportunistic content sharing can be both reliable and sustainable.
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1 INTRODUCTION
Smart mobile hand-held devices with high quality screens and various sensors lead to the extreme

popularity of mobile applications. Traditionally, these mobile applications use the cellular infras-

tructure, however, the emergence of standardized device-to-device communication solutions in

licensed [4] as well as in unlicensed spectrum [7], the cost of accessing the fixed infrastructure [46],

and the expected spectrum scarcity [10] open up the way towards opportunistic networks, where

mobile services are provided without infrastructure support [45]. While opportunistic communica-

tion has the clear advantage of spectrum efficiency and independence from the fixed infrastructure,
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the feasibility and viability of the solution depends on two fundamental questions: can the commu-

nity of the mobile users ensure the required application performance (e.g., connectivity or content

spreading), and is the required contribution from the users low enough, so that they are willing to

participate?

In this paper we address a specific kind of opportunistic networks where content is shared for

location based services. The service is targeted to mobile users in urban areas, and can aim for

spreading information, such as of local news, tourist information, transportation schedule or traffic

alerts [45], or for forming opportunistic social networks in transient communities [21]. In these

systems the dynamically changing user community provides a virtual storage system, and the

scheme is feasible if content can survive in the area for a long time. We approach the question

of feasibility utilizing the framework of stochastic epidemic modeling [44]. For epidemic models,

the main concern is to find conditions under which an infection introduced into the community

will develop into a large outbreak, and if it does, to find the conditions under which it will become

endemic—able to persist in the population: a direct analogy of the content survival.

We introduced the epidemic model of content sharing in [36, 37], including the Markovian system

model and its stochastic differential equations (SDE) based approximation. We demonstrated that

this stochastic framework is flexible enough to capture the dynamics of content sharing in a

changing user population across diverse mobility scenarios, while abstracting away the intricate

heterogeneity of user contact patterns. In this paper we extend the modeling, analysis and validation

of the content spreading scheme by focusing on the scheme’s operation at the limit of feasibility.

Our results show that the tractable epidemic model approximates well the main operating regions

of the content sharing system, and can be used to tune the system parameters such that long-time

content sharing becomes feasible. The results demonstrate the viability of opportunistic content

sharing, showing that the contribution required from the individual mobile users is rather limited,

but also prove the importance of adaptive schemes that can minimize the user contribution under

changing population size.

The remainder of this paper is structured as follows. Section 2 reviews relatedworkwith respect to

both applications and modeling. In Section 3 we describe the opportunistic content sharing scheme

and present preliminaries on the system model. Section 4 gives detailed analysis of the system

stability, with the conditions for content extinction and persistence. We validate the proposed model

and the analytical results by comparing the results of trace-based simulation of content spreading

with the corresponding model. Simulation results and discussion are provided in Section 5. Finally

Section 6 provides our final remarks.

2 RELATEDWORK
This paper addresses the feasibility of location-aware opportunistic content sharing. For assessment,

we utilize epidemic models of information spreading and therefore position our work relative to

both the application and the modeling approach.

A number of platform and system proposals for sharing ephemeral, localized content have

recently emerged, mainly in the vehicular networking field. Most relevant to our work, as they

consider information sharing in the wireless domain, are the hovering information [8, 49], and

floating content [20, 35] concepts, and the vehicular ad hoc mesh network specific solutions [26,

30]. In [8], the authors define resource efficient algorithms for information sharing and evaluate

information survivability and availability via simulations, [30] investigates, by means of simulations,

content longevity in a distributed vehicular network, while [26] implements an adaptive algorithm

to ensure content survival in a changing environment.

The studies on floating content model the feasibility of information spreading utilizing percolation

theory, considering both static [18] and dynamic networks [19], and [33] follows a similar approach
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to model disease propagation in social networks. Percolation theory provides tractable models,

however, also has some limitations. While being able to accurately predict the final-state—the

expected size of the epidemic [33], it does not capture the temporal dynamics of the content

spreading process and requires the knowledge of contact patterns between nodes.

In static computer networks, graph-based models of information spreading are proposed to study

propagation of computer viruses over static graph structures [11, 48]. Representing the spread of

epidemics with a continuous time markov chain (CTMC), these works show that the epidemic

spread can be characterized through the spectral radius of the adjacency matrix. There is less

understanding on how to model networks where connectivity changes in time [17], like in the case

of mobile opportunistic communication. Network models with time-varying adjacency matrix are

introduced for example in [38, 41]. This solution allows the derivation of theoretic results for basic

graph structures, but becomes untractable for large systems, and requires the exact knowledge of

the changes of node connectivity.

An alternative approach, which is the starting point of our modeling procedure, is to model

the evolution of information spreading via compartment based models, where each individual

belongs to one of the classes—compartments—of susceptible, infected or recovered, and individuals

within a compartment are indistinguishable from each other [6], assuming so-called homogeneous

mixing. Extensions to include some heterogeneity in the compartment model are suggested in

[5, 22, 40]. In compartment models, the system state transitions are as well governed by CTMCs,

and the state space grows quickly as the population increases. Therefore, approximate solutions

are proposed to evaluate the system performance, based on branching processes [6], ordinary

differential equations [5], or fluid approximation [12].

In this paper we follow a different path, and model the information spreading with a diffusion

process, described by first order SDEs, using the methodology proposed in [1, 13]. SDEs model

short term system randomness, and therefore can capture the behaviour when the population of

some of the compartments is small—a necessity for the accurate modeling of the survival of an

epidemic. They are also tractable under large populations, and flexible enough to handle the system

parameters of the considered opportunistic networking. We assume homogeneous mixing, which

has been validated for random, homogeneous networks in [5, 11, 22], and for the specific case of

opportunistic networking in [15].

The utilization of stochastic SDE models present a novel contribution in the networking area. In

epidemiological studies, on the other hand, there is a plethora of works employing this approach.

Stochastic SIR models have been studied extensively and in various settings, e.g. with delayed

infectious periods [44], taking into account population churn [9] or modeling non-linear diffusion

coefficients [28, 43]. As SIR models are defined by stochastic SDEs, Lyapunov stability theory [31]

is a common tool for exploring the behavior of epidemic spreading.

3 LOCATION-BASED OPPORTUNISTIC CONTENT SHARING
3.1 Content sharing scheme operation
We consider an opportunistic service for sharing geographically localized contents, where in

addition to obtaining the content, all users are willing to support further content spreading by

contributing some amount of their resources for a limited time. The content is geographically

tagged to the region of relevance, and it is considered irrelevant and will not be replicated outside

of the boundaries of the locale.

The area of interest is characterized by frequent arrivals and departures of users equipped with

mobile devices. Applications on user devices use publish/subscribe services [16] to publish new

contents, or to find peers within communication range and download or forward contents. That
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is, initially, a single user publishes a content item which is then shared relying exclusively on

opportunistic mechanisms, without the support of an infrastructure. The opportunistic service is

feasible if the content persist in the area for a very long time.

