
Calibration of the muon momentum resolution in
view of the W mass measurement with the CMS

experiment

GIULIA RIPELLINO

Master of Science Thesis

Supervisor CERN: Luigi Rolandi
Supervisor KTH: Jonas Strandberg

Examiner: Bengt Lund-Jensen

AUGUST 2015

TRITA-FYS 2015:57 ISSN 0280-316X ISRN KTH/FYS/–15:57–SE





Abstract
With the discovery of the Higgs boson, all components of the Standard
Model have been experimentally verified. It is therefore possible to
predict many observables of the model with increased accuracy. A high
precision measurement of the W boson mass can be compared to the
theoretical prediction, thereby allowing for an important test of the
consistency and validity of the Standard Model. In CMS, the W boson
mass is measured using W decays into a muon and a muon neutrino.
One of the main systematic uncertainties affecting the measurement is
represented by the level of understanding of the muon momentum scale
and resolution.

This thesis introduces the general strategies of theW mass measure-
ment and the calibration of the muon momentum scale and presents a
new study of the muon momentum resolution. The analysis uses sim-
ulated and measured samples of J/ψ and Z dimuon events collected at√
s = 7 TeV, aiming to measure the muon momentum resolution with

a relative precision of 3 %. Reaching such an accuracy is essential in
order to remove biases on the muon momentum scale introduced by the
resolution.



Sammanfattning
I juli 2012 tillkännagav experimenten ATLAS och CMS vid CERN upp-
täckten av en ny partikel kompatibel med Standardmodellens Higgsbo-
son. Med denna upptäckt är alla komponenter i Standardmodellen kän-
da, vilket gör det möjligt att med hög precision förutspå egenskaperna
hos flera elementarpartiklar. En precis mätning av W -bosonens massa
kan jämföras med den teoretiska förutsägelsen och därmed användas för
att testa Standardmodellens giltighet.

Vid CMS-experimentet bestäms W -bosonens massa genom att stu-
dera dess sönderfall till en myon och en myonneutrino. Precisionen be-
gränsas till stor del av systematiska och statistiska fel i mätningen av
myonens rörelsemängd. Dessa fel kan dock kontrolleras och reduceras
genom noggrann kalibrering av detektorn.

Denna avhandling sammanfattar mätningen av myonens rörelse-
mängd och kalibreringen av de systematiska felkällorna med utgångs-
punkt från analysen av W -bosonens massa. Vidare presenteras en ny
studie av de mätfel som uppkommer på grund av detektorns upplös-
ning. Analysen utförs genom att studera J/ψ-mesonens och Z-bosonens
sönderfall till två myoner i simuleringar och i data uppsamlad vid en kol-
lisionsenergi på

√
s = 7 TeV. Målet är att mäta detektorns upplösning

med en relativ noggrannhet på 3 %. Denna precision är nödvändig för
att undvika att upplösningen påverkar kalibreringen av de systematiska
felkällorna.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is a successful theory that describes
the fundamental forces and particles in nature. Since its formulation in the 1960's
and 1970's, the SM has been tested experimentally to great success and has been
able to predict and explain several experimental observations. The last component
of the model that was experimentally verified was the Higgs boson, whose discovery
was announced in 2012 by the ATLAS and CMS collaborations at CERN [1,2]. With
this discovery, it is possible to predict many observables with increased precision and
thereby further test the consistency and validity of the model. Small deviations in
the SM predictions from the measured values might indicate new physics at higher
energy scales than have thus far been probed. A high precision measurement of the
mass of the W boson, which is one of the main building blocks of the SM, allows
for such a test of the agreement between theory and experiment.

At the CMS experiment, the mass of the W boson is extracted from its decay
into a muon and a muon neutrino. The measurement involves fine-tuning of several
observables in the decay that eventually are combined to extract the mass. One of
the main systematic uncertainties affecting the measurement is represented by the
level of understanding of the muon momentum scale and resolution which therefore
must be calibrated to high precision. The calibration is a challenging task that
requires detailed understanding of the detector effects that bias the scale and a
precise modeling of the resolution in the detector. This thesis summarizes the W
mass measurement and the calibration of the muon momentum scale and presents
a new analysis of the muon momentum resolution. The study is performed on
measured and simulated samples of J/ψ and Z decays into two muons. These
events are reconstructed with high purity in CMS and therefore constitute reliable
control samples.

This thesis begins with an introduction to the SM and the CMS experiment in
Chapters 2 and 3, followed by a description of theW and Z bosons in Chapter 4 and
the J/ψ meson in Chapter 5. The W mass measurement and the muon momentum
scale calibration are then introduced in Chapters 6 and 7. Finally, the study of the
muon momentum resolution is presented in Chapter 8. The thesis is concluded with
a summary in Chapter 9.
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CHAPTER 1. INTRODUCTION

1.1 The author’s contribution
The analysis of the W boson mass described in this thesis is a collaborative work
performed by the W mass group at the CMS experiment at CERN. The author
has mainly been involved in the calibration of the muon momentum in view of the
mass measurement. Chapter 7 summarizes the methodology applied by the group
to calibrate the muon momentum scale and contains figures produced by the author.
The study of the muon momentum resolution described in Chapter 8 is developed
and carried out solely by the author.
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Chapter 2

The Standard Model

The Standard Model (SM) of particle physics [3, 4] summarizes our understanding
of the fundamental building blocks of nature. The SM explains how matter is
built from a small number of fundamental particles and how these particles interact
through the electromagnetic, the weak and the strong force.

The theoretical framework of the SM is quantum field theory (QFT), where
particles are introduced as excitations of quantum fields that permeate the universe.
These fields are specific to each type of particle and communicate only through the
exchange of force quanta which in turn are excitations of force fields. In QFT, the
SM is described by the gauge symmetry group SU(3)×SU(2)×U(1) which defines
all fundamental interactions. SU(3) describes the strong force and SU(2) × U(1)
describes the unified electroweak interaction.

The particle content of the SM is summarized in Table 2.1. Matter is composed
of leptons and quarks which are spin-1/2 particles. They exist in three generations,
with four members in each generation. The particles mediating the interactions are
gauge bosons which are spin-1 particles. The photon mediates the electromagnetic
force, the W± and Z bosons the weak force and the eight gluons the strong force.
The last component of the SM is the spin-0 Higgs boson, whose field explains the
origin of mass in the SM.

This chapter introduces the particle content of the SM and the fundamental
interactions in more depth together with other useful concepts which form the the-
oretical background to the work presented in this thesis. For a more complete
review of these subjects the reader is referred to one of the standard textbooks on
the subject, e.g the book by Griffiths [5].

2.1 Matter

The fundamental constituents of matter are the spin-1/2 fermions. These obey
Fermi-Dirac statistics and are subject to the Pauli exclusion principle which states
that two identical fermions cannot occupy the same quantum state. Each fermion
has a corresponding antiparticle, commonly denoted by an overlying bar, which has

3



CHAPTER 2. THE STANDARD MODEL

Table 2.1: The particle content of the SM including charges in units of e, masses and
lifetimes or decay widths when applicable. Values are taken from the Particle Data Group
Listings [6]. Uncertainties for very precise measurements have been omitted. All quarks,
except the top quark, form bound states before they decay and therefore do not have a
defined mean lifetime.

Particle Charge Mass Mean lifetime or width

Leptons

e (electron) −1 0.511 MeV Stable
νe (e neutrino) 0 < 2 eV Stable
µ (muon) −1 106 MeV 2.2 · 10−6 s
νµ (µ neutrino) 0 < 2 eV Stable
τ (tau) −1 1776.82± 0.16 MeV (290.3± 0.5) · 10−15 s
ντ (τ neutrino) 0 < 2 eV Stable

Quarks

u (up) +2/3 2.3+0.7
−0.5 MeV -

d (down) −1/3 4.8+0.5
−0.3 MeV -

c (charm) +2/3 1.275± 0.025 GeV -
s (strange) −1/3 95± 5 MeV -
t (top) +2/3 173.21± 0.71 GeV 2.0± 0.5 GeV
b (bottom) −1/3 4.18± 0.03 GeV -

Bosons

γ (photon) 0 0 Stable
W± ±1 80.385± 0.015 GeV 2.085± 0.042 GeV
Z 0 91.1876± 0.0021 GeV 2.4952± 0.0023 GeV
g (8 gluons) 0 0 Stable
H (Higgs) 0 125.7± 0.4 GeV ∼ 4 MeV

the same mass and spin but opposite values of the other quantum numbers. The
fermions are divided into two groups, the quarks and the leptons, where the quarks
differ from the leptons in that they couple to the strong force.

2.1.1 Leptons

There are three distinct types, or flavors, of charged leptons: the electron (e−), the
muon (µ−) and the tau (τ−), all carrying charge −e. Corresponding to these are
the antileptons: the positron (e+), the antimuon (µ+) and the antitau (τ+), which
carry charge +e. The flavors have identical characteristics but differ in masses and
lifetimes. Each charged lepton l has an associated neutrino νl which is electrically
neutral and has a very small mass. The lepton generations thus consist of the
doublets (e, νe), (µ, νµ) and (τ, ντ ).

