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Introduction and background

Introduction to structured optimal transport (OT)

▶ Let 𝜇𝑡 be given prob. measures on X ⊆ ℝ for 𝑡 = 0, 1,… , 𝑇

▶ Suppose that X is contained in a finite number of points, 𝑛

min
𝑄∈ℝ𝑛𝑇+1

+

⟨𝐶, 𝑄⟩

subject to 𝑃𝑡(𝑄) = μ𝑡, 𝑡 = 0, 1,… , 𝑇
(1)

Problem (1) is very large, 𝑛𝑇+1 variables
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Introduction and background

Introduction to structured optimal transport (OT) II

▶ Entropic regularization to solve bi-marginal (𝑇 = 1) problems for large 𝑛 (Cuturi 2013)

min
𝑄∈ℝ𝑛×𝑛

+

⟨𝐶, 𝑄⟩ + 𝜀𝐷(𝑄)

subject to 𝑃𝑡(𝑄) = μ𝑡, 𝑡 = 0, 1
𝑢(𝑘+1)
𝑡 ← (μ𝑡⊙𝑢

(𝑘)
𝑡 )⊘𝑃𝑡(𝑄

(𝑘)), 𝑘 = 1, 2,…
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Introduction to structured optimal transport (OT) II

▶ Entropic regularization to solve bi-marginal (𝑇 = 1) problems for large 𝑛 (Cuturi 2013)

min
𝑄∈ℝ𝑛×𝑛

+

⟨𝐶, 𝑄⟩ + 𝜀𝐷(𝑄)

subject to 𝑃𝑡(𝑄) = μ𝑡, 𝑡 = 0, 1
𝑢(𝑘+1)
𝑡 ← (μ𝑡⊙𝑢

(𝑘)
𝑡 )⊘𝑃𝑡(𝑄

(𝑘)), 𝑘 = 1, 2,…

▶ Not enough formulti-marginal (𝑇 ≥ 2) problems—must exploit sparse structures!

When 𝐶 is of the form

𝐶(𝑖0,… , 𝑖𝑇) =
𝑇
∑
𝑡=1

𝐶𝑡(𝑖𝑡−1, 𝑖𝑡), 𝑖0,… , 𝑖𝑇 = 1,… , 𝑛

for 𝐶𝑡 ∈ ℝ𝑛×𝑛 the projection 𝑃𝑡(𝑄
(𝑘)) = 𝑣𝑡 ⊙ 𝑢(𝑘)

𝑡 ⊙ 𝑤𝑡 for some vectors 𝑣𝑡, 𝑤𝑡 ∈ ℝ𝑛

(Elvander, Haasler, Jakobsson, Karlsson 2020)
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Introduction and background

The martingale optimal transport (MOT) problem

Our setting:

▶ Let (Ω,ℱ,ℚ, 𝑆) refer to a a probability space (Ω,ℱ,ℚ) together with a stochastic process
𝑆 ∶ Ω × {0, 1,… , 𝑇} → ℝ

▶ We consider (Ω,ℱ,ℚ, 𝑆) amarket model if 𝑆 a ℚ-martingale
� suppose that the interest rate is zero

▶ Let 𝜇𝑡 for 𝑡 ∈ 𝒯 ⊂ {0, 1,… , 𝑇} be given marginals of 𝑆, i.e. 𝜇𝑡 = Law(𝑆𝑡)
� suppose that the given marginals are in convex order
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Introduction and background

The martingale optimal transport (MOT) problem II
The MOT problem is an OT problem with an additional martingale constraint

inf
(Ω,ℱ,ℚ,𝑆)

𝔼ℚ[𝜙(𝑆0, ..., 𝑆𝑇)]

subject to 𝑆𝑡 ∼ℚ 𝜇𝑡, 𝑡 ∈ 𝒯
𝔼ℚ[𝑆𝑡|𝜎(𝑆0, ..., 𝑆𝑡−1)] = 𝑆𝑡−1, 𝑡 = 1, 2, ..., 𝑇

▶ Introduced to address robust pricing ∼ 10 years ago
(Beiglböck, Henry-Labordère, Penkner 2013 & Galichon, Henry-Labordère, Touzi 2014)