As the basic forwarding principle, opportunistic communication schemes usually assume some

flavor of epidemic routing [47], where any node that has a content item forwards it to any en-

countered one that has not obtained the content yet. While this principle guarantees the largest

spread of content in the network, it also imposes a high resource overhead. In this study, we

consider a modified scheme with time-limited forwarding [50], to save the resources of the nodes

and to facilitate the propagation of multiple contents. Under time-limited forwarding each node

starts a timer when it receives the content item and continues forwarding the content until the

timer expires. While the mobility of the users, the resulting population size and contact pattern is

determined by the environment, the forwarding time is a system parameter that can be tuned and

optimized to ensure content survival with minimum user contribution.

3.2 The epidemic model of localized content sharing
We assume that content items are shared independently from each other, and therefore we restrict

our analysis to a single content item. To keep the model tractable even under large population,

we utilize a stochastic susceptible-infected-recovered (SIR) epidemic model to describe the content

sharing process. In the SIR model, nodes in the area of content sharing can be in one of three

classes: susceptible (S) are the nodes that have not obtained the content item, infected (I ) are the
nodes currently holding (we will also use the term carrying) and forwarding the content, and

recovered (R) are the nodes that have the content but already stopped forwarding. This system

model is commonly referred to as a compartmental model, since each node in the population belongs

to one of the three classes—compartments; nodes in one compartment are indistinguishable from

one another with respect to their infectious status and contact pattern.

In [36, 37] we have validated that location based content sharing can be modeled by such an SIR

model, by abstracting away the exact mobility and contact patterns of the nodes. The result is a

black-box system model where nodes are fed into the area of content sharing and are released after

some time, characterized by the arrival process and by the sojourn time distribution. Inside the area

nodes interact according to the homogeneous-mixing model [5], which implies that the probability

of two nodes establishing contact is equal for any two nodes. Consequently, interactions can be

characterized by the contact rate representing the number of peers each node meets in a unit time.

As demonstrated in [15, 37], a wide range of human mobility scenarios allow a Markovian SIR

model of location based content sharing. Susceptible nodes arrive to the considered area according

to a Poisson process with rate λ, and stay in the area for an exponentially distributed sojourn

time with mean TS = 1/µ. Once infected, nodes forward the content during an exponentially

distributed forwarding time with mean valueTF = 1/γ . Following a basic epidemic routing scheme,

all nodes fully participate in the spreading process; thus each node forwards the content to any

susceptible node it encounters during its infectious period. We assume that the contact time is long

enough for forwarding the entire content. Contacts happen according to the homogeneous-mixing

model, [5], where the inter-contact times that a node experiences are independent and exponentially

distributed, and are characterized by the mean contact rate cN for an average population size N .

Note that N = λ
µ by Little’s formula. The contact rate cN depends on the node mobility inside the

area, and is one of the input parameters of the model.

Denote by S (t ), I (t ) andR (t ) the number of susceptible, infected and recovered nodes, respectively,

at time t , and the total number of nodes by N (t ) = S (t )+ I (t )+R (t ). The system state is represented

by the vector X (t ) = [S (t ), I (t ),R (t )], and the state changes can be described by the Markovian
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SIR model shown on Fig. 1. The initial system state is X (0) = [S0, 1, 0], since at the time when the

content is first published there is a single infected node in the area and S (0) = S0 susceptible nodes.

Since every new arrival is initially susceptible, compartment S observes arrivals with intensity

λ. As the infection spreads, nodes move from S to I with the state dependent intensity β (X (t )),
and upon the completion of their infectious period, nodes recover with a rate γ I (t ), moving to

and staying in compartment R. Finally, nodes may leave the system from any compartment with

intensity µS (t ), µI (t ) and µR (t ).

Fig. 1. Diagram of SIR compartments with
transition rates.

Fig. 2. A section of the Markov Chain with transitions
from the state X = [S, I ,R].

To complete the definition of the compartmental model in Fig. 1, we next derive the state-

dependent infection rate β (X (t )), building on the contact rate cN . As it was demonstrated in [15], the

instantaneous contact rate c (t ) is a linear function of the instantaneous population for a large range

of population sizes, that is, c (t ) = cN
N (t )
N . Given that for the infection to happen a susceptible node

has to meet an infected one, the infection rate depends on the number of infected and susceptible

nodes at time t as well as a time dependent contact rate c (t ) via β (X (t )) = β (t ) = S (t ) I (t )
N (t )c (t ). Let

us introduce the normalized contact rate β = cN
N , and we arrive at β (t ) = βS (t )I (t ). That is, the

infection rate at time t depends on the current number of infected and susceptible nodes and a

scenario-dependent constant parameter β .
The spreading process is described by a three-dimensional CTMC, where the system state is

defined by the vector of the number of nodes in each compartment, i.e. X (t ) = [S (t ), I (t ),R (t )].
Fig. 2 depicts a section of the chain. There are six possible transitions from a state. Each transition

is characterized by the state transition rate qj = qj (X (t )), and by the vector of state changes ∆X j =

[∆S j ,∆Ij ,∆R j ], j = {1, ..., 6}. With rate q1 a new arrival occurs, with rates q2,q4,q6 a susceptible,

infected, or recovered node, respectively, leaves the system whereas the rate q3 corresponds to an

infection and q5 to recovery. Consequently, we can define the CTMC by the vector of transition

rates as q = [qj ] and the matrix of state changes ν = [νj ], where the j−th column corresponds to

the transition j, i.e. νj = ∆XT
j , as

q(X (t )) = [λ, µS (t ), β (X (t )), µI (t ),γ I (t ), µR (t )] , (1)

ν = [νi j ] =



1 −1 −1 0 0 0

0 0 1 −1 −1 0

0 0 0 0 1 −1


. (2)

3.3 SDE model as an approximation of the Markov Chain
The transient behavior of the CTMC given in Fig. 2 is completely described by the transition

rates q(X (t )) and a set of associated (forward and backward) Kolmogorov equations describing
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the time-evolving probability distribution of the system state. However, for large systems these

equations often become intractable and therefore a common approach of tackling the problem is to

approximate the Markov process with a diffusion process. We follow the steps suggested in, for

example, [1, 13].

Let Xi (t ), i = {1, 2, 3}, corresponding to S (t ), I (t ), and R (t ), denote the number of nodes in the

i−th compartment. Consider the possible state changes ∆X (t ,τ ) in the interval (t , t + τ ]. For τ
sufficiently small, the state can not change significantly, and the transition rates can be considered

constant. Let Kj (X (t ),τ ), j = {1, ..., 6} be the number of events that occur in the observed interval

(t , t + τ ], corresponding to the transition of type j. Since each of these events changes the size of

population Xi by νi j , the number of nodes in a compartment i at time (t + τ ) will be

Xi (t , t + τ ) = Xi (t ) +
6∑
j=1

νi jKj (X (t ),τ ), i = {1, 2, 3}. (3)

The population change events occurring in the short interval (t , t+τ ] can be considered independent

of each other, and consequently, Kj (X (t ),τ ) can be regarded as independent Poisson random

variables, associated with distinct events. For sufficiently large expected value, Kj (X (t ),τ ) can be

further approximated by a normal random variableNj with a mean and variance equal to qj (X (t ))τ ,
inherited from the Poisson distribution. Consequently, the state changes from (3) get the form

∆Xi (t , t + τ ) =Xi (t , t + τ ) − Xi (t ) =

=

6∑
j=1

νi jqj (X (t ))τ +
6∑
j=1

νi j

√
τqj (X (t )) Nj (0, 1), i = {1, 2, 3}.