Each generation is associated with a lepton number Ll which is conserved sep-
arately for each flavor in all interactions1. The lepton number has the value +1 for

1An exception is neutrino oscillations where conservation of flavor is violated. However, this
has no practical effect in any other particle interactions.
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2.2. INTERACTIONS

the lepton and the neutrino in the generation, −1 for the corresponding antilepton
and antineutrino and 0 for all other particles.

The charged leptons interact through the electromagnetic and weak forces whereas
the neutrinos only interact through the weak force. Because of this, neutrinos can
be detected only with considerable difficulty.

2.1.2 Quarks
The quarks exist in six flavors forming the three generations (u, d), (c, s) and (t, b).
Each generation consists of a quark with charge +2/3 and a quark of charge −1/3,
in units of e. As opposed to the leptons, the quarks are not found as free particles
in nature. Instead, they are always confined to bound states called hadrons. This
behavior is referred to as quark confinement. The hadrons are classified as mesons
consisting of a quark and an antiquark (qq̄) and baryons and antibaryons consisting
of three quarks or three antiquarks (qqq/q̄q̄q̄). Due to quark confinement, the quark
masses and lifetimes cannot be measured directly. The masses of the u, d, c, s and
b quarks presented in Table 2.1 are inferred indirectly from the observed masses of
the bound states. The top quark has a very short lifetime and decays before it forms
hadrons. Its mass can therefore be measured directly from the decay products.

The reason for quark confinement is closely associated with color, a quantum
number that exists for quarks but not for leptons. Any quark can exist in three
different colors: red, green and blue. Likewise, the antiquarks can exist in the three
corresponding anticolors. Color neutral combinations can be formed by adding
together all three colors or by adding a color to an anticolor. As it turns out, only
color neutral particles exist in nature. This explains why all hadrons are formed
either by a quark and an antiquark or by three quarks or antiquarks, these are
the only combinations that can be made color neutral. In QFT, this concept is
described in terms of the gauge symmetry group SU(3) which is generated by the
three colors. The various color combinations form different states, of which nature
always chooses the singlet state. This state can be achieved only by combining three
different colors or by combining one color and one anticolor.

Each quark has a so-called baryon number B assigned to it, +1/3 for the quarks
and −1/3 for the antiquarks. Consequently, all mesons have B = 0, while baryons
and antibaryons have B = ±1. All leptons have zero baryon number. The total
baryon number is conserved in all interactions. Furthermore, each flavor is associ-
ated with a quark number where the quark counts as +1 and the antiquark as −1.
The quark number is conserved separately for each flavor in the electromagnetic
and strong interactions.

2.2 Interactions
There are four fundamental forces in our universe: the electromagnetic, the weak,
the strong and the gravitational force. Of these, the first three forces are accounted
for by the SM and will be described together with their force carrying bosons in

5



CHAPTER 2. THE STANDARD MODEL

this section. The gravitational force is several orders of magnitude weaker than the
other forces and is not incorporated in the SM.

All fundamental forces are mediated through the exchange of gauge bosons that
carry energy and momentum between the interacting particles. The squared four-
momentum transfer q2 determines the resolution scale of the interaction. A high
momentum transfer corresponds to a force mediating boson with short wavelength.
This implies that interactions happening at large momentum transfer can resolve
smaller distances.

The force acting between two particles is further characterized by the strength
of the interaction and the range over which the interaction takes place. In each
case, the strength is determined by the coupling constant of the force. This is a
dimensionless quantity that specifies the strength of the force exerted in an interac-
tion. The range R of the interaction is characterized by the mass MX of the force
mediating particle through the relation

R = ~
MXc

. (2.1)

Forces mediated by massless particles are therefore in principle infinite in range
whereas interactions mediated by massive particles have a finite range.

2.2.1 The electromagnetic force

The electromagnetic interaction couples to electric charge. All fundamental fermions,
except the neutrinos which are electrically neutral, therefore interact electromagnet-
ically. The interaction is mediated by the massless photon and is therefore infinite
in range. All electromagnetic interactions conserve lepton numbers and individual
quark numbers. The electric charge must also be conserved. Since the photon is
neutral, this implies that leptons and quarks only can be created or annihilated in
pairs through the electromagnetic interaction.

The electromagnetic coupling constant α is affected by pairs of virtual quarks
and leptons that contribute to electromagnetic scattering processes. These virtual
particles result in a vacuum polarization that partially screens the bare charge of the
interacting fermions and reduces the strength of the interaction. At short distances,
the screening becomes less efficient. The electromagnetic coupling strength therefore
grows stronger at short distances, or equivalently, at large momentum transfer. This
behavior is referred to as running of the coupling constant. At zero momentum
transfer, q2 = 0, the value of the coupling constant is 1/137 and at the scale of the
Z boson, q2 = M2

Z , the value is 1/128.

2.2.2 The weak force

The weak interaction couples to weak isospin, an intrinsic property that all fermions
in the SM possess. The force is mediated by the three massive gauge bosons, the Z
and the W±, and is therefore a short range interaction.

6



2.3. DECAYS AND CONSERVATION LAWS

The interactions mediated by theW± bosons are called charged currents. These
interactions do not conserve the individual quark numbers and can therefore change
the quark flavor. For instance, a top quark can decay directly to a lighter quark
through the process

t→ q +W+, (2.2)

where q = d, s, b. Due to quark confinement, reactions of this kind always take place
within hadrons, with the W± being emitted or absorbed by the constituent quarks.
The interactions mediated by the Z boson conserve flavor and are called neutral
currents.

For the leptons, the charged weak current can only couple within the generations
since the lepton numbers must be conserved. The possible interactions are thus:

l± →W± + (−)
νl (2.3)

and
W± → l± + (−)

νl . (2.4)

A lepton can decay into a lighter lepton by combining two such interactions. For
instance, a muon can decay to an electron and two neutrinos according to the process

e− + ν̄e.

µ− →W− + νµ (2.5)

2.2.3 The strong force

The strong interaction couples to color charge and therefore only to the quarks. It
is mediated by the massless gluons which themselves also carry color charge. The
colors can be combined in eight different ways under the SU(3) symmetry, resulting
in eight variations of gluons.

The strong coupling constant runs with energy. Just like the electromagnetic
case, virtual pairs of fermions polarize the vacuum, leading to a reduced strength
at large distances. However, in the strong interaction, also virtual pairs of gluons
contribute to the running of the coupling constant. The gluon pairs lead to an
antiscreening effect, meaning that they cause the interaction to grow weaker at short
distances. This effect is larger than the screening correction and the net result is
a running opposite to the running of the electromagnetic coupling constant. The
strong interaction thus grows weaker at short distances, or equivalently, at large
momentum transfer. This concept is called asymptotic freedom.

2.3 Decays and conservation laws
A general property of all fundamental particles is their tendency to decay into lighter
particles if they are allowed to do so. Whether or not the decay is possible is dictated

7



CHAPTER 2. THE STANDARD MODEL

by a number of conservation laws that permit certain reactions and forbid others.
For instance, the electric charge, the color charge, the overall baryon number and
the individual lepton numbers must be conserved in all interactions. There is also a
set of kinematic conservation laws, such as conservation of energy and momentum,
that apply to all interactions. A particle cannot spontaneously decay into a heavier
particle since this would violate the conservation of energy.

The conservation laws explain why certain particles are stable. The electron is
the lightest charged particle, so conservation of energy and charge prevents it from
decaying. Likewise, the proton, which consists of the quarks (uud), is the lightest
particle with non-zero baryon number and is therefore stable.

All unstable particles are characterized by their mean lifetimes which are sum-
marized for the fundamental particles in Table 2.1. For a given type of interaction,
the decay proceeds faster if there is a large difference in mass between the original
particle and the decay products. The unstable particles are also characterized by
a decay width which stems from the uncertainty principle. A measurement of the
rest mass of a particle with finite lifetime will have an uncertainty that is inversely
proportional to its mean lifetime. This uncertainty is referred to as the decay width
Γ of the particle. A measurement of the mass of an unstable particle a large num-
ber of times results in a so-called Breit-Wigner distribution [7]. The peak of this
distribution corresponds to the invariant mass and the full width at half maximum
corresponds to the decay width.

2.4 Feynman diagrams and calculus
Feynman diagrams are important tools in the analysis of particle physics. They pro-
vide a convenient way to illustrate interactions of particles and are also associated
with mathematical rules that allow for the calculation of quantum mechanical prob-
abilities for the interactions to occur. In the diagrams, the fermions are represented
by solid lines and the gauge bosons by dashed or curly lines. By convention, time
runs from left to right with particles represented by arrows pointing to the right
and antiparticles by arrows pointing to the left. According to these conventions,
the decay of the muon described in Section 2.2.2, can be depicted as in Fig. 2.1.

W−
µ−

νµ

ν̄e

e−

Figure 2.1: Feynman diagram for the process µ− → e− + ν̄e + νµ.