▶ Entropic regularization on bi-marginalMOT problems (De March 2018)

▶ Note: martingale constraint links 𝑡th marginal to all earlier marginals
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Our method

Problem formulation
We consider problems with payoffs of the form

𝜙(𝑆0, ..., 𝑆𝑇) =
𝑇
∑
𝑡=1

𝜙𝑡(𝑆𝑡−1, 𝑋𝑡−1, 𝑆𝑡, 𝑋𝑡), 𝑋𝑡 = {
ℎ0(𝑆0), 𝑡 = 0
ℎ𝑡(𝑆𝑡−1, 𝑋𝑡−1, 𝑆𝑡, 𝑋𝑡), 𝑡 = 1,… , 𝑇

Many payoff functions of financial interest belongs to this class. Some examples are:

Choice of 𝑋 Example of derivative
Rolling max 𝑋𝑡 = max0≤𝑗≤𝑡{𝑆𝑗} Lookback options
Rolling mean 𝑋𝑡 = (𝑡 + 1)−1 ∑𝑡

𝑗=0 𝑆𝑗 Asian options
Realised variance 𝑋𝑡 = 𝑡−1 ∑𝑡

𝑗=1(log(𝑆𝑗+1/𝑆𝑗))
2 Variance swaps

Indicator 𝑋𝑡 = 𝜒𝐴0×⋯×𝐴𝑡
(𝑆0, ..., 𝑆𝑡) Barrier options

Sum of truncated rel. return 𝑋𝑡 = ∑𝑡
𝑗=1max{min{(𝑆𝑗 − 𝑆𝑗−1)/𝑆𝑗, 𝐶}, 0} Cliquet options

Counter 𝑋𝑡 = ∑𝑡
𝑗=0 𝜒𝐴(𝑆𝑗) Parisian options
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Our method

Problem reformulation — reduce the path dependency

inf
(Ω,ℱ,ℚ,𝑆)

𝑇

∑
𝑡=1

𝔼ℚ[𝜙𝑡(𝑆𝑡−1, 𝑋𝑡−1, 𝑆𝑡, 𝑋𝑡)]

s.t. 𝑆𝑡 ∼ℚ 𝜇𝑡, 𝑡 ∈ 𝒯
𝔼ℚ[𝑆𝑡|𝜎(𝑆0, ..., 𝑆𝑡−1)] = 𝑆𝑡−1, 𝑡 = 1,… , 𝑇

(2)

inf
(Ω,ℱ,ℚ,𝑆)

𝑇

∑
𝑡=1

𝔼ℚ[𝜙𝑡(𝑆𝑡−1, 𝑋𝑡−1, 𝑆𝑡, 𝑋𝑡)]

s.t. 𝑆𝑡 ∼ℚ 𝜇𝑡, 𝑡 ∈ 𝒯
𝔼ℚ[𝑆𝑡|𝜎(𝑆𝑡−1, 𝑋𝑡−1)] = 𝑆𝑡−1, 𝑡 = 1,… , 𝑇

(3)

Theorem

The MOT problem (2) and the OT problem (3) are equivalent in the sense that any optimal solution
of problem (2) is also an optimal solution to problem (3), while any optimal solution of problem (3)
can be used to construct an optimal solution to problem (2). The problem values coincide.