(4)

The difference in (4) can be regarded as an Euler-Maruyama approximation of the Itô integral,

giving a first order SDE approximation of the Markov process

dXi (t ) =
6∑
j=1

νi jqj (X (t ))dt +
6∑
j=1

νi j

√
qj (X (t ))dW (t ), i = {1, 2, 3}. (5)

Finally, by substituting the transition rate and population change values from (1) and (2), we

arrive at the system of stochastic differential equation for X (t ) = [S (t ), I (t ),R (t )] ∈ R3




dS (t ) = [λ − β (X (t )) − µS (t )]dt + д1dW (t )

dI (t ) = [β (X (t )) − (µ + γ )I (t )]dt + д2dW (t )

dR (t ) = [γ I (t ) − µR (t )]dt + д3dW (t )

X (0) = [S (0), I (0),R (0)]T ,

(6)

whereW (t ) is a vector of six independent Wiener processes and дi , i = {1, 2, 3} is the i-th row of

the matrix

G (X (t ), t ) =



√
λ

√
µS (t ) −

√
β (X (t )) 0 0 0

0 0

√
β (X (t )) −

√
γ I (t )

√
µI (t ) 0

0 0 0

√
γ I (t ) 0

√
µR (t )


. (7)

Denoting by F = F (X (t ), t ) the function governing the deterministic part of system (6)

F (X (t ), t ) =



λ − µS (t ) − β (X (t ))
β (X (t )) − (µ + γ )I (t )

γ I (t ) − µR (t )


, (8)
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we get a compact form of our system model

dX (t ) = F (X (t ), t )dt +G (X (t ), t )dW (t ). (9)

Note that to establish the SDE model (9), we first assumed that the system size is large enough

to allow for diffusion approximation. Then, we applied the Euler-Maruyama truncation method

on the higher orders of the normal random variable; this method is known to have the lowest

order of convergence to the original Markov process [25]. Although more accurate integration

schemes are available, multivariate systems with higher order terms quickly become too complex

to analyse, thus we restrict ourselves to a stochastic model of the first order. For details on the

necessary assumptions and the tightness of the diffusion approximation we refer to [13] and [25].

For a given initial state, the solution of (6) can be found in a form of probability distribution

given by Fokker-Planck formula [42] in the case when such distribution exists. However, in this

paper we are seeking answer to a more fundamental question, that in turn would help the design

of opportunistic content sharing systems: under what circumstances does the system ensure that

the content survives in the area and can be shared for a long time.

4 ANALYSIS OF THE SIR MODEL
Consider the deterministic part of the system (6). By solving the system of equations

dX (t )=F (X (t ), t )dt ≡ 0, it can be easily seen that the deterministic system yields two solutions:

the trivial one X (t ) = [
λ
µ , 0, 0], when the system exhibits content extinction, and the endemic

equilibrium X ∗ = [S∗, I ∗,R∗] =
[ µ+γ

β ,
λ

µ+γ −
µ
β ,

λγ
µ (µ+γ ) −

γ
β

]
, corresponding to content persistence.

The necessary condition which the system parameters have to satisfy for content persistence in

the deterministic case is given by the epidemic threshold [2]

λβ

µ
> µ + γ . (10)

In the followings we derive the conditions of content persistence in the stochastic system.

4.1 Existence of the global positive solution
First, we need to know that the system does have a unique solution for any given initial state.

Generally, for proving uniqueness of solutions, the system has to satisfy the Lipschitz continuity

(global or local, which is sufficient in some cases) and linear growth condition. Roughly speaking,

the Lipschitz condition guarantees uniqueness while the linear growth condition rules out finite

escape times. The first condition guarantees that F (X (t ), t ) and G (X (t ), t ) do not change faster

thanX (t ), which implies the continuity of these functions. The second condition bounds the growth

of the solution, ensuring that the solution cannot “explode”—reach infinite values in a finite time.

Such explosion can occur when F (X (t ), t ) and G (X (t ), t ) are not bounded [24, 25]. Regarding the

system (6), both conditions may get violated when the trajectories of S (t ) and I (t ) converge to 0.

This prompts us to consider a modified model that fulfills the uniqueness and stability conditions.

To obtain the new SDE model, we start from the original stochastic SIR model and substitute its

stochastic components with a diffusion that ensures Lipschitz continuity. We choose to focus on

the region around the deterministic equilibrium and therefore form the new model by substituting

the matrix G with matrix Ĝ, such that Ĝ (X ∗) = G (X ∗):

Ĝ (X (t )) =



σ1 σ2S (t ) −σ3S (t )I (t ) 0 0 0

0 0 σ3S (t )I (t ) −σ4I (t ) σ5I (t ) 0

0 0 0 σ4I (t ) 0 σ6R (t )


, (11)
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where the positive constant coefficients σi , i = {1, ..., 6} are elements of the matrix:

Γ =



σ1 σ2 −σ3 0 0 0

0 0 σ3 −σ4 σ5 0

0 0 0 σ4 0 σ6



=



√
λ
√
µ/S∗ −

√
β/(S∗I ∗ ) 0 0 0

0 0

√
β/(S∗I ∗ ) −

√
γ/I ∗

√
µ/I ∗ 0

0 0 0

√
γ/I ∗ 0 −

√
µ/R∗


.

(12)

The approximate SDE system thus becomes




dS (t ) = [λ − β (X (t )) − µS (t )]dt + σ1dW1 (t ) + σ2S (t )dW2 (t ) − σ3S (t )I (t )dW3 (t )

dI (t ) = [β (X (t )) − (µ + γ )I (t )]dt + σ3S (t )I (t )dW3 (t ) − σ4I (t )dW4 (t ) + σ5I (t )dW5 (t )

dR (t ) = [γ I (t ) − µR (t )]dt + σ4I (t )dW4 (t ) + σ6R (t )dW6 (t ) (t ),

(13)

or, in a shorter representation, analogously to (9):

dX (t ) = F (X (t ), t )dt + Ĝ (X (t ), t )dW (t ). (14)

The existence of a global positive solution of stochastic SIR models like (14) has been proven

in [28] and [43].

4.2 Sufficient conditions for content extinction
The first case we consider is when the content spreading is likely to continue for a limited time only,

that is, the content becomes extinct shortly after being introduced in the mobile population. Since

we are dealing with a stochastic system, the content eventually always dies out. The following

theorem gives the conditions under which this happens almost surely in some finite time.

