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Abstract—The demands for ubiquitous connectivity and high
data rates have led to a proliferation of mobile devices such
as smartphones, media tablets and netbooks. These devices,
equipped with powerful communication and storage resources,
are carried by humans during their daily activities and,
thus, possess a high potential for opportunistic networking.
In this networking mode, encounters between users define the
"topology" of the network and can be exploited for content
sharing. A large portion of user encounters occur in densely
populated public urban areas such as city squares, subway
stations, shopping malls, etc. In this paper, we propose an
analytic model to study content dissemination characteristics
inside smaller areas where the mobility of nodes does not affect
their connectivity. Subsequently, we argue that this model is
suitable for modeling larger areas as interconnections of these
basic blocks.

Keywords-Opportunistic networks, content distribution,
queueing analysis, mobility modeling

I. INTRODUCTION

The growing demand for all-in-one converged mobile
devices and digital content has led to wide adoption of
handheld devices such as smartphones and media tablets.
These devices are equipped with powerful computing
and communication resources, often providing support for
various wireless technologies, including Bluetooth, Wi-Fi
and 3G. On one hand, this brings the convenience of
pervasive connectivity, but on the other hand it invites more
user activity, leading to high data traffic. Mobile data traffic
represents already an increasingly large fraction of Internet
traffic (with the current share of 25%), predominantly as a
result of traffic migration from fixed to mobile networks [1].
Opportunistic networking is a communication paradigm
based on proximity of mobile nodes and their capability
to store and forward contents. The mobile devices (nodes)
carried by users define the "topology" of the network. When-
ever two nodes get into transmission range of each other,
they are able to establish a wireless connection and exchange
contents. The advantage of this type of communication is
that it does not require support of infrastructure since the
links between nodes are formed ad hoc and use license-free
spectrum. Various factors such as the nodes’ movements,
interference and usage of power-save mode may cause
disruption of links. Hence, the existence of end-to-end paths
between arbitrary nodes in the network cannot be assumed.

Opportunistic networks are suitable for content-provider or
user-generated data such as multimedia files, documents,
or any other type of data that can tolerate modest delays
and losses.
Estimates are that smartphones and portable devices will

be the primary drivers of overall data traffic growth in the
near future. Unlimited data plans for mobile users lead
to extremely high mobile data consumption that is raising
the risk of network congestion. Thus, when deploying new
technologies (such as LTE) in order to meet increasing traffic
demands, mobile operators should also consider offloading
mobile data by using opportunistic contacts [2].
The content dissemination scheme addressed herein is

based on a publish/subscribe model. Data is organized into
information feeds to which users subscribe. Subscribers of
the same feed exchange data opportunistically in a peer-to-
peer manner.
The importance of mobility modeling stems from the fact

that wireless system performance can be heavily influenced
by user mobility. However, large traces of realistic move-
ment patterns are difficult to obtain. Thus, performance is
usually evaluated by using analytic and synthetic models. In
this paper we propose an analytic queueing model to study
how mobility and system parameters affect the performance.
We focus on specific urban environments where we could
assume zero mobility (e.g shop, bus station, inside buses
and trains, stoplight at pedestrian crossing), which can be
represented as a single "mobility block". Then, we propose
the internal structure of larger urban areas such as public
squares, shopping malls, subway stations and commercial
buildings that can be approximated by networks of basic
zero-dimensional blocks. Subsequently, vast areas can be
modelled as interconnection of different blocks.
The rest of this paper is organized as follows. In the next

section we further motivate our work and contrast it with
related work. Section III contains the detailed description
of our analytic model. In section IV we explore the model
by means of simulation and in section V we propose an
idea how this model can be exploited for more complex
modeling. We include analysis of the real-world scenario
dataset and comparison to our model in section VI. Finally,
we conclude our work in section VII and give an outline of
the future work on this topic.