Proof:
▶ Construct a Markov process ( ̃𝑆, 𝑋̃) with the
same marginal distributions as (𝑆, 𝑋)

▶ Then compare the feasible sets
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Our method

Formulate as an LP

inf
(Ω,ℱ,ℚ,𝑆)

𝑇

∑
𝑡=1

𝔼ℚ[𝜙𝑡(𝑆𝑡−1, 𝑋𝑡−1, 𝑆𝑡, 𝑋𝑡)]

s.t. 𝑆𝑡 ∼ℚ 𝜇𝑡, 𝑡 ∈ 𝒯
𝔼ℚ[𝑆𝑡|𝜎(𝑆𝑡−1, 𝑋𝑡−1)] = 𝑆𝑡−1, 𝑡 = 1,… , 𝑇

(3)

min
𝑄∈ℝ(𝑛𝑆𝑛𝑋)𝑇+1

+

⟨𝐶, 𝑄⟩

s.t. 𝑃𝑆
𝑡 (𝑄) = μ𝑡, 𝑡 ∈ 𝒯

(𝑃𝑡−1,𝑡(𝑄) ⊙ Δ)1𝑛𝑆𝑛𝑋
= 0𝑛𝑆𝑛𝑋

, 𝑡 = 1,… , 𝑇

(4)

where 𝐶(𝑖0,… , 𝑖𝑇) = ∑𝑇
𝑡=1 Φ𝑡(𝑖𝑡−1, 𝑖𝑡) + 𝐼𝑡(𝑖𝑡−1, 𝑖𝑡) for penalties 𝐼𝑡 and Δ(𝑖𝑡−1, 𝑖𝑡) = (1𝑛𝑋

⊗ 𝑠)(𝑖𝑡) − (1𝑛𝑋
⊗ 𝑠)(𝑖𝑡−1)

Proposition

Suppose that we restrict problem (3) to models such that the support of the price process at each
time point is contained within 𝑛𝑆 ∈ ℕ points. Then problems (3) and (4) are equivalent.
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Our method

Solving the LP— regularization and coordinate dual ascent
▶ Entropic regularization

min
𝑄∈ℝ(𝑛𝑆𝑛𝑋)𝑇+1

+

⟨𝐶, 𝑄⟩ + 𝜀𝐷(𝑄)

s.t. 𝑃𝑆
𝑡 (𝑄) = μ𝑡, 𝑡 ∈ 𝒯

(𝑃𝑡−1,𝑡(𝑄) ⊙ Δ)1𝑛𝑆𝑛𝑋
= 0𝑛𝑆𝑛𝑋

, 𝑡 = 1,… , 𝑇

(5)

𝐷(𝑄) = ⟨𝑄, log(𝑄) − 1⟩
regularizing entropy term,
scaled with 𝜀 > 0 small

▶ The dual of the regularized problem

max
𝜆,𝛾

∑
𝑡∈𝒯

𝜆⊤
𝑡 μ𝑡 − 𝜀⟨𝐾,𝑈𝜆 ⊙ 𝐺𝛾⟩ (6)

𝐾(𝑖0,… , 𝑖𝑇) =
𝑇

∏
𝑡=1

𝐾𝑡(𝑖𝑡−1, 𝑖𝑡)

𝐺𝛾(𝑖0,… , 𝑖𝑇) =
𝑇

∏
𝑡=1

𝐺𝑡(𝑖𝑡−1, 𝑖𝑡)

𝑈𝜆(𝑖0,… , 𝑖𝑇) = ∏
𝑡∈𝒯

(1𝑛𝑋
⊗ 𝑢𝑡)(𝑖𝑡)
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Our method

Solving the LP— regularization and coordinate dual ascent II

▶ Optimality conditions for the dual problem (6):

𝑢𝑡 = μ𝑡 ⊘ 𝑃𝑆
𝑡 (𝐾 ⊙ 𝑈−𝑡

𝜆 ⊙ 𝐺𝛾), 𝑡 ∈ 𝒯
(𝑃𝑡,𝑡+1(𝐾 ⊙ 𝑈𝜆 ⊙ 𝐺𝛾) ⊙ Δ)1𝑛𝑆𝑛𝑋

= 0𝑛𝑆𝑛𝑋
, 𝑡 = 0, 1,… , 𝑇 − 1

▶ The minimizing primal variable:

𝑄𝜆,𝛾 = 𝐾 ⊙ 𝑈𝜆 ⊙ 𝐺𝛾

Linn Engström KTH 9/20



Our method

Exploiting the structure for fast computation
Theorem

Define two families of help vectors 𝜓̂ and 𝜓 via the recursions

𝜓̂𝑡 = {
1𝑛𝑆𝑛𝑋

, 𝑡 = 0
(𝐾𝑡 ⊙ 𝐺𝑡)

⊤ (𝜓̂𝑡−1 ⊙ 𝑢̄𝑡−1), 𝑡 = 1,… , 𝑇
, 𝜓𝑡 = {

1𝑛𝑆𝑛𝑋
, 𝑡 = 𝑇

(𝐾𝑡+1 ⊙ 𝐺𝑡+1) (𝜓𝑡+1 ⊙ 𝑢̄𝑡+1) , 𝑡 = 0,… , 𝑇 − 1

where

𝑢̄𝑡 = {
1𝑛𝑋

⊗ 𝑢𝑡, 𝑡 ∈ 𝒯
1𝑛𝑆𝑛𝑋

, 𝑡 ∈ {0,… , 𝑇}\𝒯.

Then 𝜆 and 𝛾 are optimal variables for the dual problem (6) if and only if the following equations hold

𝑢𝑡 = μ𝑡 ⊘ 𝑃𝑆(𝜓̂𝑡 ⊙ 𝜓𝑡), 𝑡 ∈ 𝒯,
𝜓̂𝑡 ⊙ 𝑢̄𝑡 ⊙ (𝐾𝑡+1 ⊙ 𝐺𝑡+1 ⊙ Δ) (𝜓𝑡+1 ⊙ 𝑢̄𝑡+1) = 0𝑛𝑆𝑛𝑋

, 𝑡 = 0,… , 𝑇 − 1.
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Our method

Exploiting the structure for fast computation II

▶ Projections are replaced by matrix-vector products

▶ The help vectors 𝜓 and 𝜓̂ are defined recursively

▶ No need to form and store the full (𝑇 + 1)-dimensional tensors 𝐾,𝑈𝜆, 𝐺𝛾 and 𝑄𝜆,𝛾

Once𝑄𝜆,𝛾 optimal has been found, the projections 𝑃𝑡(𝑄𝜆,𝛾) and 𝑃𝑡1,𝑡2
(𝑄𝜆,𝛾) are recovered via matrix-

vector products. Robust price obtained as

⟨Φ,𝑄𝜆,𝛾⟩ =
𝑇
∑
𝑡=1

⟨Φ𝑡, 𝑃𝑡−1,𝑡(𝑄𝜆,𝛾)⟩.
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Numerical examples

The maximum of the maximum

▶ Consider the maximum process, 𝑋𝑡 ∶= max𝑗∈{0,…,𝑡}𝑆𝑗,
𝑡 = 0, 1,… , 𝑇

▶ Suppose that 𝜇𝑇 and 𝜇0 are given:

� 𝜇𝑇 is as given in the figure — it is centered in 1
2

� 𝜇0 = 𝛿 1
2

What’s the law of 𝑋𝑇 for the martingale model (Ω,ℱ,ℚ, 𝑆) that maximizes 𝔼ℚ[𝑋𝑇]
while respecting 𝜇0 and 𝜇𝑇?
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Numerical examples

The maximum of the maximum II
The corresponding continuous-time solution exists and is known (Hobson 1998)

▶ The law of the maximum for the maximizing continuous-time martingale model
(Ω∗,ℱ∗, ℚ∗, 𝑆∗) is (Brown, Hobson, Rogers 2001)