Theorem 4.1. Consider stochastic system (13)with initial conditionsX (0) = [S (0), I (0),R (0)] ∈ R3.
The solution of this system obeys

lim sup

t→∞

log I (t )

t
≤

λβ

µ
− (µ + γ ) − 1

2

(
( σ3λ

µ )2 + σ 2

4
+ σ 2

5

)
. (15)

If the following holds
λβ

µ
< (µ + γ ) + 1

2

(
( σ3λ

µ )2 + σ 2

4
+ σ 2

5

)
(16)

then I (t ) tends to zero exponentially almost surely. In other words, the number of infected nodes tends
to zero with probability one, and the content becomes extinct almost surely in a finite time.

Proof. As shown in [24], a nonlinear stochastic system is always stable in probability if the

linearized system is asymptotically stable, where linearization is performed by dropping terms of

the second and higher orders. Therefore we prove the theorem utilizing the following two main

results.

First we rely on Lyapunov stability theory that introduces a metric called the Lyapunov exponent,
which characterizes exponential rate of convergence (if negative) or divergence (if positive) of the

linearized system’s solution [31].

Second, we utilize the multiplicative ergodic theorem of Oseledets [34]. The theorem states that

the necessary and sufficient condition for the almost sure asymptotic stability of the trivial solution

of the nonlinear system is that the largest Lyapunov exponent of the linearized system is negative.

Moreover, according to [32] (p. 119), if the largest Lyapunov exponent is negative, all sample paths

of the solution will tend to the equilibrium position exponentially fast. This property is called

almost sure exponential stability.
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To find the largest Lyapunov exponent of the linearized system, we transform the system (13) by

the change of variables y1 = S − λ
µ , y2 = I , y3 = R, which centers the system on the disease-free

equilibrium:




dy1 (t ) =

[
−β

(
y1 (t ) +

λ

µ

)
y2 (t ) − µy1 (t )

]
dt + σ1dW1 (t ) + σ2

(
y1 (t ) +

λ

µ

)
dW2 (t ) − σ3S (t )

(
y1 (t ) +

λ

µ

)
y2 (t )dW3 (t )

dy2 (t ) =

[
β

(
y1 (t ) +

λ

µ

)
y2 (t ) − (µ + γ )y2 (t )

]
dt + σ3

(
y1 (t ) +

λ

µ

)
y2 (t )dW3 (t ) − σ4y2 (t )dW4 (t ) + σ5y2 (t )dW5 (t )

dy3 (t ) = [γy2 (t ) − µy3 (t )]dt + σ4y2 (t )dW4 (t ) + σ6y3 (t )dW6 (t ).

(17)

We consider the linear part of the system (17) and drop the notation of time-dependence (for

brevity):




du1 =

[
−µu1 −

λβ

µ
u2

]
dt + σ1dW1 + σ2

λ

µ
dW2 + σ2u1dW2 − σ3

λ

µ
u2dW3

du2 =

[
λβ

µ
− (µ + γ )

]
u2 + σ3

λ

µ
u2dW3 − σ4u2dW4 + σ5u2dW5

du3 = [γu2 − µu3]dt + σ4u2dW4 + σ6u3dW6 .

(18)

Let us denote the initial state by u0 = [u10,u20,u30]. Observe that the second equation in system

(18) depends only on u2 (t ). This is a scalar linear SDE and can be solved explicitly (see, for example,

equation (4.59) in Kloeden [25]):

u2 (t ) = u20e
−a2t+

σ
3
λ
µ W3 (t )−σ4W4 (t )+σ5W5 (t )

(19)

where a2 = −
λβ
µ + (µ +γ ) +

1

2

(
( σ3λ

µ )2 + σ 2

4
+ σ 2

5

)
. Next, one can solve u1 (t ) and u3 (t ) from the first

and third equation of system (18). For u3 (t ) we find

u3 (t ) = e
−

(
µ+

σ 2

6

2

)
t+σ6W6 (t )


u30 +

∫ t

0

γu2 (s )e

(
µ+

σ 2

6

2

)
s−σ6W6 (s )

ds +

∫ t

0

σ4u2 (s )e

(
µ+

σ 2

6

2

)
s−σ6W6 (s )

dW4


,

(20)

see [25] and the general form solutions for d-dimensional linear SDEs.

We cannot obtain explicit solutions in these cases, therefore we provide bounds on the Lyapunov

exponents. Let a3 = µ + σ 2

6/2:

u3 (t ) =e
−a3t+σ6W6 (t )

[
u30 + γu20

∫ t

0

e (a3−a2 )s+ζW ′ (s )ds + σ4u20

∫ t

0

e (a3−a2 )s+ζW ′ (s )dW4 (s )

]

= u30e
−a3t+σ6W6 (t ) + γu20e

−a3t+σ6W6 (t )
∫ t

0

e (a3−a2 )s+ζW ′ (s )ds

+ σ4u20e
−a3t+σ6W6 (t )

∫ t

0

e (a3−a2 )s+ζW ′ (s )dW4 (s )

≤ C−a3t+σ6W6 (t )
1

+C2e
σ6W6 (t ) ·

[
te−a3t + e−a2t + e−a3t

]
ec
√

2t log log t (
∑

4

i=1
|ζi |) .

(21)

Above, ζ = [σ3

λ
µ ,−σ4,σ5,−σ6],C1,C2 andC3 are some positive constants, andW ′ = [W3,W4,W5,W6]

T
.

Finally, u1 (t ) can be written in the following form:

u1 (t ) = Φt,0


u10 −

λ
µ

∫ t

0

Φ−1

t,0

(
βu2 (s ) − σ

2

2

)
ds +

3∑
i=1

Φ−1

t,0b
kdWk (s )


,

Φt,0 = e−(µ+
σ 2

2

2
)t+σ2W2 (t ), b (t ) = [σ1,σ2

λ
µ ,σ3

λ
µu2 (t )].

(22)
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From (19)–(22) it can be observed that the largest Lyapunov exponent of the linearized system (18)

belongs to u2 and equals −a2. To fulfill the almost sure exponential asymptotic stability condition,

this exponent needs to be negative, which proves the theorem. □

Comparing the sufficient condition of content extinction from Theorem (4.1) with that of the

deterministic system given in (10), we see that the region of content extinction is always larger

in the stochastic system. Evaluating the effect of the tunable system parameter γ we see that for

given mobility parameters λ, µ and β , a large value of γ , that is, short content forwarding time TF
may mean content extinction, while decreased γ will tighten the condition, and can allow content

survival.

4.3 Sufficient condition for content persistence
Having explored conditions for content extinction, the next question we pose is: what happens

above the epidemic threshold? We expect that, under certain conditions, the system will converge

towards an endemic equilibrium, and upon reaching it, continue to fluctuate around the equilibrium

level. In this section we establish the conditions on the existence of a stochastically stable endemic

equilibrium.