2

II. RELATED WORK

The mobile peer-to-peer opportunistic system we consider
in this paper is described in [3]. Our work addresses two
topics: content dissemination and mobility modeling and we
compare related work with respect to these.
There has been a significant research in delay-tolerant

networking. Most of the studies address different routing
schemes in closed systems and confined two-dimensional
areas. In [4], authors have developed analytic model for
pedestrian movement on a one-dimensional, street-like
segment. They assume open system and one-hop forward-
ing scheme to study content distribution. Another study
that addresses data dissemination in peer-to-peer mode is
presented in [5]. Although the main asset of this study is that
it carefully structures contact patterns for a large population
of users over large time scale, social interactions among
users in this case have not been considered.
Mobility has been frequently studied by simulations and

using synthetic mobility models such as random-waypoint
[6] or random walk [7], [8]. Synthetic models attempt to
represent mobility behaviour of mobile nodes without use
of realistic traces. Although easier to generate and use in
simulations, these models often lack realism.
Realistic mobility modeling is essential for evaluating and

improving mobile system performance. This requires direct
capture of real-life human traces and contact opportunities.
CRAWDAD [9] is a public archive of traces collected from
mobile users in a specific contexts, such as a conference [10]
or from a campus [11]. However, contact traces obtained
in these cases have short duration, a small population
of users, specific environments and low time-granularity.
SLAW mobility model [12], represents a statistical model
that simulates human mobility patterns, mimicking the way
people move over the course of a day, a month or longer.
This model was developed based on previously reported
statistical features of human mobility and with respect to the
GPS traces collected from various user groups at different
outdoor sites.

III. DESCRIPTION OF ZERO-DIMENSIONAL MODEL

In this section we propose an analytic queueing model
for content distribution. We denote the model as zero-
dimensional, where "zero-dimension" should indicate that
nodes in the system are, regardless of their mobility patterns,
always connected; that is, internal mobility of the system
does not affect connectivity. The setup is as follows. We con-
sider an open system consisting of mobile nodes equipped
with short range radios (e.g. WiFi or Bluetooth) and ample
data storage. The mobile nodes arrive into the area according
to some arrival process, reside inside for a particular amount
of time and eventually leave (depart the system). We assume
the nodes have the same transmission range Δ. The size of
the area is sufficiently small in comparison to Δ; whenever

two nodes collocate inside, they will be in communication
range of each other and able to exchange data.
Some of the nodes entering the area carry the published

data and transfer it to subscribers when contact is estab-
lished. We are interested in analyzing the achievable content
spreading. For sake of simplicity, we assume that all the
nodes are subscribed to a single channel and interested
in obtaining the same data element. Hence, the content
spreading scheme is epidemic. Further, the size of the
element is small in comparison to the data link capacity
and the transfer time is hence negligible.
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Figure 1. Markov chain for the zero-mobility model.

Denote by λ the arrival rate of the nodes and by p ∈ [0, 1]
the proportion of nodes that carry the content (in further
text, we will also use the term injection probability for p).
Assuming that arrivals occur according to a Poisson process
and the node sojourn time (ts) is exponentially distributed
with mean value t̄s = 1/μ, we can model the system with
the Markov chain depicted in Fig. 1.
The states of the chain are Si,j where i, i ≥ 0 denotes the

number of nodes in the area and j, j ∈ {0, 1} the presence
of the contents inside: in states Si,1 for i ≥ 1 all the nodes
in the area have obtained the contents in infinitesimally short
time upon arrival. In state S0,0 the system is empty. When
the system is in the lower branch of the chain, i.e. in any of
the states Si,0, it transits to state Si+1,1 with the rate λp, with
the arrival of a node that carries the contents. Otherwise, the
system transits to state Si+1,0 with the rate λ(1 − p) or to
state Si−1,0 when a departure occurs. The system transits
from state Si,1 to state Si+1,1 with the rate λ or to state
Si−1,1 with the rate iμ. An arriving node obtains the contents
if it finds the system in any of the infected states. Clearly,
once the contents enter the system, it will reside inside as
long as the system remains non-empty. The probability of
the system being in state S0,0 and the state equations are
given by:

π0,0 = e−
λ
μ (1)

πk,0 (λ + kμ) =πk−1,0 λ(1 − p)

+ πk+1,0 (k + 1)μ, k ≥ 1 (2)

π1,1 (λ + μ) =π0,0 λp + π2,1 2μ (3a)
πk,1 (λ + kμ) =πk−1,1 λ + πk−1,0 λ p

+ πk+1,1 (k + 1)μ, k ≥ 2 (3b)
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Despite the simple structure, the state probabilities can
alas not be easily expressed in closed form. We will therefore
study the system numerically.