ℚ∗(𝑋∗
𝑇 ≥ 𝐵) = min

0≤𝑦≤𝐵

1
𝐵 − 𝑦

∫(𝑠 − 𝑦)+d𝜇𝑇(𝑠), 𝐵 >
1
2

(7)
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Numerical examples

The robust price of a digital option
▶ Let 𝜇0 and 𝜇𝑇 be as in the previous example

▶ The payoff of a digital option with barrier 𝐵 > 1
2 is 𝜙(𝑆0,… , 𝑆𝑇) = 𝜒[𝐵,∞)(max𝑡∈{0,…,𝑇}𝑆𝑡)

What’s the robust price of a digital option, considering discrete-timemartingale
models (Ω,ℱ,ℚ, 𝑆) that respects 𝜇0 and 𝜇𝑇?

▶ For 𝐵 fixed, enough to use 𝑇 = 2 to obtain an equally optimal
solution (Föllmer, Schied pp.416–419)

▶ Note that 𝔼ℚ[𝜒[𝐵,∞)(max𝑡∈{0,…,𝑇}𝑆𝑡)] = ℚ(max𝑡∈{0,…,𝑇}𝑆𝑡 ≥ 𝐵)
— cf. equation (7)

▶ By repeatedly optimizing for each individual 𝐵, we recover the law
of the maximum from the previous example
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Numerical examples

Late and early transports

▶ For 𝑇 = 50, let 𝜇0 and 𝜇50 be given as in the figure

▶ Consider 𝜙(𝑆0,… , 𝑆𝑇) = (𝑇 + 1)−1 ∑𝑇
𝑡=0 𝑆

2
𝑡

(arithmetic mean of a convex function)

Since 𝔼ℚ[𝑆
2
𝑇] ≥ 𝔼ℚ[𝑆

2
𝑇−1] ≥ … ≥ 𝔼ℚ[𝑆

2
1] ≥ 𝔼ℚ[𝑆

2
0],

𝔼ℚ[𝜙(𝑆0, 𝑆0,… , 𝑆0, 𝑆𝑇⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
“late transport”

)] ≤ 𝔼ℚ[𝜙(𝑆0, 𝑆1,… , 𝑆𝑇−1, 𝑆𝑇)] ≤ 𝔼ℚ[𝜙(𝑆0, 𝑆𝑇,… , 𝑆𝑇⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
“early transport”

)]

▶ Late (early) transport solves the lower (upper) bound MOT problem
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Numerical examples

Late and early transports II
Marginals of the computed optimal solutions:

Lower bound problem Upper bound problem

Note that this payoff is of the form 𝜙(𝑆0, ..., 𝑆𝑇) = ∑𝑇
𝑡=1 𝜙𝑡(𝑆𝑡−1, 𝑆𝑡)—no process 𝑋 needed!

▶ Reduces the size, (𝑛𝑆𝑛𝑋)
𝑇+1, of the problem

▶ Optimal solutions corresponds to 𝑆 being Markov under ℚ
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Numerical examples

The robust price of an Asian option

▶ Consider pricing an Asian straddle with strike 30,

𝜙(𝑆0,… , 𝑆𝑇) = |𝑋𝑇 − 30|,

where 𝑋𝑡 ∶= (𝑡 + 1)−1 ∑𝑡
𝑗=0 𝑆𝑗, 𝑡 = 0,… , 𝑇, is the rolling arithmetic mean.

▶ Optimal solution is

� ...known when𝒯 = {0, 𝑇}
� ...conjectured when𝒯 = {0, 𝑇0, 𝑇} for 0 ≤ 𝑇0 ≤ 𝑇 (Stebegg 2014)
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Numerical examples

The robust price of an Asian option II

▶ The marginals of the computed optimal solution of the lower bound MOT

▶ Marginals subject to constraints are marked with green
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Conclusion

▶ Accumulation of non-zero errors in the (martingale) constraints?

▶ Convergence of optimal solutions of the regularized problem as 𝜀 → 0?

▶ Other ideas...?

Thanks for your attention!
Questions?
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