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Brinellvägen 23, 10044, Stockholm Sweden

†Environmental and Health Administration, City of Stockholm,
Fleminggatan 4, 10420, Stockholm

‡College of Electrical Engineering, Zhejiang University, Hangzhou, China
Corresponding author: X. Ma (email: liang@kth.se)

Abstract—Forecasting air pollution is an important activity for
developing sustainable and smart cities. Generated by various
sources, air pollutants distribute in the atmospheric environment
due to the complex dispersion processes. The emerging sensor
and data technologies have promoted the development of data-
driven approaches to replace conventional physical models in
urban air pollution forecasting. Nevertheless, it is still challenging
to capture the intricate spatial and temporal patterns of air
pollutant concentrations measured by heterogeneous sensors,
especially for long-term prediction of the multi-variate time
series data. This paper proposes a deep learning framework
for longer-term forecast of air pollutants concentrations using
air pollution sensing data, based on a conceptual framework of
meta-graph deep learning. The key modules in the framework
include meta-graph units and fusion layers, which are designed
to learn temporal and spatial correlations respectively. A detailed
case was formulated for forecasting air pollutants in Stockholm
using air quality sensing data, meteorological data and so on.
Experiments were conducted to evaluate the performance of
the proposed modelling framework. The computational results
show that it outperforms the baseline models and conventional
deterministic dispersion models, demonstrating the potential of
the framework to be deployed for the real air quality information
systems in Stockholm.

I. INTRODUCTION

According to the World Health Organisation (WHO), air
pollution is one of the leading causes of human mortality
worldwide [1]. Public information, regarding the expected
health risk associated with air pollutants concentrations of the
current day or future days, becomes very important to disclose
in European countries, but the challenge is to accurately
infer pollutant concentrations over a long-term horizon i.e.
forecasting hourly for future 24 hours and even several days
[2]. Spatial variability of air pollution concentration is influ-
enced not only by pollutants from local areas but also due to
regional transport [3]. The temporal fluctuation of air pollutant
concentrations is due to its complex non-linear relationship
with various exogenous factors, such as meteorological and
road traffic [4].
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Different approaches are established for modeling the vari-
ation of air pollutant concentrations, and can be categorized
into deterministic dispersion models and data-driven statistical
approaches. Deterministic models take multivariate inputs of
topography and meteorology, and simulate the transport and
dispersion of pollutants in the atmosphere[5]. Gaussian plume
models are widely applied in urban areas for estimating
impacts on atmospheric concentrations from different emission
sources [6]. Eulerian chemical transport models describe the
emission, transport, mixing, and chemical transformation of
trace gases and aerosols, and are part of the Copernicus
Atmosphere Monitoring Service (CAMS) model, which has
been applied to predict air pollution in Europe [7]. The
uncertainties of deterministic models come from uncertainties
of inputs, the validity of model forms etc.

On the other hand, data-driven approaches provided a new
way to carry out statistical prediction without explicitly repre-
senting the internal physical processes. Many recent studies
have applied statistical machine learning (ML) methods to
predict hourly or daily average pollutant concentrations using
meteorological and other inputs e.g. [8]. In addition, integra-
tion of ML, dispersion modeling and satellite measurements
have been used to capture the temporal and spatial distribution
of pollutant concentrations [9]. Most of these ML models
focused on air pollutant concentration data itself and modelling
of a single air pollutant. More recently, deep learning has
gained momentum in the application of air pollution forecasts.
Recurrent Neural Networks (RNNs) were applied for predic-
tion of air pollutants e.g. [10], [11]. CNN and Bi-LSTM [12]
were used for extraction of the spatial-temporal correlation
of the air pollutant PM2.5. Meanwhile, attention mechanisms
were also applied for air pollution forecast with RNN [13]
and Bayesian RNN [14]. None of these models consider other
exogenous factors such as meteorology, road traffic etc.