8



2.4. FEYNMAN DIAGRAMS AND CALCULUS

Feynman diagrams and Feynman rules are important for the calculation of cross
sections in particle physics. The cross section describes the probability of a given
process to occur and is determined by two components: the phase space factor and
the matrix element. The phase space factor describes the number of kinematically
available states for the final state particles to occupy. It depends on the masses,
energies and momenta of the involved particles. For instance, the decay of a heavy
particle involves a large phase space factor since there are many different lighter
particles and therefore also many different final states. The matrix element describes
the dynamics of the interaction and enters the cross section in quadrature. This
part can be computed using Feynman rules which translate the diagrams into the
mathematical components entering the calculation.

In quantum mechanics, a process can be modeled using the formalism of pertur-
bation theory. The matrix element is then computed by adding up the terms in the
perturbation series. Each term is depicted as a Feynman diagram and the corre-
sponding contribution to the matrix element is calculated using Feynman rules. Ac-
cording to these rules, each vertex in a diagram represents a factor g which describes
the strength of the interaction. For the electromagnetic interaction this constant is
simply given by ge = e. Since the matrix element enters the cross section in quadra-
ture, the coupling constant is defined as a parameter proportional to the square of
the coupling strength. For the electromagnetic force this is α = e2/4πε0 = 1/137.
For the weak and strong interactions, the coupling constants are denoted by αW ,
αZ and αs.

Since a perturbation series has an infinite number of terms, there are an infinite
number of Feynman diagrams describing the same process. In general the terms
in the series become smaller and smaller and eventually negligible. This means
that it is often justified to include only a limited number of Feynman diagrams
in the calculation of the matrix element. The lowest order terms in the series are
represented by Feynman diagrams at tree level, involving no loops. For the simplest
processes, these contain only two vertices. Figure 2.2 shows first and second order
diagrams for the scattering process e− + e− → e− + e−.

γ

e− e−

e− e−
(a)

γγ

e−

e−

e−

e−

(b)

Figure 2.2: First and second order Feynman diagrams contributing to the scattering process
e− + e− → e− + e−.
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CHAPTER 2. THE STANDARD MODEL

At tree level this process contains two vertices whereas the second order diagram
contains four vertices. Each vertex represents a factor of α = 1/137 in the cross
section which implies that the second order contribution to the cross section will be
suppressed by a factor of α2 = 1/1372 compared to the tree level contribution.

2.5 Electroweak physics
The electroweak interaction is the unified description of the electromagnetic and
the weak force. Although these two forces appear very different at low energies,
the theory models them as two different aspects of the same interaction. Mathe-
matically, the unification is accomplished under the SU(2)×U(1) gauge group and
allows for a gauge invariant theory for the weak interaction.

Gauge invariance is a fundamental symmetry associated with theories in which
the force carriers are spin-1 bosons. For the electromagnetic interaction, this cor-
responds to the conservation of electric charge and for the strong interaction it
corresponds to the conservation of color charge. As it turns out, a gauge invariant
theory for the weak force is only possible in a mathematical framework that, in
addition to the W± bosons, introduces the photon and the Z boson as mixtures of
two additional electroweak bosons. This unifies the electromagnetic and the weak
forces into one electroweak interaction that is gauge invariant.

2.5.1 The unification condition and the W boson mass
In the unified theory, the electromagnetic and weak coupling strengths e, gZ and
gW are related according to the so-called unification condition

e

2 (2ε0)1/2 = gW sin θW = gZ cos θW , (2.6)

where the weak mixing angle θW is defined through the relation

cos θW = MW

MZ
. (2.7)

The unification condition can be used to predict the W boson mass in the SM.
At tree level, the charged current coupling strength is characterized by the Fermi
constant GF according to

GF√
2

= g2
W

M2
W

. (2.8)

Together with Eq. 2.6 this provides an expression for the W boson mass,(
M0
W

)2
= πα√

2GF sin2 θW
= πα

√
2GF

(
1− M2

W

M2
Z

) , (2.9)

where α is the electromagnetic coupling constant.

10



2.5. ELECTROWEAK PHYSICS

For a correct prediction of the mass, also higher order processes must be taken
into account. The most important higher order diagram involves loops of fermions
as shown in Fig. 2.3.

W−

f+ f−
W−

e−

νµ

νe

µ−

Figure 2.3: Higher order diagram that contributes to the reaction e− + νµ → µ− + νe.

The effective mass that enters the Feynman calculation for the W boson mass is
therefore affected by corrections introduced by the masses of the fermions. The top
quark is by far the most massive fermion and will provide the dominant contribution.
Equation 2.9 is therefore modified to

M2
W = (ρ+ 1)

(
M0
W

)2
, (2.10)

where the parameter ρ depends on the square of the top quark mass [6]. Another
important higher order correction arises from loops containing the Higgs boson.
These decrease the W mass with a contribution proportional to the logarithm of
the Higgs mass [6].

2.5.2 The electroweak fit
Any parameter in the SM can be predicted by performing a fit of the model to
all experimental observables except for the one of interest. Fits of this kind have
substantially contributed to the knowledge of the SM. The electroweak fit focuses on
the parameters describing the electroweak sector. After the discovery of the Higgs
boson in 2012, all parameters of the SM are known and it is therefore possible to
overconstrain the SM at the electroweak scale and predict important parameters to
assert its validity.

The key parameters of the fit are the mass of the Z boson, the electromagnetic
coupling constant and the Fermi constant, which define the electroweak sector at
tree level according to Eq. 2.9. These parameters have all been determined exper-
imentally with high precision. The Z boson mass was measured at the electron-
positron collider LEP [8], the electromagnetic coupling constant is determined from
the electron magnetic moment [9] and the Fermi constant is measured from the
muon lifetime [9]. The fit must also include the top quark mass, the strong coupling
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constant and the mass of the Higgs boson which enter at second order. Table 2.2
shows an excerpt from the result of the global electroweak fit after the discovery
of the Higgs boson. The fit converges at a global minimum value of χ2 = 17.8,
obtained for 14 degrees of freedom, showing that the SM accurately describes all
electroweak measurements.

The electroweak global fit after the Higgs discovery leads to a value of the W
mass of 80.358± 0.008 GeV [10] where the dominant uncertainty is given by the top
quark mass [10]. This number can be compared to the world average experimental
value which is 80.385 ± 0.015 GeV [6]. As opposed to other key parameters in the
SM, such as the Z boson mass, the experimental uncertainty on the W mass is
higher than the uncertainty on the prediction from the electroweak fit. This is a
motivation for the achievement of a measurement with improved precision.

Table 2.2: Excerpt from the result of the global electroweak fit after the discovery of the
Higgs boson [10]. The second column contains the world average experimental values used
as input to the fit and the third column contains the values obtained from the fit to all
experimental observables except for the one in the line.

Parameter Experimental value Fit result

MH [GeV] 125.14± 0.24 93+25
−21

MW [GeV] 80.385± 0.015 80.358± 0.008
ΓW [GeV] 2.085± 0.042 2.091± 0.001
MZ [GeV] 91.1875± 0.0021 91.200± 0.011
ΓZ [GeV] 2.4952± 0.0023 2.4946± 0.0016
mt [GeV] 173.34± 0.76 177.0+2.3

−2.4
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Chapter 3

The CMS experiment at the LHC

3.1 The Large Hadron Collider
The Large Hadron Collider (LHC) [11] is a circular proton-proton collider operating
at the European Organization for Nuclear Research (CERN). It is an accelerator
with a circumference of 27 km, which makes it the world’s largest collider.

The LHC is contained in an underground tunnel situated on the border between
Switzerland and France. The tunnel contains two adjacent parallel beam pipes kept
at ultra-high vacuum. At operation, the pipes contain proton beams1 that circulate
in opposite directions around the ring. The beams are guided around the accelerator
ring by a strong magnetic field of 8.33 T maintained by 1232 superconducting dipole
magnets. In addition, a total of 392 quadrupole magnets are used to focus the beam.

The LHC is a synchrotron accelerator. Acceleration is achieved as the beam
repeatedly traverses a number of radio frequency cavities where energy is given to
the particles. In practice, the protons are accelerated in bunches, each bunch being
synchronized with the radio frequency field. The magnetic field that guides the
beams grows synchronously with the energy of the protons. Once the maximum
field is achieved, the coasting beams are brought into collision at four points around
the ring. At these points the beam pipes are intersected, causing the beams to
collide almost head on.

Before injection into the LHC, the protons are accelerated in various steps that
successively increase their energy. The chain starts with a linear accelerator followed
by three synchrotron accelerators of increasing size. The protons are eventually
injected into the main accelerator with an energy of 450 GeV. A typical operation
corresponds to about three hours to prepare the beams and about ten hours of
collisions.

The four intersection points at the LHC host the experiments ALICE, ATLAS,
CMS and LHCb that are dedicated to the study of the physical processes that occur
in the proton-proton collisions. ATLAS and CMS are general-purpose detectors
designed to cover the widest possible range of physics at the LHC. ALICE specializes

1The LHC also runs with beams of lead ions.
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in the study of quark-gluon plasma and LHCb in the study of asymmetries between
matter and antimatter.

The work presented in this thesis is an analysis carried out on data recorded by
the CMS experiment. After an introduction to some important concepts at hadron
colliders, this chapter is therefore devoted to a more in-depth description of the
CMS experiment.

