Next, previous, before and after

Larisa Cof
HT20

1 Introduction

The purpose of this assignment was to implement malloc, using a scheme similar
to dlmalloc (Doug Lee’s malloc). Given some initial code, one was to complete
the code segments in order to make the program work and also write a bench-
mark program to evaluate the performance. Assignment 4.2 was chosen in order
to improve the performance.

While working on the assignment, there were some problems that emerged
along the way:

e Dalloc failed a couple of times and it was not possible to allocate a certain
amount, which demanded some troubleshooting.

e In general, segmentation faults occurred that were probably related to
wrongful pointer references. One had to be very mindful when writing
certain parts of the code that handled a lot of references, for example in
split, merge and insertion sort.

2 Method

The main parts of the code were based on the given code segments in the
assignment and are thus very straight-forward. Hence, the basic operations on
a block, the freelist (double linked list), allocate (dalloc), free (dfree) and merge
were implemented. A benchmark program was written in order to evaluate the
performance and the results are represented with figures in section 3.

2.1 Benchmark

A core part of this assignment was to write a benchmark program in order
to evaluate the performance. In the benchmark program, the implementations
were evaluated with regards to:

e The time performance when increasing the amount of allocations.

e The length of the freelist as the amount of allocations increase.

2.2 Coalescing blocks

In this part of the assignment, the merge operation was implemented. Before a
block is marked as free, the merge operation will be called by dfree immediately
and insert the block in the freelist. The operation will check if the block before
and/or after the freed block is free and in such case, merge these blocks. The
skeleton code that was provided in the assignment was used. After merging, the
new merged block is added to the front of the list.

Figure 1 shows the length of the freelist when running the code with and
without the merge operation. Figure 2 shows the time performances when using
the merge operation and not using it. As can be seen in Figure 1, there is a
noticeable difference in the length of the freelist that indeed shortens by a lot
when using the merge operation. In terms of the time performance, the two
implementations do not differ in a considerable way.

2.2.1 First-fit

Initially, first-fit was implemented, where the first block of memory that is large
enough is allocated. There is a benefit regarding the execution time from using
first-fit since it does not need to search through the whole freelist. However, the
downside of using first-fit is that it could leave small blocks of memory in the
beginning of the list.

2.3 Insertion sort (assignment 4.2)

In order to improve the implementation, the freelist was sorted with insertion
sort. Improving the implementation by sorting the list means that one needs
to make an assumption about the list being initially unsorted, otherwise it may
not work. Figure 3 shows the code for insertion sort.

2.3.1 Best-fit

To implement best-fit, insertion sort sorted the freelist in ascending order with
concern to the block sizes. The blocks allocated will be the ones that are con-
sidered to be the best fit regarding to size (i.e. the block is equal to or larger
than the requested memory and does not have to split). A benefit from using
best-fit is that it reduces the amount of wasted memory. A downside from using
best-fit is that it requires more performance in time since one has to sort the
freelist.

2.3.2 Worst-fit

To implement worst-fit, insertion sort sorted the freelist in descending order
with concern to the block sizes. In this way, the biggest block available will be
allocated for each allocation made. The benefits from using worst-fit is that it
reduces the amount of small memory and thus leaves big pieces of memory free.

Naturally, a downside that follows is the cost of performance. This implemen-
tation takes away big blocks of memory which is memory that could be needed.
Also, it requires more performance in time since the freelist has to be sorted.

2.3.3 Best-fit, worst-fit and first-fit

The performance in best-fit was compared to worst-fit and first-fit. The result
is presented in Figure 4. As can be seen in Figure 4, the freelist becomes signif-
icantly shorter with best-fit compared to worst-fit and first-fit. Considering the
time performance, there is a slight difference between the three implementations
but not one that is noticeable enough. The results are presented in Figure 5.

3 Figures

® Merge @ Mo merge
G00
O
O
450
= @]
8 Q
=
N
;; 300 "
o []
c
3
150 @
o
O
g © o & o o o o o° o
o
] 250 500 750 1000
Allocations
Figure 1: Merge vs. no merge
® Merge @ No merge
0,200000
@
0,225000
@
w
£
© 0,150000
£
[= o
@
0,075000 . .
° []
@
0,000000
200 400 600 B00
Allocations

Figure 2: Time performance: Merge vs. no merge

1000

void insertionsort(struct head *block){
struct head *pointer = flist;
if(pointer NULL)A{
block—> NULL;
block—> = NULL;
flist = block;
return;
¥
struct head *previousPointer = pointer—>
while(pointer != NULL){
if(block—> <= pointer—){
if(previousPointer !'= NULL){
previousPointer— = block;
2
block—> previousPointer;
pointer—> = block;
block—> pointer;

if(pointer == flist){
flist = block;

1
J

return;
}
previousPointer = pointer;
pointer = pointer—> ;

1
J

block—> = NULL;
previousPointer—> = block;
block—> = previousPointer;

Figure 3: Insertion sort

70

60

® Best-fit © Worst-fit @ First-fit

® “ ¢ 00
® e ®© ° ® 9 o® T @04
50 O ® ® 0 []
e © ° o 04 o ® ® .. °
.
7] @
3 e e
£« Y ® o %% oo.." ® o® 0o,
5 PO I 0g ® O ® 9
=
'é; 30 []
g °
®
20
U ®e . 0. 0__.%,q0_° eee® o o
0 0a 2 0 000 00 ®T" ey 04% e o
e __o ©® ()
(1)
]
o 1000 2000 3000 4000
Allocations
Figure 4: Best-fit, worst-fit and first-fit
® Best-fit @ Worst-fit ® First-fit
1,800000
®
1,600000
1,400000
E’ 1,200000
©
2 1000000
=
o
'1%, 0,800000
5
|
0,600000
0,400000
0,200000
0,000000
0 1000 2000 3000 4000

Allocations

Figure 5: Time performance: Best-fit, worst-fit and first-fit