In parallel with the advancement of data-driven modeling
methods, small and cheaper sensors become increasingly
deployed for measuring air pollutant concentrations in large
spatial areas due to the development of Internet of Things (IoT)
technologies. They are promising to complement traditional
precision sensing stations that can mainly capture the temporal
variation of local pollutant concentration values in air quality
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Fig. 1: Deep learning framework for the proposed approach.

surveillance system. Following the technical trend, emerging
IoT air quality sensors have been evaluated for air pollutant
measurement near motorways in Stockholm [15]. It is believed
that such type of sensors will be increasing deployed for future
smart cities. The main objective of this study is to cater for
the trend, and develop a data-driven modeling framework that
may predict air pollutant concentrations using data collected
by heterogeneous types of sensors installed for a large spatial
area. Meanwhile. the framework should be general enough to
include not only air pollutant concentration values measured
hourly but also exogenous factors such as meteorological
condition.

II. METHODOLOGY

In this section, we introduce a novel deep-learning frame-
work to model air pollutant concentrations based on sensor
data from observation stations. The framework employs meta-
graph units and fusion layers to effectively extract dynamic
temporal and spatial correlations. The meta-graph units in-
tegrate diverse data sources to establish granular knowledge
bases whereas the fusion layers aggregate the abstracted tem-
poral features and capture station-to-station correlations.

A. Problem formulation

Air quality measurements are collected from air quality
sensors at each monitoring station. as,p

t represents the concen-
tration value of an pollutant p (for NOx, PM2.5, PM10 etc.) at
station s and time t,

Meteorological forecasts are generated by existing weather
forecasting systems. ms

t denote meteorological forecasts for

station s and time t, and it is a vector of temperature, wind
speed, humidity, etc. Deterministic forecasts are predicted us-
ing deterministic models. dets,p

t denote deterministic forecasts
of an pollutant p at monitoring station s and time t. Time
features refer to the temporal information associated with
each data sample. tt is a vector of tranformed timestamp
information.

Additional features are also constructed through statistical
analysis in the feature engineering process to expand the
feature space and facilitate the targeted extraction of relevant
features. Aggregate engineering features es,p

t are computed
using the historical data of an air pollutant concentration p
at station s and before time t, such as descriptive statistical
features in a rolling horizon and autoregressive features based
on correlation analysis.

Based on the notations above, the forecasting problem is
formulated to train a deep learning model F :

[âs1
t+1:t+h, â

s2
t+1:t+h, · · · , â

ss
t+1:t+h] = F(Xs1

t ,Xs2
t , · · · ,Xss

t ) (1)

where âs
t+1:t+h denotes a vector of predicted pollutant concen-

tration values at station s and h is the length of prediction
horizon. Xt = [xt−d+1,xt−d+2, · · · ,xt ]

⊤ ∈ RD×N is the input
tensor of each station, D is the historical memory size of
input tensor and N is the number of input features. xt is
the input data at time t, a concatenation of all input features
including historical pollutant data, meteorological forecasts,
deterministic forecasts, and other engineering features. In
principle, the model can be general to have different features
for different stations. But we simplify the notation here by
assuming consistent feature space for each station.



B. Deep learning framework

The proposed deep learning framework is shown in Figure
1, and is developed to carry out multi-step ahead forecast
for multivariate input data of air pollutant concentrations and
exogenous factors. The general model can be considered as
a combination of local meta-graph units and the fusion layer
part. Based on the specified features of each monitoring sta-
tion, the bottom meta-graph unit processes the input features,
and represents the temporal properties in the input sequence.
Furthermore, the abstracted temporal features are aggregated
into the fusion layer, which incorporates station-to-station spa-
tial correlations. In the end, the predicted values for all stations
are output separately after downscaling through multiple fully
connected networks and a fully connected network for each
station.

1) Meta-graph units: The meta-graph unit is designed to
extract local temporal context based on raw data. Considering
the time-series nature of the air pollutants, fully connected
layers and LSTM layers are used to extract temporal features
and reduce the dimension for a specific monitoring station
s. The detailed structure of the meta-graph unit is shown in
Figure 2.

For the meta-graph unit for station s, the local model can
be represented by

mgs
t = f (Xs

t ) = f ([xs
t−d+1,x

s
t−d+2, · · · ,xs

t ]
⊤) (2)

where xt = [at−h+1,m⊤
t ,det⊤t , t⊤t ,e⊤t−h+1] ∈ RN . It is worth

of mentioning that the aggregate features were calculated
using available measurement data before time t − h, whereas
meteorological, deterministic and time features are predicted
values at time t already available for training and inference.