3.1.1 Luminosity and beam energy
The physics potential of a collider can be quantified in terms of the beam energy
and the luminosity. The beam energy dictates the achievable center of mass energy√
s, which is the energy available to create new particles. For a collider where two

equal beams of energy Ebeam are made to collide at very small crossing angle, the
center of mass energy is given by

√
s = 2 · Ebeam. (3.1)

The maximum beam energy is directly proportional to the bending dipole mag-
netic field and to the ring circumference. For a hadron collider, the total center of
mass energy is not available for particle production since the hadrons are composite
particles. This is further discussed in Section 3.1.3.

The luminosity is essentially a measure of the amount of data that the collider
produces. This quantity depends on the number of particles in each bunch, the
frequency of complete turns around the ring, the number of bunches and the beam
cross sectional area. The instantaneous luminosity L dictates the rate of a given
process according to the equation

L = 1
σ

dN
dt , (3.2)

where σ is the cross section and dN/dt is the rate of events of the process. The
instantaneous luminosity is commonly measured in units of cm−2s−1.

The total number of events is obtained by integrating Eq. 3.2,

N = σ

∫
Ldt. (3.3)

In this equation, the quantity
∫
Ldt is referred to as the integrated luminosity and

is commonly measured in units of inverse barn2, b−1. The integrated luminosity is
often quoted as a description of the performance of the machine and the amount
of data available for analysis. The most interesting processes for analysis typically
have a very small cross section compared to the total proton-proton cross section
and will be very rare at the LHC. A high luminosity is therefore needed in order to
collect sufficient statistics.

The LHC is designed to operate at a center of mass energy of 14 TeV and an
instantaneous luminosity of 1 · 1034 cm−2s−1 [11].

21 b = 10−28 m2.
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3.1.2 Anatomy of an event
When two proton bunches cross at any of the four intersection points at the LHC,
a number of interactions take place. A proton consists of quarks and gluons which
collectively are called partons. In a high q2 proton-proton collision, the fundamental
interaction takes place between individual partons and not between the protons as
whole. Such processes are called hard interactions and result in the production of
high momentum particles. Some of these are heavy and decay quickly into lighter
particles. The end products travel into the detector with some energy and direction
that are measured by the detector and stored for analysis. A particle interaction
that has been captured and recorded by the detector is called an event.

In addition to the end products from the hard interaction, other processes con-
tribute to the signature in the detector. These processes are of two kinds: under-
lying events and pile up. The underlying events are particles originating from the
constituents of the protons that do not participate in the hard interaction. Pile
up refers to interactions between other protons in the bunch and results in addi-
tional interaction vertices. At the LHC design luminosity, up to 50 interactions
are expected in each bunch crossing. This must be taken into account in the event
reconstruction and the primary vertex must be separated from the pile up vertices.

3.1.3 Parton distribution functions
The energy available in a hard interaction is determined by the fractions of the
proton energy carried by the interacting partons. The momentum distributions of
the partons within the proton are called parton distribution functions (PDFs). They
represent the probability densities to find a parton carrying a momentum fraction
x at an energy scale q2. At a proton-proton center of mass energy

√
s, the energy

available for the partonic interaction is given by
√
sx1x2, where x1 and x2 are the

momentum fractions of the two interacting partons.
The PDFs are probabilistic functions and cannot be calculated from first prin-

ciples. Experimentally determined distributions are instead available from several
groups worldwide. The PDFs at a given value of x can be scaled using the DGLAP
equations which describe their q2 dependence [12]. This way, PDFs measured at
other experiments can be used to build models for the collisions at the LHC.

3.1.4 Coordinates and kinematic variables
The coordinate system used by the experiments at the LHC is a right handed system
with the origin at the nominal collision point. The x axis points towards the center
of the LHC ring, the y axis points upwards and the z axis points along the counter
clockwise beam direction. In addition, the radius r is measured from the origin in
the xy plane, the azimuthal angle φ is measured from the x axis in the xy plane
and the polar angle θ is measured from the positive z axis.

Since the quarks typically carry different fractions of the proton momentum, the
center of mass frame of a collision does not necessarily coincide with the laboratory
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frame. However, the momentum distribution of the partons in the plane transverse
to the beam direction is negligible, which implies that the center of mass frame only
moves along the beam axis. This calls for a description of particles using a special
set of kinematic variables.

The relativistic phase space of a particle is usually described by the four-momentum
coordinates (E, px, py, pz). Of these, only px and py are invariant with respect to
boosts along the z direction. A more suitable choice of variables which explic-
itly reflects the invariance of the phase space element is given by the coordinates
(pT , y, φ,m). Here, φ is the usual azimuthal angle, m the invariant particle mass,
pT the transverse momentum given by

pT = p sin θ, (3.4)

and y the rapidity defined as

y = 1
2ln

(
E + pz
E − pz

)
. (3.5)

The transverse momentum, the azimuthal angle and the mass are invariant under
boosts along the z axis and the rapidity changes only by an additive constant. The
difference in rapidity between two particles is therefore invariant under boosts along
the z axis.

A measurement of the rapidity requires knowledge of both the energy and the
momentum of the particle. Another useful quantity that is easier to measure is the
pseudorapidity η defined as

η = −ln
(

tan θ2

)
. (3.6)

The pseudorapidity can simply be measured from the polar angle and is approxi-
mately equal to the rapidity for p� m, θ � 1/γ and π − θ � 1/γ, where γ is the
Lorentz factor. For light particles such as electrons and muons, the pseudorapidity
is therefore preferred over rapidity. Furthermore, the pseudorapidity is often paired
with the azimuthal angle φ to describe the angle of emission of a particle from an
interaction vertex. In this system, η = 0 corresponds to the transverse plane, posi-
tive values to the forward direction and negative values to the backward direction
along the z axis.

Another important quantity at hadron colliders is the missing transverse energy

Emiss
T = −

∑
pT , (3.7)

where the sum is the vectorial sum taken over all reconstructed particles in an
event. Since the colliding partons have negligible transverse momentum, the sum
of all end product momenta in the transverse plane must be zero. The missing
transverse energy is therefore an important tool to infer the presence of particles
that do not give a signature in the detector.
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3.1.5 Operational history of the LHC

The LHC began its planned research program in the spring of 2010 with a cen-
ter of mass energy of 7 TeV. By the end of 2011, the CMS experiment had col-
lected a total integrated luminosity of 5.6 fb−1 with a record peak luminosity of
4.0 · 1033 cm−2s−1 [13]. In 2012, the center of mass energy was increased to 8 TeV
and higher instantaneous luminosities were achieved. The total integrated lumi-
nosity collected by CMS during this year amounted to 22 fb−1 with a record peak
luminosity of 7.7 · 1033 cm−2s−1 [13]. The increased luminosity entails a higher
sensitivity to rare processes but also poses a significant challenge to the event re-
construction. The 2012 data is characterized by approximately twice the number
of interactions per bunch crossing, resulting in more complex events. In both runs,
the LHC was operated with a bunch spacing of 50 ns corresponding to a collision
frequency of 20 MHz. The analysis presented in this thesis is carried out on the
dataset from 2011.

In the beginning of 2013, the LHC was shut down to prepare the collider to
run at higher energy and luminosity. The accelerator was reactivated in early 2015,
operating at a center of mass energy of 13 TeV.

3.2 The CMS experiment
The Compact Muon Solenoid (CMS) is one of two general-purpose detectors at the
LHC. It has a broad physics program ranging from the study of the SM to the
search for physics beyond the SM, such as supersymmetry and dark matter [14].
This section gives a brief overview of the CMS experiment and the various detector
components. Emphasis is put on the tracker, the magnetic field and the muon
system since understanding of these components is important for the work presented
in this thesis. A complete description of the CMS experiment can be found in
Reference [15].

3.2.1 Detector overview

The CMS detector is roughly cylindrical, 21.5 m long and with an outer radius of
7 m. Figure 3.1 shows the structure of the detector. The experiment consists of the
cylindrical barrel at |η| ≤ 1.2 and the endcaps at |η| > 1.2. Together, these two
parts cover most of the solid angle around the interaction point. The detector is
composed of several subdetectors that form layers at increasing values of the radius
in the barrel and increasing values of z in the endcaps. Each layer serves a separate
purpose in the detection and identification of particles in the detector.

The experiment is built around a huge solenoid magnet. This takes the form of
a cylindrical coil of superconducting cable that generates a magnetic field of 3.8 T.
The magnetic field is confined by a steel yoke that forms the bulk of the detector
and supports the structure. The inside of the magnetic coils hosts the tracker, the
electromagnetic calorimeter (ECAL) and the hadronic calorimeter (HCAL). On the
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outside of the solenoid, the magnetic field is contained and returned by a 12-sided
iron structure. This structure also hosts the large muon detectors which form the
last layer of the CMS experiment.

Compact Muon Solenoid

Pixel Detector

Silicon Tracker

Very-forward
Calorimeter

Electromagnetic 
Calorimeter

Hadronic
Calorimeter

Preshower

Muon 
Detectors

Superconducting Solenoid

Figure 3.1: Overview of the CMS experiment [15].