First we provide some introductory definitions and results on stochastic stability.

Definition 4.2. Stochastic stability.
Consider the d-dimensional SDE system

dX (t ) = F (X (t ), t )dt +G (X (t ), t ) · dW (t ), t ≥ 0, X (0) = X0. (23)

The equilibrium solution X ∗ of the SDE (23) is stochastically stable (stable in probability) if for

every ϵ > 0 and s ≥ 0 holds

lim

X0→X ∗
Pr

(
sup

0≤s<∞



Xs,X0
(t ) − X ∗

 ≥ ϵ

)
= 0 (24)

where Xs,X0
(t ) denotes the solution of (23) at time t ≥ s , satisfying X (s ) = X0, and ∥ · ∥ denotes

the Euclidean norm.

Definition 4.3. Lyapunov function and differential operator.
Denote by C2,1 (Rd × [0,∞];R) the family of all non-negative functions V (X , t ) defined on

Rd × [0,∞] such that they are twice continuously differentiable in X and once in t . Define L as the

differential operator associated with Eq. (23) by

L =
∂

∂t
+

d∑
i=1

Fi (X , t )
∂

∂Xi
+

1

2

d∑
i, j=1

[G (X , t )GT (X , t )]i j
∂2

∂Xi∂X j
. (25)

If L acts on a function V (X , t ) then

LV (X , t ) = Vt (X , t ) +VX (X , t )F (X , t ) +
1

2

Tr [GT (X , t )VXX (X , t )G (X , t )] (26)

where

Vt =
∂V

∂t
, VX =

(
∂V

∂X1

, ...,
∂V

∂Xd

)

VXX =

(
∂2V

∂Xi∂X j

)
=
*...
,

∂2V
∂X

1
∂X

1

· · · ∂2V
∂X

1
∂Xd

...
...

∂2V
∂Xd ∂X

1

· · · ∂2V
∂Xd ∂Xd

+///
-

(27)
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and Tr [·] is the trace of a square matrix, i.e. the sum of its diagonal elements. Function V (X , t ) is a
Lyapunov function used to investigate the stability properties of dynamic systems.

The following theorem relates V (X , t ) and stochastic stability.

Theorem 4.4. Conditions of stochastic stability [3].

Assume that F andG satisfy the existence and uniqueness assumptions and that they have continuous
coefficients with respect to t . Suppose that there exists a positive definite functionV ∈ C2,1 (Uh × [0,∞)),
where Uh =

{
X ∈ Rd : ∥X − X ∗∥ < h

}
for h > 0, such that for all t ≥ 0 and X ∈ Uh : LV (X , t ) ≤ 0.

Then X ∗ is the equilibrium solution of (23) and it is stochastically stable.

Now we can state the theorem on the stability of the endemic equilibrium of the approximate

opportunistic content sharing SDE model (13).

Theorem 4.5. Assume that the opposite of the condition for content extinction from Theorem 4.1
holds, that is

λβ

µ
≥ µ + γ + 1

2

(
( σ3λ

µ )2 + σ 2

4
+ σ 2

5

)
(28)

and, in addition, the following are satisfied:

i)

σ 2

2
< 2µ −

2µ+γ
µ+γ β , σ 2

6
< µ; (29)

ii)

0 < ε < min

(
µ2

m1

S∗2,
[2µ (µ + γ ) − ργ 2

]
2

4µ2m2

I ∗2,
ρµ2

2(µ − σ 2

6
)
R∗2

)
(30)

where

0 < ρ <
2(µ + γ ) − (σ 2

4
+ σ 2

5
)

σ 2

4
+ γ 2/µ

,

m1 =
(2µ − σ 2

2
)β − (2µ + γ )I ∗σ 2

3

2β
,

m2 =
2µ (µ + γ ) − (σ 2

4
+ σ 2

5
)µ − ρ (γ 2 + µσ 2

4
)

2µ
,

(31)

and

ε =
µ

2βm1

[βσ 2

2
+ (2µ + γ )σ 2

3
I ∗]S∗2 +

[2µ (µ + γ ) − ργ 2
][(ρ + 1)σ 2

4
+ σ 2

5
]

4µm2

I ∗2 +
ρµσ 2

6

2(µ − σ 2

6
)
R∗2

+
σ 2

1

2

+
2µ + γ

β
(σ 2

4
+ σ 2

5
)I ∗.

(32)

Then there exists an endemic equilibrium of (13), and this equilibrium is stochastically stable.

Proof. Define a C2
-function V : R3

+ → R+ as

V (X ) =
1

2

(S − S∗ + I − I ∗)2 + θ
(
I − I ∗ − I ∗ log

I

I ∗

)
+
ρ

2

(R − R∗)2 (33)

where θ and ρ are positive constants to be chosen later.

V (X ) is positive definite and decrescent, and therefore we aim to prove that LV < 0.
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1:12 L. Pajevic, V. Fodor, and G. Karlsson.

For simplicity, divide (33) into a sum of three functions: V (X ) = V1 (X ) +V2 (X ) +V3 (X ), where

V1 (X ) =
1

2

(S − S∗ + I − I ∗)2,

V2 (X ) = θ
(
I − I ∗ − I ∗ log

I

I ∗

)
,

V3 (X ) =
ρ

2

(R − R∗)2.

(34)

Let us find LV1,LV2 and LV3 by applying formula (26).

LV1 = (S − S∗ + I − I ∗)[λ − µS − βSI + βSI − (µ + γ )I ]

+
1

2

(σ 2

1
+ σ 2

2
S2 + (σ 2

4
+ σ 2

5
)I 2) = −µ (S − S∗)2 − (µ + γ ) (I − I ∗)2

− (2µ + γ ) (S − S∗) (I − I ∗) +
1

2

(
σ 2

1
+ σ 2

2
S2 + (σ 2

4
+ σ 2

5
)I 2

)
,

(35)

LV2 = θ

(
1 −

I ∗

I

)
[βSI − (µ + γ )I ] +

θI ∗

2I 2

(
σ 2

3
S2 + σ 2

4
+ σ 2

5

)
I 2

= θβ (S − S∗) (I − I ∗) +
θI ∗

2

(
σ 2

3
S2 + σ 2

4
+ σ 2

5

)
,

(36)

LV3 = ρ (R − R∗) (γ I − µR) +
ρ

2

(σ 2

4
I 2 + σ 2

6
R2)

= ργ (I − I ∗) (R − R∗) − ρµ (R − R∗)2 +
ρ

2

(σ 2

4
I 2 + σ 2

6
R2)

≤
ργ 2

2µ
(I − I ∗)2 −

ρµ

2

(R − R∗)2 +
ρ

2

(σ 2

4
I 2 + σ 2

6
R2).

(37)

Summing up (35)–(37) we obtain that for LV holds:

LV ≤ − µ (S − S∗)2 − (µ + γ ) (I − I ∗)2 − (2µ + γ ) (S − S∗) (I − I ∗)