2) Fusion layers: The fusion layer is designed to capture
the spatial correlation among different monitoring stations
using context information extracted from meta-graph units. A
multi-head attention (MHA) layer [16] and residual connection
are used to aggregate the spatial-temporal features among
stations. The detailed structure of the fusion layer is described
by

Zatt = MHA(mgs1
t ,mgs2

t , · · · ,mgss
t ) (3)

Mtot
t = Concat(mgs1

t ,mgs2
t , · · · ,mgss

t ) (4)
Z f us = LayerNorm(Zatt +Mtot

t ) (5)

where Zatt ∈ RS×H is the output of the multi-head attention
layer, Mtot

t ∈ RS×H is the concatenation of all meta-graph
units, Z f us ∈ RS×H is the output of the fusion layer, S is the
number of monitoring stations, H is the number of hidden
units in the meta-graph unit.

3) Prediction layers: A fully-connected network layer is
used to reduce the dimension of the processed information
generated by previous layers, and to output the correspond-
ing predicted values for each monitoring station utilizing
an individual fully-connected network layer for each station.
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Fig. 2: The meta-graph unit mgs is designed to model the local
temporal relation at the station s.

The detailed structure of the prediction layers is analytically
presented by

z f c = FC
(

f lat(Z f us)
)

(6)
âs

t+h = FCs(z f c) ∀s ∈
{

s1,s2, · · · ,ss
}

(7)

where z f c ∈ RS×H ′
is the output of the fully-connected layer,

which takes the flatten vector of Z f us as input. H ′ is the num-
ber of hidden units in the fully-connected layer, FCs(z f c) ∈R
is the output of the fully-connected layer for a specific
monitoring station s.

III. CASE STUDY

This section describes our experimental study for evaluating
the proposed deep learning model. In the experiment case, the
model was developed and trained for forecasting a single air
pollutant, NOx concentration value per hour, for the future
24 hours at three urban air quality surveillance stations in
Stockholm. Details of feature selection and baseline models
are illustrated in the study of [2].

A. Data

1) AQ measurements: First, NOx concentrations(ug/m3)
are collected from three monitoring stations of urban street
canyon sites in central Stockholm, including Hornsgatan(HG),
Folkungagatan(FG) and Sveavägen(SV). They are all located
in central Stockholm in Fig. 3.

The measurement data covers 500 days ( from 5 August
2020 to 31 December 2021), with 12335 samples in total. All
the data was collected at an hour intervals.



Fig. 3: The locations of three air pollutant monitoring stations
in Stockholm. Base map credits: © OpenStreetMap contribu-
tors.

2) Meteorological forecasts: As an essential part of the
Stockholm Air Quality system, meteorological data and fore-
casts are downloaded every day from the Swedish Meteoro-
logical and Hydrological Institute(SMHI). The meteorological
forecasts extend over 10 days and are a combination of outputs
from several regional and global numerical weather prediction
models, including pressure, temperature, precipitation, cloudi-
ness, wind speed, wind direction, relative humidity, boundary
layer height and so on.

3) Deterministic forecasts: Considering emissions and dis-
persion at the scales of country, region and street, three dif-
ferent deterministic physical models are integrated to predict
AQ concentrations, including the CAMS ensemble model,
the Gaussian dispersion model and the Operational Street
Pollution Model (OSPM). This prediction has been used as
an essential part of the Stockholm Air Quality Information
system at the beginning. The integrated results are published
once a day, and the predicted values cover the future 3 days
(72 hours).

4) Engineering features: The engineering features are the
processed information from the raw data to serve the forecast-
ing model. The features include mainly two categories:

• Autocorrelation features: 24-hour lagged air pollutant
concentrations based on autocorrelation analysis.

• Aggregate statistical features: The mean, median, mini-
mum and maximum values of the rolling 24 hour period.

B. Baseline Models

Three models, already implemented in the Stockholm Air
Quality System [2], are applied in this study as baseline
models for comparison purposes. These models are:

1) Random Forest: Random Forest [17] is an ensemble
method for regression analysis that combines multiple inde-
pendently trained trees and undertakes a majority vote of all
these trees to determine the final prediction result.