Tracker The tracker3 is the innermost subdetector and therefore closest to the
interaction point. This part of the experiment is used to observe charged particles
and to measure their momentum from the curvature of the tracks in the magnetic
field. The tracker is made entirely of silicon, with pixel detectors in the inner region,
closest to the beam, and microstrip detectors in the outer region. When a charged
particle passes though the silicon it knocks electrons off the valence band, thus
creating electron-hole pairs. In the presence of an externally applied electric field
the electrons and the holes are separated and collected at the electrodes, producing a
signal proportional to the energy lost by the passing particle. The tracker measures
5.4 m in length and 1.1 m in radius and the coverage extends up to |η| = 2.5.

Calorimeters The ECAL is designed to absorb electrons and photons, thereby
allowing for a measurement of the energy of these particles. When a photon or an
electron enters the calorimeter it interacts with the material, creating a shower of
secondary electrons and photons. The ECAL is an homogeneous calorimeter made

3The tracker is discussed in more detail in Section 3.2.5.
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of lead tungstate which is a very dense material, ideal for containing the electro-
magnetic shower. It is also a highly transparent material that scintillates when the
secondary electrons move through it. The total light produced is proportional to
the energy of the initial particle and is read out by photodiodes producing a signal
used to reconstruct the energy deposited in the detector. The ECAL consists of a
barrel section and two endcaps covering up to |η| = 3. The thickness of the ECAL
is 23 cm in the barrel and 22 cm in the endcaps.

The HCAL is designed to detect and absorb hadrons in order to measure their
energy. It consists of layers of brass interleaved with tiles of plastic scintillators, read
out by photodiodes. The brass layers stop the particles and the scintillating layers
give the signal necessary to reconstruct the particle energy. This combination was
designed to allow the maximum amount of absorbing material inside of the solenoid.
The HCAL consists of a barrel section and two endcaps covering up to |η| = 3. The
thickness in the barrel amounts to 1.2 m.

Both the ECAL and the HCAL are contained within the solenoid. This solves
a problem seen in other detector designs where energy losses in the magnet lead to
uncertainties in the energy measurement. The calorimeters are complemented in
the high pseudorapidity region by two forward hadronic calorimeters (HF) which
extend the coverage up to |η| = 5. These subdetectors consist of layers of steel for
absorption and quartz fibers read out by photomultiplier tubes. The HF is equipped
to distinguish between leptons and hadrons.

Muon chambers The muon system4 uses different types of gaseous detectors to
detect and identify muons. When a muon passes through the gas it ionizes the
atoms, thus creating electron-ion pairs. The electrons drift under the influence of
an applied electric field and are collected at thin anode wires producing the read-out
signal.

3.2.2 Particle identification

The various parts of the CMS detector work together to identify particles and to
reconstruct the events recorded by the experiment. The only particles that are long
lived enough to travel through the detector are photons, electrons, muons, neutrinos
and some hadrons. Each kind of particle gives a different signature in the detector,
as shown in Fig. 3.2.

The signals from the tracker and the ECAL are used to differentiate electrons
and photons. An electron leaves a signature both in the tracker and in the ECAL
whereas a photon is detected only in the ECAL. Hadrons leave a signature in the
tracker if they are charged and also deposit some energy in the ECAL but typically
leave the largest signature in the HCAL. This allows for hadrons to be distinguished
from electrons and photons. Muons leave traces in the inner subdetectors, but they
are the only charged particles that penetrate all inner layers without being com-

4The muon detector is discussed in more detail in Section 3.2.8.
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pletely absorbed. A signature in the muon system therefore indicates the presence
of a muon. Neutrinos cannot be detected, since they only interact weakly, but their
presence among the final state particles can be inferred from the missing transverse
energy.

1 m 2 m 3 m 4 m 5 m 6 m 7 m0 m
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Electromagnetic

Calorimeter
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Tracker
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Electron Charged hadron (e.g. pion)Muon

Neutral hadron (e.g. neutron)

Figure 3.2: A slice of the CMS detector with the signatures of different particles [16].

3.2.3 Triggering

With a collision frequency of 20 MHz and up to 50 interactions per bunch crossing,
huge amounts of data are produced every second at the LHC. It is impossible to fully
process and store all the information at the rate dictated by the collision frequency.
A drastic cut must therefore be made in real time at the experiment. For every
event, a very fast decision must be taken, determining whether or not it should be
kept for analysis. One of the most important aspects of any experiment at the LHC
is therefore the trigger, which makes the online event selection. The task of the
trigger is to identify possible interesting processes which implies that the selection
must be based on the physics content of the events.

In CMS, the triggering system is composed of two steps, the Level-1 Trigger (L1)
and the High-Level Trigger (HLT). The L1 holds all the data from each crossing in
buffers while using a small amount of key information from the calorimeters and
the muon system to identify features of interest. This first step is completed in
about 1µs, and reduces the rate down to 100 kHz. The L1 calculations are done on
custom built hardware directly at the detector.

If an event is selected by the L1 it is passed on to the HLT. The reduced event
rate allows for a more detailed analysis and more complex calculations. The HLT
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therefore employs simplified versions of the software used for off-line event recon-
struction and runs on ordinary computer servers. The HLT reduces the event rate
further down to a few 100 Hz. The events that pass both trigger levels are stored
for future analysis.

3.2.4 Magnetic field and momentum measurement
The solenoid magnet is the central device around which the CMS experiment is built.
It produces a magnetic field of 3.8 T which to first approximation is homogeneous
and parallel to the z axis in the tracker region. This allows for a momentum
measurement of charged particles from the curved track that they follow in the
magnetic field.

The path of a charged particle in a magnetic field is described by a helix with
its axis parallel to the direction of the field. The bending radius of the trajectory
depends on the momentum of the particle and the strength of the magnetic field.
For a uniform field B, the transverse momentum of the particle is given by

pT = qBr, (3.8)

where q is the charge and r is the bending radius. Technically, the quantity measured
in the tracker is the sagitta of the trajectory which is given by

s = L2

8r = qBL2

8pT
, (3.9)

where L is the length of the track measured on the transverse plane, defined by the
outer radius of the tracker.

3.2.5 Tracker
Several crucial aspects of particle identification and event reconstruction depend
entirely on information from the tracker. It is therefore essential to reconstruct
particle trajectories in the tracker with very high momentum, angle and position
resolution. At the same time, the tracker must be light-weight in order to disturb
passing particles as little as possible. The CMS tracker is specifically designed to
take position measurements so accurate that tracks can be reliably reconstructed
using only a few measurement points.

The tracker is composed of 1440 silicon pixel modules and 15148 silicon mi-
crostrip modules organized in layers around the interaction point. As particles
travel through the tracker the pixels and microstrips in the layers produce electric
signals that are detected. These hits are then stringed together to reconstruct the
trajectory of the particle. The tracker consists of 13 layers in the barrel and 14 layers
in the endcaps, which correspond to the typical amount of hits used to reconstruct
a track. The tracker layers are shown schematically in Fig. 3.3.
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Figure 3.3: Schematic cross section through the CMS tracker [17]. Each line-element repre-
sents a detector module. Closely spaced double line-elements indicate back-to-back silicon
strip modules, in which one module is tilted in order to permit reconstruction of the hit
positions in three dimensions.

Pixels

The flux of particles is very high close to the interaction point. In order to recon-
struct the individual tracks, a high granularity is therefore needed. This is ensured
by the pixel modules that form the inner layers of the tracker.

The pixel modules in the barrel are arranged in three concentric layers situated
at radii of 4.4 cm, 7.3 cm and 10.2 cm. These are complemented in the endcaps by
two disks extending from 6 cm to 15 cm in radius at 34.5 cm and 46.5 cm from the
nominal interaction point. The design ensures the existence of three measurement
points for each track almost over the full covered range.

The modules are composed of pixels with a size of 100µm × 150µm with the
larger side along the z coordinate. The modules provide a two-dimensional measure-
ment of the hit position in terms of the r-φ and the z coordinates. The ionization
signal is typically shared between two adjacent pixels which allows for a position
measurement with a resolution better than the pixel size. This way, a resolution of
about 15µm is achieved.

Strips

Further away from the interaction point, the density of tracks is lower and silicon
microstrip modules are used instead of pixel modules. The inner silicon strip tracker
consists of the tracker inner barrel (TIB) composed of four layers and the tracker
inner disks (TID) which form three endcap layers. The outer part consists of the

22



3.2. THE CMS EXPERIMENT

tracker outer barrel (TOB) composed of six layers and the tracker endcaps (TEC)
composed of nine disks. Within a given layer, each module is shifted slightly in r
in the barrel and in z in the endcap in order to overlap with its neighbor, thereby
avoiding gaps in the acceptance. The small overlaps are also important for the
alignment of the tracker which is discussed in Section 3.2.7.

The typical silicon strip module size is 10 cm× 5 cm with a strip pitch of 80µm
in the inner regions and 20 cm × 10 cm with a strip pitch of 140µm in the outer
regions. In the barrel, the strips are parallel to the z axis and in the endcap they
are placed along the radial coordinate. The modules provide a measurement of the
r-φ coordinate with a resolution of 20− 50µm.

