# Two-Row Set-Valued Tableaux: Catalan ${ }^{+k}$ Combinatorics 

Alexander Lazar Univesiste Llbre de Burelles, Svante Linusson ${ }^{\dagger}$ KTH Roval Institute of Tecchology

## Usual Representation

Filling of Ferrers diagram for $\lambda \vdash n$ with $k$ extra elements

$$
S=\begin{array}{|c|c|c|c|}
\hline 1 & 2 & 7 & 8 \\
\hline 3 & 4,5 & 11 & 13 \\
\hline 6,9,10 & 12 & 14.15 & 16
\end{array}
$$

$\mathrm{SYT}^{+k}(\lambda)=$ set of set-valued SYT of $\lambda$ with $k$ extra elts

## Set-Valued Descents

$i \in[n+k]$ is a descent of $S \in \mathrm{SYT}^{+k}(\lambda)$ if:

- $i, i+1 \in \lambda^{(j)}$ and $i$ below $i+1$, or
- $i$ is an extra element
$\mathrm{D}^{+k}(S)=$ set of set-valued descents

$$
\begin{gathered}
\operatorname{comaj}^{+k}(S):=\sum_{i \in \mathrm{D}^{+k}(S)}(n+k-i) \\
\mathrm{D}^{+3}(S)=\{6,12\} \cup\{5,9,10,15\} \\
\operatorname{comaj}^{+3}(S)=10+4+11+7+6+1=39
\end{gathered}
$$

## Comaj Generating Function

Enumeration is very difficult in general. Special case of rectangular shape with $k=1$ is known:

Theorem (Hopkins - Lazar - Linusson [2]):
For all positive integers $a, b$, we have

$$
\sum_{\mathrm{SYT}}{ }^{+1}(a \times b) \mathrm{q} q^{\mathrm{comaj}^{+1}(S)}=\frac{[a]_{q}[b]_{q}}{[a+b]_{q}}[a b+1]_{q}!\prod_{i=0}^{a-1} \frac{[i]_{q}!}{[b+i]_{q}!} .
$$

Best known general results when $q=1$ are determinental formulas of Anderson-Chen-Tarrasca [1]

## Alternative Representation

A filtration $\emptyset=\lambda^{(0)} \subseteq \lambda^{(1)} \subseteq \cdots \lambda^{(k)} \subseteq \lambda^{(k+1)}=\lambda$

along with an outer corner for each $\lambda^{(i)}$ and an ordinary SYT of shape $\lambda$

## Catalan Combinatorics

In two-row case, fixing the total number of elements yields good behavior:
Theorem (Lazar - Linusson)
For fixed $i, n$ with $0 \leq i \leq n$,

$$
\sum_{2 b+k-i=n}\left|\mathrm{SYT}^{+k}((b, b-i))\right|=\binom{2 n-2}{n-i-1}-\binom{2 n-2}{n-i-2}+\binom{n-2}{n-i}
$$

In particular, when $i=0$

$$
\sum_{2 b+k=n}\left|\mathrm{SYT}^{+k}((b, b))\right|=\operatorname{Cat}(n-1)
$$

Further refinements to the Narayana and Kreweras numbers also exist

For example, when $n=4, i=0$, we have

Bijections to Other Catalan Models: 321-Avoiding Permutations and Motzkinlike paths

$$
\begin{aligned}
& \begin{array}{cccccccccc|}
\hline 1,23,4,6 & 7 & 10 \\
\hline 5,8 & 9 & 11,12 & 13,14
\end{array} \stackrel{\alpha}{\mapsto} \quad \overline{1} 58 \overline{2} \overline{3} \overline{4} 9 \overline{6} 1112 \overline{7} 13 \overline{10}
\end{aligned}
$$

[1] Dave Anderson, Linda Chen, and Nicola Tarasca, K-classes of Brill-Noether Loci and a Determinantal Formula, Int. Math. Res. Not. IMRN (2022), no. 16, 12653-12698. MR 4466009
[2] Sam Hopkins, Alexander Lazar, and Svante Linusson, On the q-enumeration of barely set-valued tableaux and plane partitions, European J. Combin 113 (2023), Paper No. 103760, 29pp. MR 4611147

## More Lattice Paths

## Theorem (Lazar-Linusson):

Consider the following restrictions on bicolored Motzkin paths from $(0,0)$ to $(n, 0)$

1. No $u$ steps on $y=0$
2. No $d$ steps before the first down-step.

We have

- $|\operatorname{Motz}(n)|=\operatorname{Cat}(n+1)$
- $\left|\operatorname{Motz}_{\{1\}}(n)\right|=\left|\operatorname{Motz}_{\{2\}}(n)\right|=\operatorname{Cat}(n)$
- $\left|\operatorname{Motz}_{\{1,2\}}(n)\right|=\operatorname{Cat}(n-1)$,
where $\operatorname{Motz}_{X}(n)$ is the set of bic. Motzkin paths subject to the conditions in $X \subseteq\{1,2\}$.


## Expected \# Columns?

Conjecture: Fix $n \geq 3$. Sampling uniformly at random from $\bigsqcup_{2 \times b+k=n} \operatorname{SYT}^{+k}((b, b))$, the expected value of $b$ is

$$
\frac{(n-2)(n+3)}{2(2 n-3)}
$$

## $q$-Catalan?

$$
\tilde{\operatorname{Cat}}_{n}(q):=\sum_{2 b+k=n+1}\left(\sum_{S \in \operatorname{SYT}^{+k}(2 \times b)} q^{\operatorname{comaj}^{+k}(S)}\right)
$$

$$
\begin{array}{c|c}
n & \tilde{\operatorname{Cat}}_{n}(q) \\
\hline 1 & 1 \\
\hline 2 & q+1 \\
\hline 3 & q^{3}+2 q^{2}+q+1 \\
\hline 4 & q^{6}+2 q^{5}+3 q^{4}+3 q^{3}+2 q^{2}+2 q+1 \\
\hline 5 & q^{10}+2 q^{9}+3 q^{8}+7 q^{7}+6 q^{6}+5 q^{5}+6 q^{4}+7 q^{3}+3 q^{2}+q+1
\end{array}
$$

## Question

These are not any of the usual $q$-Catalan numbers. Is there a better formula?