TABLE I: Results of hyperparameter tuning

Hyperparameters Best Search Range

Lengths of input sequence 12 [12, 24, 36, 48, 60, 72]
Hidden size of LSTM 96 [32, 64, 96, 128, 160]
Batch size 96 [16, 32, 48, 64, 72, 96]
Learning rate 5e-4 [5e-5, 1e-4, 5e-4, 8e-4, 1e-3]
α of Loss function 0.9 [0.1, 0.3, 0.5, 0.7, 0.9]

2) XGBoost: XGBoost [18] is a sequential ensemble of tree
models, which creates a shallow tree to correct the errors of
the previous tree, resulting in many weak classifiers that are
combined to form a strong model.

3) Long Short-Term Memory: Long Short-Term Memory
(LSTM) is a type of recurrent neural network (RNN) archi-
tecture that is popular for many deep learning applications. A
vanilla LSTM model, containing two hidden layers with 96
units for each layer, is applied in the study.

For all three baseline models, the prediction schemem is
setup with longer term prediction horizon and same size of
memory data [2]. These models were trained using the training
data of three streets in the Stockholm city, and the predictions
are made for the three streets separately.

C. Experimental Setup

1) Data Pre-processing: The measurement data with a
missing rate of less than 5% and missing values are replaced
with mean values of available data in the neighborhood
according to the respective autocorrelation properties.

To preserve temporal properties, the data is divided into
training, validation and test sets by the ratio of 6:2:2 along
the time axis.

2) Module Selection: The meta-learner unit and fusion
layers are employed as follows:
• The meta-learner unit: one fully connected layer, two

LSTM layers(with the same number of hidden units), and
one LayerNorm layer.

• The fusion layer: one multi-head attention layer, one
LayerNorm layer and residual connection.

3) Model Tuning: Hyperparameter tuning is implemented
on all models by grid search, where the vanilla LSTM model
and our model use the same hyperparameter search space. The
best parameters of our model are summarised in Table I.

A combined loss function is chosen to weight the sum of
L1 norm and L2 norm according to the selected weighting
parameter α to reduce the problem of conservative prediction
results caused by using L2 norm alone.

L (at+l , ât+l) =α

S

∑
s=1

P

∑
p=1

∣∣as,p
t+l − âs,p

t+l

∣∣+
(1−α)

S

∑
s=1

P

∑
p=1

(
as,p

t+l − âs,p
t+l

)2
(8)

In addition, the model is trained using the Adam optimizer
and the strategy of learning rate decay is ReduceLROnPlateau,



TABLE II: Comparison of prediction performance

Model MSE MAE RMSE

RandomForest 1082.726±2.241 19.870±0.011 32.905±0.034
XGBoost 1156.869±26.197 20.294±0.177 34.009±0.384
Vanilla LSTM 1020.068±33.515 18.239±0.273 31.931±0.520
Proposed model 920.338920.338920.338±56.050 18.16218.16218.162±1.003 29.96729.96729.967±0.898

where patience is 5 and the reducing factor is 0.5. The number
of heads in the attention mechanism is 4 and the dropout ratio
is 0.1.

4) Evaluation metrics: Several common performance met-
rics have been selected for comparing the prediction results
of different machine learning models including mean average
error (MAE), mean absolute percentage error (MAPE) and
root mean squared error (RMSE). The formulas are shown in
Equations 9, 10 and 11 respectively.

MAE is estimated by

MAE =
1
n

n

∑
i=1

|yi − ŷi| (9)

MAPE is estimated by

MAPE =
1
n

n

∑
i=1

|yi − ŷi|
yi

(10)

RMSE is calculated by

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (11)

D. Result analysis

1) Prediction performance: The performance of the com-
petitive baselines and proposed model are shown in Table
II. All models are evaluated 10 times using different random
seeds, and the 95% confidence interval is used to compare the
model performance with the assumption of the t-distribution.

Among the models, the tree-based models, i.e., XGBoost
and RandomForest, show similar performance. Although XG-
Boost is slightly worse than RandomForest in terms of MSE,
the training speed is much faster due to the consideration of
gradient information for each weak classifier. The performance
of the vanilla LSTM model is better than the tree-based
models, which demonstrates the effectiveness of the RNN
model in capturing temporal correlation.