In order to measure the z coordinate in the barrel and the r coordinate in the
endcap with a precision better than the strip length, some of the layers carry an
additional set of modules. These are tilted with respect to the regular modules by
an angle of 100µrad. Matching the hits on the tilted layers with the ones on the
regular modules allows for a measurement of the third coordinate.

3.2.6 Track reconstruction

Track reconstruction refers to the process of using the hits in the tracker to obtain
estimates for the momentum and position of the charged particles responsible for
the hits. In total, five parameters are needed to describe the helical path: two
coordinates for the origin of the trajectory, the angles η and φ of emission and the
radius of curvature in the magnetic field.

The basic idea of the track reconstruction is to propagate the helix parameters
layer by layer and fitting them to the hits. When a particle travels through the
tracker it ionizes the atoms in the material and thereby loses energy. This effect must
be taken into account in the track reconstruction as well as any inhomogeneities in
the magnetic field. The information needed at each layer therefore includes the
location and uncertainty of the detected hits, the amount of material crossed and a
map of the magnetic field in the tracker.

The computation of the track parameters is performed using a Kalman filter
technique [18,19]. This is an efficient mathematical method to estimate the state of
a dynamic system from a series of measurements with corresponding uncertainties.
In the track reconstruction, the state is characterized by the helix parameters and
is iteratively estimated from the set of hits. For every tracker layer, the state is
updated with the best estimation compatible with the detected hits. The parameters
are updated using a weighted average, with more weight being given to estimates
with high certainty. The final output is the full set of helix parameters and the full
covariance matrix describing the correlations of the parameters and their errors.

3.2.7 Tracker alignment

In order to properly reconstruct particle trajectories, the positions of the tracker
components must be known to a precision better than the intrinsic resolution of the
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modules. Any flaw in the modeling of the tracker geometry leads to a bias in the
reconstructed track which then propagates to the momentum measurement. The
tracker must therefore be carefully aligned.

The basic idea of the alignment procedure is to use reconstructed tracks and
make them fit better to the hits by adjusting the assumed positions of the modules.
All possible deviations from the true positions are described by a set of alignment
parameters that are varied systematically in the track reconstruction. The values
that provide the best fit in terms of the sum of the χ2 of all tracks are then taken as
the correct alignment parameters. The first step in the procedure is to adjust the
absolute position and orientation of the tracker relative to the magnetic field. This is
done using two alignment parameters that describe the tilts around the x and y axes.
After the adjustment of the tracker as a whole, all individual modules are aligned.
The position of each module is parametrized using nine parameters. Three of these
describe the translational shift of the module from the nominal position and three
describe the rotational shift. The last three parameters describe any deviations
in the module geometry from a flat plane. The fit of the alignment parameters
is simplified by the overlaps of adjacent modules. Tracks that pass through the
overlap constrain the relative position of two adjacent modules, which results in a
tight constraint on the circumference of each barrel layer and each endcap ring.

A major difficulty in the alignment procedure is caused by so-called weak modes.
These result from combinations of alignment parameters that do not change the
track-hit residuals and therefore do not alter the total χ2. A weak mode can result
for instance from a twist where modules are moved coherently in φ by an amount
proportional to the position along the z axis.

The alignment is performed using cosmic ray data as well as data recorded during
the LHC operations. The tracker geometry is found to be very stable with time
and the statistical accuracy of the alignment procedure is such that misalignment
effects are small compared to the intrinsic hit resolution of the modules [20]. The
alignment therefore provides a tight constrain on the local scale of the tracker and
further calibrations are needed only to correct for distortions induced by the weak
modes.

3.2.8 Muon detector

Muons are an important tool in the CMS physics program. They are the only
charged particles that pass all inner detector layers without being absorbed and can
therefore be reconstructed with very high purity even at the very first triggering
levels.

The muon system is shown schematically in Fig. 3.4. It is composed of different
types of gas detectors organized in layers in the return yoke of the magnet. In
the barrel, up to |η| = 1.3, the muon system consists of four layers occupied by
drift tube chambers (DTs). These measure the position of the muon by converting
the electron drift time to the anode wire to a distance. In the endcaps, between
0.9 < |η| < 2.4 where the flux of muons is higher, a different technology is used.
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Four layers occupied by cathode strip chambers (CSCs) are used in each endcap.
In these chambers, closely spaced anode wires are stretched between two cathodes.
The ionization electrons drift towards the closest anode wire which provides the
measurement point. The magnetic field is almost completely confined within the
steel return yoke and the trajectories are not bent within the layers of the muon
system. Each layer measures the straight track and provides a vector in space
called track segment. The segments are then extrapolated between the stations to
reconstruct the full track. In order to get a fast signal for triggering, resistive plate
chambers (RPCs) are installed in most of the detector, up to |η| = 2.1. These are
parallel plate gaseous detectors that combine an adequate position resolution with
a very fast response time.
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Figure 3.4: Layout of one quadrant of CMS [15]. The four DT stations in the barrel are
shown in green, the four CSC stations in the endcap in blue, and the RPC stations in red.

3.2.9 Muon identification and reconstruction

A muon is identified by a signal in the muon detectors and reconstructed by com-
bining information from the muon system with information from the tracker. Even
though muons are not stopped in the inner detector layers they loose some energy in
the material. On average, a muon in the barrel loses 3 GeV of transverse momentum
before it reaches the first muon station and another 3 GeV between the first and the
last muon station. Muons with lower energy can therefore not be reconstructed.

In the standard CMS procedure, tracks are first reconstructed independently in
the tracker and the muon system. The tracks are then combined either by matching
the muon system tracks with the tracker tracks, or starting from the tracker looking
for matching track segments in the muon system. The latter is efficient for low
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energy muons that might be absorbed before traversing all muon system layers. In
either case, a final Kalman filter fit is performed to the hits in both systems.

Muons with transverse momentum below 200 GeV undergo significant multiple
scattering in the muon system which reduces the resolution. The tracks are there-
fore essentially reconstructed using only information from the tracker. At higher
momentum, the tracker information is combined with information from the muon
system and the full bending power of the magnet can be used for the momentum
measurement.
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Chapter 4

W and Z boson physics at the LHC

The study presented in this thesis uses measured and simulated samples of Z and
J/ψ events to calibrate the muon momentum scale and resolution in the CMS
detector. The analysis is part of a high precision measurement of the W boson
mass. This chapter introduces the W and Z boson physics of relevance for the
presented study and explains how the particles are created and observed at the
LHC. The J/ψ meson is presented in Chapter 5.

4.1 W and Z boson production

In a hadron collider such as the LHC, the W and Z bosons are produced at leading
order through the annihilation of a quark and an antiquark according to the diagram
in Fig. 4.1. The quark and the antiquark each have a fraction of the total proton
momentum given by the PDFs and produce a W or Z boson at a partonic center of
mass energy equal to the boson mass. The energy scale is thus given by

q =
√
sxqxq̄ = MW/Z , (4.1)

where
√
s is the center of mass energy and xq and xq̄ are the fractional momenta of

the interacting quarks.
The cross section for W or Z boson production can be predicted from two com-

ponents: the PDFs of the proton and the perturbative calculation of the matrix
element of the process. Figure 4.2 shows predicted and measured cross sections
in CMS for different processes. The rate of a given process is the product of the
luminosity and the cross section. Given the LHC nominal luminosity and the mea-
sured cross sections, the production rate is around 1 kHz for W bosons and around
300 Hz for Z bosons. The high production rates result in large datasets that allow
for detailed measurements.
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Proton 

W/Z 

𝑥𝑞 𝐸𝑝 

𝑥𝑞𝐸𝑝 

Underlying 
event 

Underlying 
event 

Proton 

Figure 4.1: A schematic illustration of the W or Z boson production process at the LHC.
The interacting quark (antiquark) has an energy xqEp (xq̄Ep), where Ep represents the
total proton energy and xq (xq̄) is given by the PDFs.
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Figure 4.2: Predicted and measured cross sections in CMS for different processes at the
LHC at 7 and 8TeV [21].

4.2 W and Z boson decay
Due to the very limited lifetime, the production of aW or Z boson is instantaneously
followed by its decay. The bosons must therefore be detected through their decay
products. The probability of a certain decay mode is described by the branching
ratio which is defined as the ratio between the rate of the decay mode of interest
and the total decay rate of the boson.

The W+ boson can decay into an antilepton and a neutrino or into an up-type
quark and a down-type antiquark, with the exception of the top quark which is too
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massive. Similarly, the W− decays into a lepton and an antineutrino or into an up-
type antiquark and a down-type quark. Each leptonic decay mode has a branching
ratio of 11 % [6]. The Z boson decays into a fermion and an antifermion of the same
flavor. Each leptonic decay has a branching ratio of 3.3 % [6]. Figure 4.3 shows the
leading order Feynman diagrams of the production processes of W and Z bosons
with the leptonic decay modes.
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Figure 4.3: Feynman diagrams for the production and leptonic decays of W+, W− and Z
bosons at the LHC.

The dominant decay mode of the bosons is the hadronic decay. It is however
experimentally very difficult to detect the hadronic channels since there is a large
background from other processes. The W and Z bosons are therefore observed
through their leptonic decays. At CMS, the clearest channel to observe the bosons
is the direct muonic decay since the muons can be reconstructed with very high
purity as explained in Section 3.2.8.