IV. EXPLORING THE MODEL BY SIMULATIONS
In order to get an insight how the proposed content spread-

ing scheme works, as a first approximation we presume
the above scenario. We will then relax the assumptions on
arrival process and sojourn time distribution by means of
simulation.
The performance of the scheme is evaluated by using two

basic metrics which we denote as:
− Content distribution: probability that an arbitrary node
possesses the contents upon its departure from the system.
This metric gives the proportion of nodes that carry the
contents when they leave the system—i.e. the sum of
nodes that brought the contents and nodes that obtained
the contents from the others.

− Contact duration: the time that two nodes are connected
to each other. Assuming that the transmission range covers
the entire simulation area, so that all nodes residing in the
area are connected.

A. Content Distribution
Fig. 2(a) shows the content distribution as a function of

the arrival rate λ. In the simulations, the mean value of
the sojourn time was set to 50 s and the percentage of
nodes carrying the contents took values 1%, 0.5% and 0.1%.
We also show the results from a simulation run where
the mean sojourn time t̄s was set to 30 s. In all the
simulations, the estimated values are averaged over 20 trials
and the number of nodes in each trial was 105. It can
be concluded that the content distribution is very sensitive
to the distribution of sojourn time and, consequently, the
average number of nodes in the system. For example, when
λ = 0.17 s−1, there are 5 and 8.5 nodes in the system
on average for t̄s = 30 s and t̄s = 50 s, respectively. In
the first case the content distribution yields only 18% while
in the latter it reaches almost 84%. As the sojourn time
increases, the scheme becomes more efficient even when the
proportion of nodes bringing the contents is small. Table I
shows the arrival rate, average number of nodes (N̄ ), the
content distribution probability (Pcd) and the average time
between two arrivals of the contents (Tc) in a scenario when
p = 0.1% and t̄s = 50 s.

Table I
λ[s−1] 0.14 0.15 0.16
N̄ 7 7.5 8
Pcd [%] 58 67 79
Tc [minutes] 119 111 104

Notice that for the average inter-arrival time of the con-
tents Tc = 104 minutes and 8 nodes in the system, the
probability of obtaining contents is 79%, which is a notable
result bearing in mind that the average sojourn time is less
than one minute.

Since we observe that content distribution works even for
very low injection probabilities, we further investigate the
impact of node sojourn time on this metric. Fig. 2(c) depicts
the probability (Pc) that the system is infected, that is the
probability the contents reside in the system as a function of
the average sojourn time. The distribution of sojourn time
is exponential and the mean value has support on interval
[30, 600] s. The nodes arrive according to a Poisson process
and the arrival of contents is a thinned Poisson process
with probability p. Parameters λ and p in four simulation
setups are tuned so that the contents arrival rate is the same
in all cases and equals λp = 0.0002 (the contents arrive
every 83 minutes on average). As this measure indicates
the proportion of time the contents reside in the area, we
infer that the model encompasses the virtual storage effect–
the contents remain despite absence of a storage node,
e.g. an access point [13]. Having low inflow of nodes
(λ = 0.01 s−1), the probability Pc slowly increases
with the increase of the sojourn time. The effect becomes
more evident at higher node arrival rates. Intuitively, this
is an obvious consequence of nodes queuing and the
all-peers-in-range connectivity in the system.
Then, we evaluate the impact of the node sojourn time

distribution on content distribution. In the next set of simu-
lations, nodes arrive according to a Poisson process with the
rate λ = 0.1 s−1. Plots in Fig. 2(b) show the content distribu-
tion for the following sojourn time distributions: exponential,
three uniform distributions and Pareto distribution. The mean
value for all distributions is 50 s. Uniform distributions have
support on intervals: [10, 90] s, [30, 70] s and [40, 60] s and
Pareto distribution has the minimum value 30 s and shape
parameter α = 2.5. The injection probabilities p for two sets
of curves are 1% and 5%. The difference in performance
is not significant and note that the exponential distribution
achieves the highest performance, followed by Pareto and
uniform distribution. This inference can be used to simplify
the modeling of departure process and assume the inter-
departure time is exponentially distributed.
In contrary to node sojourn time distribution, the arrival