+ θβ (S − S∗) (I − I ∗) +
1

2

(
σ 2

1
+ σ 2

2
S2 + (σ 2

4
+ σ 2

5
)I 2

)
+
θI ∗

2

(
σ 2

3
S2 + σ 2

4
+ σ 2

5

)
+
ργ 2

2µ
(I − I ∗)2

−
ρµ

2

(R − R∗)2 +
ρ

2

(σ 2

4
I 2 + σ 2

6
R2).

(38)

It is convenient to eliminate from (38) the multiplicative terms containing (S − S∗) (I − I∗), thus

we choose θ =
2µ+γ
β

LV = LV1 + LV2 + LV3 ≤ −µ (S − S
∗)2 − (µ + γ +

ργ 2

2µ
) (I − I ∗)2

+
1

2

(σ 2

1
+ σ 2

2
S2 + (σ 2

4
+ σ 2

5
)I 2) +

2µ + γ

2β
I ∗ (σ 2

3
S2 + σ 2

4
+ σ 2

5
)

−
ρµ

2

(R − R∗)2 +
ρ

2

(σ 2

4
I 2 + σ 2

6
R2).

(39)

After algebraic manipulations, we can write

LV ≤ −m1 (S − κ1S
∗)2 −m2 (I − κ2I

∗)2 −m3 (R − κ3R
∗)2 + ε (40)
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wheremi ,κi , i = {1, 2, 3} are given by

m1 = µ −
σ 2

2

2

−
θσ 2

3
I ∗

2

κ1 =
µ

m1

m2 = µ + γ −
ργ 2

2µ
−

(
σ 2

4

2

(ρ + 1) +
σ 2

5

2

)

κ2 =
µ + γ −

ργ 2

2µ

m2

m3 =
ρ

2

(µ − σ 2

6
)

κ3 =
µ

µ − σ 2

6

,

(41)

and ε, ξ1, ξ2, ξ3 by

ε = ξ1S
∗2 + ξ2I

∗2 + ξ3R
∗2 +

σ 2

1

2

+ θI ∗ (σ 2

4
+ σ 2

5
)

ξ1 =
µ

2m1

(σ 2

2
+ θσ 2

3
I ∗)

ξ2 =
(µ + γ −

ργ 2

2µ ) (
σ 2

4

2
(ρ + 1) +

σ 2

5

2
)

m2

ξ3 =
ρµσ 2

6

2(µ − σ 2

6
)
.

(42)

According to Theorem 4.4, the system has a stochastically stable equilibrium if LV ≤ 0 . The

conditions

0 < ε < min

(
m1κ

2

1
S∗2,m2κ

2

2
I ∗2,m3κ

2

3
R∗2

)
, mi > 0,κi > 0, i = {1, 2, 3} (43)

ensure that the ellipsoid

−m1 (S − κ1S
∗)2 −m2 (I − κ2I

∗)2 −m3 (R − κ3R
∗)2 + ε = 0 (44)

lies entirely in R3

+. We can then take asU any neighborhood of this ellipsoid such that its closure

Ū ⊂ R3

+. Thus, we have LV (S, I ,R) < 0 for (S, I ,R) ∈ R3

+ \U .

Notice thatm1 andm2 in (41) are the same as in (31), while (42) is merely another representation

of ε from (32). Therefore, conditions in inequality (43) are equivalent to those in (30). The conditions

m1 > 0 andm3 > 0 are ensured directly by (29), and κ1 and κ3 are positive by definition. If we select

0 < ρ <
2(µ+γ )−(σ 2

4
+σ 2

5
)

σ 2

4
+γ 2/µ

, then evenm2 > 0 and κ2 > 0 are ensured. This concludes the proof. □

4.4 Implications of the analytic results
To interpret and summarize the results from Theorems 4.1 and 4.5, let us start with the condition

for content persistence in a deterministic system, given by inequality (10). Since
λβ
µ = cN , this

condition simply states that any contact rate cN , infinitesimally larger than the sum of departure

and recovery rates, guarantees content persistence. In other words, if an infected node, before

leaving the area or becoming recovered, meets on average at least one other node—the content is

bound to survive.
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According to established results in the theory of deterministic and stochastic models, while the

deterministic models guarantee survival of the epidemic above the threshold, in stochastic models

this is only a necessary condition: the epidemic is still prone to stochastic variations, which can

lead to epidemic extinction [39]. Theorem 4.1 and condition (16) complies this general result, and

specifies how the inequality is strengthened by additional terms with σi , i = {3, 4, 5}, coming from

the second equation of the system (13). However, even if Theorem 4.1 ensures that if (16) holds

content extinction cannot be escaped, the complementary inequality does not ensure the opposite,

and Theorem 4.5 gives sufficient additional conditions for the content to persist. Due to these

additional conditions, Theorems 4.1 and 4.5 determine three epidemic regions. A region when the

content will surely become extinct, a region when it will surely survive, and a middle region, where

the outcome can not be determined based on the analytic results. While Theorems 4.1 and 4.5 could

be tightened by avoiding the bounds in the proofs, such a middle region seems to be present in

stochastic systems, where the epidemics does not extinct exponentially fast, but does not survive

for a longer time either [44].

Finally, let us discuss the results from the point of view of system design. The objective is then

to find the largest γ value, that is, shortest average forwarding time TF , that ensures stochastic
stability. For this, we need to solve numerically the inequality (43). The preferred value of γ is the

maximum value that satisfies the inequality.

5 MODEL VALIDATION AND PERFORMANCE EVALUATION
In this section we validate the system model and the derived conditions of endemic equilibrium by

comparing the analytic results with simulations, considering system parameters that we derive from

realistic mobility scenarios. We investigate and compare the behavior of the following processes:

1) the content spreading process directly obtained from realistic contact traces, 2) the original

SDE system with state-dependent diffusion coefficients, and 3) the approximate SDE system with

constant diffusion coefficients.

Fig. 3. The simulation scenario: the Östermalm area.

5.1 Mobility scenarios
For emulating realistic mobility, we use the KTH walkers traces [14, 27] generated by Legion
Studio [29], a multi-agent mobility simulator commonly used for pedestrian traffic planning and

public spaces design and dimensioning. The traces contain snapshots of the node positions taken

every 0.6 seconds. The mobility scenario represents an outdoor urban space, modeling a part of the
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downtown Stockholm, which we will further refer to as the Östermalm scenario. The topology is

represented by a grid of streets, as shown on Fig. 3. Pedestrians enter the area and depart from the

fourteen streets opening at the area boundary. Nodes arrive to each of the entry points according

to a Poisson process with rate λs , resulting a total arrival rate λ. Each node traverses the area

at a constant speed chosen randomly from a truncated normal distribution with a value range

(0.6; 2.0) m/s and a mean of 1.3 m/s. At each intersection, the node continues moving straight with

probability 0.5, or turns into one of the intersecting streets with equal probability. Since the node

mobility inside the area is determined by the topology and the speed distribution, the distribution of

the sojourn times are independent from the arrival rate, and are similar in all investigated scenarios.