4.3 W and Z mass distributions

The Z boson mass is fully measurable from the muonic decays since the complete
four vectors pµ+ and pµ− of the two final state particles can be precisely measured.
For every event, the dimuon mass is given by

M2
µ+µ− = (pµ+ + pµ−)2 = pT+pT−

[
e∆η + e−∆η − 2 cos ∆φ

]
. (4.2)

where ∆η and ∆φ are the differences in the angles between the two muons. The
distribution of this quantity peaks at the invariant mass1 MZ and has a width given
by the convolution of the Breit-Wigner width, the PDFs and the detector resolution.
The mass distribution is also affected by so-called final state radiation (FSR) where
the muons radiate off photons. These photons carry away energy from the muons,
resulting in a tail on the left side of the peak.

1The PDFs fall steeply with energy and give rise to a shift of the peak by about 100 MeV below
the nominal Z mass.
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For the W boson, the event reconstruction is more complicated. The neutrino
can only be inferred from the missing transverse energy and its longitudinal mo-
mentum component cannot be measured. This implies that the event has to be
reconstructed in the transverse plane. At hadron colliders, the W boson mass is
therefore determined from the so-called transverse mass which is defined as

MT =
√

2plTEmiss
T (1− cosφ), (4.3)

where plT is the transverse momentum of the charged lepton, Emiss
T the missing

transverse energy and φ the angle between the transverse momentum of the lepton
and the missing transverse energy. The spectrum of the transverse mass has an
edge at the point MW which is used to measure the mass. Figure 4.4 shows the
mass and transverse mass distributions for Z and W respectively, as measured by
CMS at

√
s = 7 TeV.

(a) (b)

Figure 4.4: Signal distributions of the muonic W and Z samples collected by CMS at
7TeV [22]. (a): Dimuon mass spectrum for the Z → µµ sample. The points represent the
data and the histograms represent the simulation. The background is negligible (< 0.1 %)
and is not represented in the plot. (b): Transverse mass distribution for the W → µν
sample. The points represent the data. Superimposed are the results of fits for the signal
(yellow), electroweak background (orange) and QCD background (violet). The dashed lines
represent the signal distributions from simulations.

TheW muonic sample has a significant background, mainly coming from the de-
cay of b quarks into one muon and a jet of hadrons in the same direction. This back-
ground can be separated from the W signal by requiring the muon to be isolated.
The Z sample is almost pure signal with a negligible background. Furthermore, the
Z boson mass and width are known to high precision. These events are therefore
suitable for calibration purposes. The topology of the decay is very similar to the
signal W → µν and the Z can therefore be used to provide precise information
about the production processes of the W .
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Chapter 5

The J/ψ meson

The J/ψ particle is the bound state of a charm quark and antiquark (cc̄). It has a
mass of 3.0969 GeV and a decay width of 92.9±2.8 keV [6]. The J/ψ can be produced
in proton-proton collisions via two mechanisms: either as a prompt meson that is
directly produced in the primary interaction or as a non-prompt meson produced in
the decay of b hadrons. The non-prompt component is characterized by a secondary
vertex since the parent particle travels some distance before decaying.

The J/ψ can decay into hadrons, an electron-positron pair or a muon-antimuon
pair with a branching ratio of about 6 % for the leptonic decays. The dimuon
decays can be reconstructed with high purity and the sample is therefore suitable for
calibration purposes. Furthermore, the J/ψ has a negligible decay width compared
to the resolution in the CMS detector. The only width seen in the mass distribution
stems from the resolution on the measurements of the four-momenta of the decay
products. The sample can therefore be used to directly examine the detector effects.
Figure 5.1 shows the J/ψ invariant dimuon mass distribution, as measured by CMS
at
√
s = 7 TeV.
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Figure 5.1: The dimuon mass distribution and the result of a fit for the J/ψ peak in the
bin: 0.9 < y < 1.2, 12.0 < pT < 15.0 GeV [23].
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Chapter 6

W mass measurement

This thesis presents the calibration of the muon momentum measurement in the
CMS experiment. The work is part of an analysis aiming for a high precision
measurement of the W boson mass where the muon momentum represents one of
the main systematic effects. This chapter introduces the general strategy of the
W mass measurement and explains the need for a precise calibration of the muon
momentum.

6.1 Motivation for the W mass measurement

Any parameter in the electroweak sector of the SM can be predicted from a fit of the
model to a few precisely measured observables, as described in Section 2.5.2. Fits
of this kind have traditionally been used to constrain free parameters of the SM,
such as the Higgs and top masses, before their experimental discovery. Today, all
fundamental SM parameters are experimentally determined and the electroweak fit
can be used as a powerful tool to assess the validity of the theory and to constrain
scenarios for new physics. The level of consistency between the predictions and the
experimental values places indirect bounds on non-SM effects that would affect the
measurements.

The electroweak fit predicts the W mass to be 80.358± 0.008 GeV [10] whereas
the world average experimental value is 80.385 ± 0.015 MeV [6]. Figure 6.1 shows
the ∆χ2 profile of the electroweak fit as a function of the W boson mass, together
with the experimental value. When the errors are taken into account, there is a
tension at the level of 1.6 sigma between the prediction and the experimental value.
A new measurement of theW boson mass with improved precision would shed more
light on the level of consistency between the values and would therefore provide an
important test of the SM.
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Figure 6.1: ∆χ2 profiles for the indirect measurement of the W boson mass [24]. The data
point placed along ∆χ2 = 1 represents the experimental value and its ±1σ uncertainty. The
grey (blue) bands show the results when excluding (including) the MH measurement from
(in) the fits. The solid black curve represents the SM prediction derived from a minimal set
of input measurements.

6.2 General strategy of the W mass measurement

The most precise single W mass measurement to date is quoted by the CDF col-
laboration at the proton-antiproton collider Tevatron and has an uncertainty of
19 MeV [25]. A detailed description of the CDF measurement can be found in Ref-
erence [26]. The first attempt to measure theW boson mass at the CMS experiment
follows the same strategy and aims for a similar precision.

At the LHC, the W boson is produced through the annihilation of a quark and
an antiquark and is best reconstructed by CMS through its decay into a muon and
a muon neutrino, as described in Chapter 4. The W mass is extracted from three
experimental quantities based on observables transverse to the beam direction: the
muon transverse momentum, the missing transverse energy and the W transverse
mass which is a combination of the other two observables with the addition of the
angle between them.

The first analysis is carried out on W → µν events collected at a center of mass
energy of 7 TeV. A template fit is adopted, where the measured distributions of the
muon transverse momentum, the missing transverse energy and the transverse mass
are compared to Monte Carlo (MC) simulations generated with varying values of
the W mass. The value that minimizes the difference between data and simulation
is taken as the best estimation of theW mass. In the final measurement, the results
of all three fits are combined taking their correlations into account.
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6.3 Theoretical and experimental uncertainties
The success of the W mass measurement relies on the assumption that the simu-
lation correctly describes how all relevant quantities depend on the W mass. Two
kinds of systematic errors affect the measurement: theoretical uncertainties in the
models used to produce the simulated samples and experimental uncertainties on
the measurements of the muon momentum and the missing transverse energy. The
main theoretical uncertainties are introduced by the PDFs, the FSR corrections to
the production process and the simulation of the pT spectrum of the W boson.
Improvement on this part may come from better theory descriptions and better
measurements of other quantities used to produce the models.

In order to reduce the experimental uncertainties, it is important to calibrate the
transverse momentum and the missing transverse energy in data and MC to remove
biases induced by the detector. The two calibrations are performed as separate
projects, evolving in parallel. This thesis presents the calibration of the muon
momentum with emphasis on the calibration of the muon momentum resolution.

An estimation of the precision needed in the calibration is represented by the
precision reached by CDF. The collaboration quotes a systematic error on the W
boson mass of 7 MeV due to the lepton momentum scale and a comparably negligible
error of 1 MeV due to the momentum resolution [25]. The uncertainty on the muon
momentum scale propagates to theW mass measurement with a factor of two. This
can be understood by considering the simple example of aW boson decaying at rest
into a muon and a muon neutrino. The decay products will be emitted back-to-
back with a momentum equal to half of the boson mass. A given error on the muon
momentum is therefore multiplied by a factor of two when translated to the W
mass. Based on this discussion, the muon momentum scale must be calibrated to
an uncertainty of around 4 MeV. The typical momentum of the muon in the W
decay is 40 GeV which means that the calibration must reach a relative precision on
the order of 10−4 .
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Chapter 7

Calibration of the muon momentum
scale

The level of understanding of the muon momentum scale is one of the main sys-
tematic uncertainties affecting the W mass measurement. In order to reach the
desired precision on the W mass, the shape of the momentum distribution must be
controlled at a level of 10−4 . This chapter introduces the general strategy of the
calibration of the muon momentum scale, starting with a detailed description of the
detector effects that bias the measurement.