process affects content distribution, as the curves in Fig.3(a)
show. The mean arrival rate λ is the same for all the
processes: a Poisson process, an Erlang arrival process
consisting of 4 stages, each with the rate λ/4, and a two-
stage hyper-exponential process with parameters 0.35λ and
5.7λ for the rates, and 0.31 and 0.69 selection probabilities
for the first and the second phase, respectively. The coeffi-
cient of variation for the Erlang distribution is 1/2 and it is
2 for the hyper-exponential distribution. We look into two
series of curves for Pcd: for the lower series, probability
p = 1% and for the higher series p = 5%. We can see
that when p = 1%, the burstiness of the hyper-exponential
arrival process has negative effect on the distribution since
many arrivals occur in a short time, but the proportion of
content-carriers is low.
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Figure 2. Content distribution as a function of arrival rate and (a) different injection probabilities p. The node sojourn time is exponentially distributed.
(b) node sojourn time distributions. (c) Probability the content is in the area. The content arrival rate is λp = 0.0002. The arrival process is Poisson for
(a)-(c).
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Figure 3. (a) Content distribution for various arrival processes. The node sojourn time is exponentially distributed with mean value 50 s. (b) Tail distribution
function of contact duration for different sojourn time distributions. (c) Two-dimensional area consisting of zero-dimensional building blocks.

B. Contact Duration
An opportunistic content distribution system depends on

the characteristics of human mobility and behaviour that can
be studied, but not tuned for optimizing the performance.
Our epidemic scheme presumes data transfer in zero-time.
In reality, a transfer consists of the time it takes the nodes
to discover the neighbour, to establish a connection and the
actual time needed to transfer the data. Therefore, one of
the essential issues in system design is to minimize the
connection setup time to make even contacts with shorter
duration useful. In scenarios where many of shorter con-
tacts occur, this optimization can boost the dissemination
significantly. Imposing the requirement for the minimum
time tmin for connection establishment and data transfer,
we consider only contacts that last longer than tmin to be
useful. As an illustration, suppose that the data of interest is a
media file, e.g. an mp3 song (typically of size around 5 MB)
which can be sent over 802.11 in a few seconds. Fig. 3(b)
illustrates the tail distribution of a random variable T , given
by P{T > tmin}, for exponential (plotted as solid line),
uniform (dotted line) and Pareto distribution (dashed line).
The mean value for all distributions is 50 s. For a required
tmin = 10 s, the lowest probability is associated with
exponential distribution, 67%. While there are still many
contacts longer than tmin, the assumption of zero-transfer
time needs to be reconsidered, since we cannot account for
all contacts as useful.

V. A ZERO-DIMENSIONAL MODEL AS A BUILDING BLOCK

The idea of modeling larger areas from zero-dimensional
blocks is illustrated in Fig. 3(c). Consider the area A to be,
for example a floor in a building and assume areas A1,
A2, A3 and A4 represent offices in that building. Since the
offices are of relatively small dimensions and we assume
free flow of pedestrians, we can model those areas as
zero-dimensional blocks. C represents an area where few
contacts occur or those contacts are not considered useful
(e.g a corridor). The entire area can be modelled as a
queueing network, where the white nodes in the network
represent the offices and the dark one represents the corridor.
Mobile users can be tracked on their path as they visit the
network nodes and we evaluate content dissemination from
their traces. The dark node does not have any impact on
dissemination, but introduces waiting time, which should
also be taken into account. The advantages with this model
in comparison to other spatial models are:
− Simplicity—rather than observing the continuous space
and capturing movement and connectivity characteristics
of the nodes in the system, this model introduces discrete
space analysis.

− Computational tractability—concatenating smaller areas,
represented by zero-dimensional model, larger spaces can
be built up from the basic building blocks. The entire model
can be represented as a queuing network.
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Figure 4. (a) Floor plan partitioned into 7 areas. (b) Number of attendees in an area vs time (scatter plot) and average number of attendees (solid line).
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Figure 5. Probability mass function per time slot (30 s) for: (a) number of arrivals, (b) queue length.