In comparison, the proposed model not only extracts tem-
poral correlation through LSTM but also captures the spatial
correlation of different monitoring stations through Attention
operation, which significantly improves the model perfor-
mance by 20.4% and 9.8% on MSE, compared to XGBoost
and vanilla LSTM, respectively. When comparing the models,
the full feature space is used for each individual model.

2) Feature analysis: Feature analysis facilitates the un-
derstanding of the importance of input features, and helps
determination of best model form. For the RNN model,
gradient-based methods are used to estimate feature ranking,

Fig. 4: Gradient-Based Feature Importance Ranking

which depends on both input and output data. Therefore,
the feature importance was computed as the average of the
gradient obtained from all samples in the test dataset [19].
The results are normalized proportionally and are shown in
Figure 4.

The importance of different features may change from
sensor station to sensor station, while the deterministic and
meteorological forecasts are the most influential factors. This
indicates that the deterministic model captures a certain
amount of temporal-spatial context, and weather condition has
a strong impact on the dispersion of pollutants, which is in
alignment with our subjective reasoning. The importance rank-
ings of calendar features indicate the latent temporal cyclic
pattern. Positional encoding has little effect on HG street,
which is consistent with the relatively accurate prediction of
the deterministic model for this site.

3) Effects of Input Features: To further evaluate the pro-
posed model, different input features are applied to train
different models according to the feature rankings shown in
Figure 4. Table III summarizes the model performance, in
terms of three metrics values, of the proposed model with
different input features. It is easy to see that the more features
incorporated in the proposed model the better performance
the proposed model can achieve. The first model with all
input features leads to the best prediction results. The trend
of model performance and corresponding confidence intervals
are demonstrated in Figure 5.

While the model containing all features leads to the best
performance, removing the deterministic forecasts results in
a slight decrease in the prediction accuracy. This indicates
that it is possible to remove the input factor in the air quality
information system, given the high complexity and compu-
tational cost of the diffusion model. Nevertheless, removing
both deterministic and meteorological forecasts leads to a
significant reduction in the model performance.

The evaluation results of the models with different input
features in Fig. 5 are consistent with the feature importance
analysis in Fig. 4. This reflects the influence of multiple
external variables on air pollutants forecasting, and meanwhile
supports the effectiveness of the gradient-based feature impor-



TABLE III: Effects of different features

No. Features MSE MAE RMSE

All a+E+T+M+Det 920.338920.338920.338 18.16218.16218.162 29.96729.96729.967
Model 1 a+E+T+M 1031.356 20.082 31.586
Model 2 a+E+T 1660.692 25.533 39.933
Model 3 a+E 2105.533 28.191 44.818
Model 4 a 1858.296 26.515 42.320

Fig. 5: Performance of Different Features

tance ranking method.

IV. CONCLUSIONS

In this paper, a meta-graph based deep learning frame-
work is proposed in the context of forecasting air pollutants
concentrations. The framework is designed to accommodate
heterogeneous sensor data, also capable to capture temporal
and spatial correlations effectively. Each meta-graph unit ex-
tracts the temporal correlation of input features and represents
the local context of a specific sensor station. The multi-head
attention mechanism is applied in the fusion layer to aggregate
the spatial correlations across different sensor stations.

Comparing to the tree-like and LSTM models, the predic-
tion performance of the proposed model achieves significant
improvement, 20.4% and 9.8% with respect to MSE. The
promising results suggest the effectiveness of the proposed
deep learning framework. Meanwhile, the results of gradient-
based feature importance analysis and ablation experiments
demonstrate the crucial influence of deterministic and mete-
orological forecasts on air pollutant predictions and also lay
the foundation for subsequent model distillation.

The computational experiment of the model is still simpli-
fied. In principle, the inputs and outputs for each station can
be different when applying this framework. The scalability of
the model for large sensor network needs further investigation
since the current evaluation is still based on a number of sensor
stations. Meanwhile, since road traffic is the major source of
air pollution in Stockholm, bringing the road traffic data into
the model may achieve potential improvement in the model
prediction.
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