We consider 6 scenarios with different arrival rates and consequently, different average population

sizes – ranging from around 40 nodes to 350 nodes. The duration of the first trace is 5 hours, the

duration of the second is 3 hours and the other traces are 2 hours long, this ensures at least 2000

arrivals in each scenarios. The mobility traces provide the arrival rate λ and the sojourn timeTS =
1

µ
parameters.

From themobility traces, we generate the trace of contacts using the ONE simulator [23]. The ONE

simulator takes mobility traces as an input and generates timestamps of contact events whenever

two nodes are within the specified transmission range. Specifically, we consider a transmission

range of 10 m. From the timestamps of contact events we obtain the value of the individual contact

rate c .
The parameters of the explored scenarios are detailed in Table 1. Note that some of the assump-

tions that allow us to form the Markovian model, e.g. Poisson arrivals to the area, are readily

satisfied in these scenarios. As discussed in [37], the time intervals between the contact events can

also be assumed to be exponentially distributed. The distribution of the sojourn times turns out to

be non-exponential, but the exact distribution has little impact on the accuracy of the model.

Table 1. Scenario parameters estimated from traces.

Scenario

#

Sojourn
time TS [s]

Contact
rate cN
[s
−1
]

Arrival
rate λ [s−1]

Average
population
size N

Forwarding

time

T 0

F [s] T sdF [s]
1 322.0 0.0230 0.1176 37 87 183

2 322.1 0.0485 0.2380 77 37 109

3 340.6 0.0742 0.3687 127 23 74

4 328.2 0.0825 0.4610 152 20 67

5 320.3 0.1011 0.5830 195 16 56

6 337.7 0.1865 1.0404 348 8 35

5.2 The boundaries of three epidemic regions
In 4.2 and 4.3 we established the conditions for content survival and existence of the endemic

stationary distribution. Given that, the approximate constant coefficient model (13) predicts when:

1) the content vanishes from the population in finite time almost surely and 2) the system reaches

the endemic equilibrium, after which its trajectories continue fluctuating around the endemic levels.

Fig. 4 shows the predicted borders for the three epidemic regions. The mobility parameters and

the contact rate are set based on the six introduced scenarios, and TF =
1

γ is tuned according to

Theorems 4.1 and 4.5. The critical TF values depend on λ and TS in a more complex way than

through their product—average number of nodes in the system—but for the sake of clarity, we

choose a representation with the population size on the x-axis. Fig. 4 depicts the three regions
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where a scenario may fall into. The solid line represents the forwarding time T 0

F below which the

content dies out almost surely within a finite time derived based on Theorem 4.1, whereas the

dashed line marks T sd
F , the time necessary for the existence of the endemic stationary distribution,

based on Theorem 4.5. The estimated critical values are given in the two last columns of Table 1 as

well. Region 1 corresponds to parameter sets which will lead to content extinction within finite

time. In Region 3, TF is sufficient to support indefinite content survival, and finally, Region 2 is the

gray area where Theorems 4.1 and 4.5 do not give information about the system behavior.

The figure provides interesting insights about the requirements on an opportunistic content

sharing system. First of all, compared to the average sojourn time of the nodes, which is several

hundreds of seconds, the time necessary for content forwarding is small, as soon as the population

has reasonable size. Already at a population size of 80, TF = 100 seconds achieves content survival,

and with a population size of 300, nodes do not need to forward the content for more than 40

seconds. These results show that to keep the energy consumption of the participating devices

low, and thus the opportunistic services more popular, the forwarding time TF should be tuned

according to the experienced population size.

Next we turn to validate Theorems 4.1 and 4.5. For this we consider three characteristics mobility

scenarios, Östermalm_1, Östermalm_4 and Östermalm_6, with small, medium and large population

respectively.

5.3 Validation of the content extinction condition
We first evaluate the results of Theorem 4.1. The objective of the evaluation is twofold: we demon-

strate that the established condition really leads to content extinction in the SDEmodel, and validate

the model itself by trace-based simulation.

Fig. 5 compares the population of the S, I and R compartments, S (t ), I (t ),R (t ) as well as the
entire population, N (t ), where the forwarding timeTF is chosen such that the condition for content

survival is not satisfied (TF < T
0

F ). We compare the result of trace driven simulation with that of the

simplified, constant coefficients SDE model. We examine three cases: Östermalm_1, Östermalm_4,

and Östermalm_6 and choose the values TF = {80, 19, 8} seconds, respectively, these values place
the three cases in Region 1 in Fig. 4.
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Fig. 4. The stability regions of the SDE model, as a function of the average population size N and the
forwarding time TF .
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Fig. 5. Trajectories of S (t ), I (t ) and R (t ) and total populations N (t ) representing results of simulations on
the contact traces (trace) and of the approximate constant coefficient SDE model (cc-mod), at the critical TF
values for content extinction. The number of initially infected nodes are I (t ) = {20, 100, 100} for (a), (b) and
(c), respectively.

According to Theorem 4.1 I (t ) always converges to zero under condition (16). We therefore

consider the system after a bootstrapping phase, where many of the nodes in the population are

already infected. The initial number of infected nodes is 20 for the first scenario and 100 for the other

two scenarios. The figures show single realizations of the content sharing process, thus we do not

expect overlapping paths for the model and simulation results, but compare the general behavior.

Fig. 5 clearly shows that both the trace-based and modeled paths lead to content extinction: I (t )
and R (t ) converge to zero exponentially fast, while the size of the entire population N (t ), which
then equals S (t ), reaches N = λ/µ and fluctuates around this value. The system then converges to

a disease-free equilibrium.

5.4 Achieving content survival by tuning the forwarding time TF
Let us now evaluate the results of Theorem 4.5. We select the TF values such that TF > T sd

F to

ensure that content survives in all cases and that process has a stable endemic equilibrium. We

consider the same three mobility scenarios as in Section 5.3, with T sd
F values given in Table 1. We

compare the results of the contact trace driven simulations, of the original SDE model, and of the

approximate, constant coefficient SDE model.

Fig. 6 shows a sample path of the number of nodes in the S, I and R compartments and the

size of total population. The results verify that the conditions of Theorem 4.5 ensure long term

content survival, the number of nodes in the three compartments seem to reach equilibrium and

stay positive in the considered 5000 seconds. We evaluate the accuracy of the original and the

constant coefficient SDE model with the box diagrams shown on Fig. 7. In each box, the central

horizontal (red) line is the median, the edges of the (blue) box are the 25th and 75th percentiles,

the (black) whiskers extend to the most extreme data points not considered outliers, while outliers

are plotted individually as (red) crosses. Both models are accurate in the low population scenario

of Östermalm_1. In the other two scenarios there is some discrepancy in the distributions of the

susceptible nodes. This is an artifact of the linear homogeneous mixing model, already identified

in [15], which overestimates the infection rate in large instantaneous population, and consequently,

predicts greater numbers of infected nodes compared to the simulations.