VI. MAPPING THE MODEL TO REAL-WORLD SCENARIOS
Following the idea in the previous section, we study

a specific mobility scenario, showing that it can be mapped
to a queueing network model.
The Attendee Meta-Data set [14] contains RFID track-

ing data, collected from the HOPE (Hackers On Planet
Earth) conference held in July 2008 in New York.
Conference attendees received RFID badges that could
identify and track them uniquely across the conference
space. Badges would send out the beacons to RFID
readers roughly every 30 s, locating the attendees in
one of 21 zones on two floors of the conference hotel.
The traces were collected from 1280 participants during
3 conference days; we choose the time window from
12 p.m. to 18 p.m. during the second day of the conference,
when the highest number of the participants were active
and traceable (1113 attendees). We focus our attention
on one of the floors which is characterized by higher
mobility. Zones located on this floor were, for instance:
demonstration area, information desk, exhibition area, ven-
dor and network operators stands; the other floor zones
comprised mostly lecture rooms.

Fig. 4(a) depicts the floor-plan consisting of seven differ-
ent areas. Initially, this floor was partitioned into 15 zones;
we introduce a simplification of the model by merging
adjacent zones and forming larger areas. Area 1 is different
from the others, since this is where the escalators are located
and all attendees that move from one floor to the other
will visit it. The number of nodes in an area versus time
is plotted in Fig. 4(b). Fluctuations during 6 hour period
are obvious for areas 1, 2 and 5, while stationarity might
be assumed for areas 3, 4, 6 and 7. The distributions of
sojourn times show strong power-law decay with the mean
values 62.0 s, 50.8 s, 53.6 s and 61.2 s for areas 3, 4, 6
and 7, respectively, and 233 s, 222 s and 147 s for the
other three areas. We find that the arrival rates to areas
range from 0.13 s−1 (area 7) to 0.27 s−1 (area 4) and
λ > 0.2 s−1 for the rest. With regards to these results,
we refer to Fig. 2(a) where we showed that the probability
of content distribution is almost equal to 1 when t̄s > 50 s,
λ > 0.2 s−1, which is the case for areas 3, 4, 6 and 7.
Further, as longer average sojourn times were estimated for
the corner areas, referring to Fig. 2(c), we can also assume
high dissemination in these areas.
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We estimated the probability mass function for the num-
ber of arrivals and the queue lengths during a time slot
of 30 s (the time between two consecutive timestamps).
Fig. 5 shows the corresponding PDFs for all of the areas,
where the samples from the traces are represented with dots.
The solid lines are Poisson distributions with mean values
equal to those estimated from the traces. Hence, we observe
that the PDFs corresponding to areas 3, 4, 6 and 7 show
a good match with a Poisson distribution. Our future work
will address the question whether the discrepancies between
the model and real traces (found in areas 1, 2 and 5) affect
the system performance.

VII. CONCLUSION

In this work we have addressed mobile peer-to-peer
content distribution in an open system where pedestrians
exchange contents over short range radios in an opportunistic
manner. We proposed an analytic queueing model to study
the performance of content dissemination scheme in smaller
areas where high connectivity of nodes can be assumed. Our
findings are the following:
− The epidemic dissemination is found to be feasible even
in critical cases for the system, when the inflow of nodes
carrying the contents is relatively low. We also observe
that the system provides virtual storage for the contents,
i.e. contents resides in the system over long proportion of
time, without support of a stationary node that could assist
the distribution.

− On one hand, the scheme is not sensitive to node sojourn
time distribution, which simplifies modeling of the system,
since we can presume exponential distribution and exploit
its memoryless property. On the other hand, the impact
of nodes’ arrival process is significant and becomes more
pronounced for lower injection probabilities.

− We found that the assumptions of arrival process in our
model show a reasonable approximation of those extracted
from the real mobility patterns.
In addition, we propose a method for modeling and

evaluating content distribution in larger spaces by building
networks out of the basic zero-dimensional model.
Our future work will focus on studying characteristics

of content distribution in such two-dimensional areas. We
will compare these to two-dimensional models in which
there is internal, non-negligible mobility which introduces
contact opportunities, but also limits the connectivity of
nodes inside. We will conduct simulations to compare the
discrete space and the continuous space models and evaluate
under what conditions the two-dimensional model may be
approximated by networks of zero-dimensional models.
Further, we will investigate whether our model can capture

other (and larger) datasets and different mobility scenarios.
We will also study the idea of modeling vast spaces as
queueing networks.
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