Finally, we investigate how the system behaves under parameter sets belonging to the second

region of Fig. 4, where none of the Theorems 4.1 or 4.5 applies. As in Section 5.3, we consider

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.



1:18 L. Pajevic, V. Fodor, and G. Karlsson.

1000 2000 3000 4000 5000
Time [s]

10

20

30

40

50

N
um

be
r 

of
 n

od
es

Susceptible nodes

trace
sde-mod
cc-mod

1000 2000 3000 4000 5000

Time [s]

0

10

20

30

40

N
um

be
r 

of
 n

od
es

Infected nodes

trace
sde-mod
cc-mod

1000 2000 3000 4000 5000

Time [s]

0

5

10

15

20

25

N
um

be
r 

of
 n

od
es

Recovered nodes

trace
sde-mod
cc-mod

1000 2000 3000 4000 5000

Time [s]

10

20

30

40

50

60

N
um

be
r 

of
 n

od
es

Total population

trace
sde-mod
cc-mod

Östermalm_1, TF = 190 s

(a)

1000 2000 3000 4000 5000
Time [s]

0

50

100

150

N
um

be
r 

of
 n

od
es

Susceptible nodes

trace
sde-mod
cc-mod

1000 2000 3000 4000 5000

Time [s]

0

20

40

60

80

N
um

be
r 

of
 n

od
es

Infected nodes

trace
sde-mod
cc-mod

1000 2000 3000 4000 5000
Time [s]

0

20

40

60

80

100

120
N

um
be

r 
of

 n
od

es
Recovered nodes

trace
sde-mod
cc-mod

Östermalm_4, TF = 70 s

1000 2000 3000 4000 5000
Time [s]

100

120

140

160

180

N
um

be
r 

of
 n

od
es

Total population

trace
sde-mod
cc-mod

(b)

1000 2000 3000 4000 5000
Time [s]

0

50

100

150

200

250

300

350

N
um

be
r 

of
 n

od
es

Susceptible nodes

trace
sde-mod
cc-mod

1000 2000 3000 4000 5000

Time [s]

0

50

100

150

200

250

N
um

be
r 

of
 n

od
es

Infected nodes

trace
sde-mod
cc-mod

1000 2000 3000 4000 5000

Time [s]

0

50

100

150

200

250

300

N
um

be
r 

of
 n

od
es

Recovered nodes

trace
sde-mod
cc-mod

Östermalm_6, TF = 50 s

1000 2000 3000 4000 5000

Time [s]

250

300

350

400

N
um

be
r 

of
 n

od
es

Total population

trace
sde-mod
cc-mod

(c)

Fig. 6. Trajectories of S (t ), I (t ) and R (t ) and total populations N (t ) representing results of simulations on
the contact traces (trace), of the original SDE model (sde-mod) and of the approximated constant coefficient
model (cc-mod).

I (0) > 1 to avoid immediate content extinction. Fig. 8 shows the usual three mobility scenarios,

but now with T 0

F < TF < T sd
F . As we see, the SDE models can not capture the outcome of the

content distribution in this case, and the results are very different in the trace driven simulation,

in the original, and in the approximate SDE model. In all scenarios the simulations show that

the number of infected nodes I (t ) drops to zero after an initial epidemic period, and the content

vanishes. The original SDE model (sde-mod) exhibits explosion, due to the dependence of the

diffusion coefficients on

√
I (t ), while the approximate constant coefficients SDE model maintains a

low number of infected nodes, but the system does not seem to settle around an equilibrium point.

5.5 Comparison of the original and approximated SDE model
It is convenient at this point to reflect on the Markovian content sharing process we started from, its

first SDE representation and the SDE model with constant coefficients used in the previous section
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Fig. 7. Comparison of the distributions of nodes in S, I, R compartments and total populations. trace – results
of simulations from the contact traces; sde-mod – original SDE model; cc-mod – approximate model. In
each box, the central horizontal (red) line is the median, the edges of the (blue) box are the 25th and 75th
percentiles, the (black) whiskers extend to the most extreme data points not considered as outliers, while
outliers are plotted individually as (red) crosses.

for stability analysis. Clearly, since both SDE models represent approximations of the initial process,

it is important that they capture similar process behavior, at least on how the different regions

(content extinction or persistence) manifest depending on the system parameters. As we see on

Figs. 6 and 7, in cases when the endemic equilibrium exists, the models show, at least qualitatively,

the same behavior and similar distributions as the trace-based spreading process. Furthermore,

we observe that the original model, compared to the approximate model, gives slightly worse

distribution fit to the results obtained from the traces (see Infected nodes plots in Fig. 7). However, as

we show in Fig. 8, the original SDE model is prone to explosions, which happen when the number

of nodes in some compartment approaches zero. This in turn reflects that it is challenging to derive

stability conditions for the original model, and the approximate SDE model can provide a good
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Fig. 8. Sample paths of three processes (trace-based, original SDE model and SDE model with constant
coefficients). Forwarding times TF satisfy the condition for content survival established by the model, but
not the condition for the stability of endemic equilibrium. The number of initially infected nodes: I (t ) =
{20, 100, 50} for a), b) and c) respectively.

compromise. These results also demonstrate that there is an operating region of the opportunistic

content sharing, where the content may survive for some time, carried only by a few nodes, but in

this case the effect of random disturbances becomes significant, and neither our original, nor the

constant coefficient model provides adequate prediction for the system behavior.

6 CONCLUSION
We studied the feasibility and the performance of opportunistic location-aware content spreading,

where mobile users constantly join and leave an area of interest, but while present they are willing

to participate in content spreading by carrying content and forwarding it to other nodes they meet,

at least for a limited time. In this way, the content ”survives” in the area without infrastructure

support.
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We have studied under what conditions, that is, the combination of mobility parameters such as

node arrival rate, sojourn time and contact rates, and the tunable system parameter, forwarding

time, this content spreading scheme is feasible. We modeled the spreading process with a stochastic

epidemic model and employed Lyapunov stability theory for stochastic systems to establish condi-

tions when the system reaches the state of persistence, in which the content is likely to survive for

a very long time. The validity of the system model as well as the established analytical results are

confirmed via simulations using realistic mobility traces.

Our results are valuable for system design, as we provide theoretic tools to predict the success of

the opportunistic content sharing, and to tune the system parameters to ensure that the content

survives in the area for a long time. The numerical results considering realistic mobility scenarios

show that the forwarding times required by the users are relatively short – ranging from less than

a minute in dense environments to a couple of minutes in very sparse scenarios. This finding can

help to give incentives for the users to participate and share contents since the requirement for user

resources is obviously not that large. We also find that the population size and thus the contact

rate has a significant impact on the forwarding time required for content survival. This motivates

future research on the design of adaptive schemes, that can estimate the required forwarding time.

These schemes could then ensure successful content sharing, while minimizing the contribution

and thus the energy consumption of the participating users.
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