7.1 Bias of the muon momentum scale

The transverse momentum of the muon is measured from the sagitta of its track
in the magnetic field, as discussed in Section 3.2.4. The track reconstruction is
performed using information on the location of each tracker module, on the magnetic
field and on the material in the tracker, as described in Section 3.2.6. Flaws in the
modeling of these components induce biases in the track reconstruction that then
propagate to the momentum measurement. The muon momentum measurement
therefore has to be corrected for imperfections in the modeling of the magnetic field
and the material in the tracker as well as for misalignment of the tracker modules.
The following subsections describe the detector effects that create the biases in the
momentum measurement.

7.1.1 Magnetic field

The map of the magnetic field of the CMS solenoid was precisely measured before
the experiment was installed in the cavern below ground. However, in order to save
computing time, the tracks are reconstructed using a three-dimensional analytic
parametrization that approximates the real field map. Figure 7.1 shows the ratio of
the field integrals computed with the parametrized and real maps, along a straight
line from the origin. The ratio is close to unity but displays variations at a level
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of 10−3. Before the calibration of the muon momentum scale, the momentum is
corrected for these variations as a function of the coordinates η and φ at the origin.
This approach implicitly assumes the muon tracks to be straight lines. For the
tracker magnetic field of 3.8 T and the radius of around 1 m, the bending angle of a
40 GeV muon is 3 mrad. This is much smaller than the size of the variations in the
map in Fig. 7.1 and the approximation of a straight line is therefore appropriate.

The CMS magnet is equipped with six NMR probes that monitor the magnetic
field. After the placement below ground, the reading of these probes changed by a
factor of 0.9992. It is unclear how this effect propagates through the tracker volume.
However, it is plausible that the measured map underestimates the magnetic field
by this amount. The transverse momentum is proportional to the magnetic field
which means that the underestimation would bias the momentum scale at a level
of 8 · 10−4 which exceeds the desired precision.
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Figure 7.1: Ratio between the parametrized and the measured magnetic field maps in the
η-φ plane in CMS.

7.1.2 Energy loss in the material
When a muon passes through the tracker it interacts with the electrons in the
material, exciting or ionizing the atoms, thereby losing energy. The typical energy
loss can be computed from the amount of material in the tracker and the Bethe-
Bloch formula which describes the ionization losses of charged particles. For a muon
at 40 GeV, the energy loss per unit length and density is dE/dx ∼ 2 MeVcm2g−1.
The average density in the tracker is 0.2 gcm−3. The energy lost by a muon along
a 100 cm trajectory is therefore around 40 MeV which represents 0.1 % of the initial
energy. An imperfect modeling of the material in the tracker exceeding 10 % will
therefore affect the momentum measurement at a level above the desired precision.
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The density in the tracker is not uniform and the energy loss varies greatly with
the pseudorapidity of the muon. Figure 7.2 shows the tracker material budget as
described by the simulation of the CMS tracker.
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Figure 7.2: Material budget of the tracker. Integrated density along a straight track followed
by a particle produced at the center of the tracker as a function of the pseudorapidity.

7.1.3 Misalignment

The alignment of the tracker is described in Section 3.2.7. After the alignment
procedure, the statistical accuracy on the module positioning is such that its effect
is small compared to the intrinsic measurement precision of the sensors. Smaller
differences in the local alignment of individual modules are random and contribute
to the resolution on the momentum measurement. The muon momentum scale
calibration therefore only has to correct for distortions induced by weak modes,
which act in a coherent way.

7.2 Measured and simulated samples
The calibration of the muon momentum scale is performed on measured and sim-
ulated samples of J/ψ and Z dimuon events collected at 7 TeV. These events are
described in Chapters 4 and 5 and constitute reliable control samples due to their
well measured masses and widths. The J/ψ and Z simulated samples used in this
analysis are generated, respectively, with PYTHIA6 [27] and with POWHEG [28]
interfaced with PYTHIA8 [29].

The J/ψ events are selected at triggering level by requiring two muons with a
total transverse momentum of pT > 9.9 GeV and an invariant dimuon mass in the
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range 2.8 − 3.35 GeV. In this analysis, both muons are further required to have
pT > 4 GeV. In 2011, the data taking of prompt J/ψ mesons was limited to the
central rapidity region. The data used in this study is complemented with non-
prompt J/ψ mesons, which were collected also in the endcaps up to |η| = 2.4. In
the MC, these are not included and the sample is limited to |η| < 1.7. Figure 7.3
shows kinematic distributions for the J/ψ samples.
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Figure 7.3: Measured (solid black lines) and simulated (dashed red lines) kinematic distri-
butions for dimuon J/ψ decays. (a): Dimuon mass distribution. (b): Transverse momentum
of the positive muon. (c): Angle in space between the two muons. (d): Pseudorapidity of
the positive muon.

The events in the Z sample are selected at triggering level by requiring a single
isolated muon with pT > 24 GeV. In the samples used in this analysis, the events
are further selected by requiring the most energetic muon to fulfill pT > 25 GeV
and the other to fulfill pT > 10 GeV. Furthermore, the events are required to have
an invariant dimuon mass above 50 GeV. The single muon trigger is limited to
|η| < 2.1. In the data sample used in this analysis an additional cut is applied,
limiting both muons to |η| < 2.1. Figure 7.4 shows the kinematic distributions for
the Z samples.
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Figure 7.4: Measured (solid black lines) and simulated (dashed red lines) kinematic distri-
butions for dimuon Z decays. (a): Dimuon mass distribution. (b): Transverse momentum
of the positive muon. (c): Angle in space between the two muons. (d): Pseudorapidity of
the positive muon.

For both the J/ψ and Z samples, clear differences between data and simulation
are seen in the distributions. In the J/ψ sample, the differences are mainly due to
the trigger threshold at pT = 4 GeV which is not well simulated in the MC. For
the Z, they result from the differences in the pseudorapidity cuts applied to the
samples. In the calibrations of the muon momentum scale and resolution, data and
MC are treated separately. Therefore, the differences do not affect the study.

The distributions in transverse momentum and opening angle between the muons
show an important topological difference between the J/ψ and Z samples. For a
decay at rest, the muons are emitted with a momentum equal to half of the parent
mass. For the J/ψ, these muons cannot be identified since they are absorbed in the
large amount of material before the muon system. The selected muons are therefore
emitted from highly boosted J/ψ mesons which explains the small opening angle
between the two muons.

The mass distributions show differences in the resolution in data and MC. In
J/ψ, the mass distribution in the simulation has a smaller width compared to the
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data. This implies that the resolution in the simulation is better than the resolu-
tion in data. For the Z, the situation is opposite with a better resolution in data
compared to the MC. This is an important point for the calibration of the muon
momentum resolution, described in Chapter 8.

7.3 Calibration methodology
The calibration of the muon momentum scale is performed using a physics-motivated
model that parametrizes the three biasing effects described in Section 7.1 and prop-
agates their effect on the momentum to the dimuon mass. Since the effects are
assumed to vary with the geometry of the tracker, the solid angle is divided into
bins in η and φ. The parameters in each bin are disentangled and extracted from a
fit to the mass peak of the control samples. The final result of the calibration is a
set of correction factors which can be applied to the muon momentum in each event
that enters the W mass measurement.

Parametrization

The calibration of the muon momentum scale is performed using the curvature1

k = 1/pT instead of the momentum. The curvature is proportional to the sagitta
which is the quantity measured in the tracker and is therefore distributed like a
Gaussian function. In each bin in η and φ, the measured curvature k is corrected into
the curvature kc accounting for the bias induced by imperfections in the modeling
of the magnetic field and the tracker material and by misalignment of the tracker
modules.

The parametrization of the three effects is derived on basis of the equation for
the momentum of a charged particle in a magnetic field, Eq. 3.8 in Section 3.2.4.
In terms of curvature the relation reads

k = 1
qBr

, (7.1)

where q is the charge, B the magnetic field strength and r the radius of curvature.
According to this equation, a small variation of the magnetic field results in a
multiplicative correction factor A to the curvature. The corrected curvature kc is
thus given by

kc = Ak, (7.2)
where A is a number close to 1.

An imperfect modeling of the tracker material implies an additional energy loss.
The muons considered in the study are ultrarelativistic with p = E and the result
is therefore an additive term ε to the momentum,

pc = p+ ε. (7.3)
1Normally, the curvature is defined as 1/r where r is the radius of curvature. What is called

curvature in this analysis is the inverse transverse momentum which is proportional to 1/r.
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This effect can be propagated to the curvature

k = 1
pT

= 1
p sin θ → kc = 1

pc sin θ = 1
p sin θ + ε sin θ = k

1 + kε sin θ . (7.4)

Finally, a misalignment of the tracker modules leads to an additive term to the
curvature, opposite in sign for the two muons. This can be understood from the
schematic drawing shown in Fig. 7.5. The correction to the curvature can therefore
be expressed as

kc = k + qM (7.5)

where M is the magnitude of the correction and q is the muon charge.

Real track

Reconstructed track

Figure 7.5: Misalignment of the tracker modules. The trajectories of the two muons in the
tracker bend in opposite directions due to the magnetic field in the tracker. The actual
trajectories in the misaligned tracker (left) will be reconstructed as if the detector was
perfectly aligned (right). This leads to an additive term to the curvature, opposite in sign
for the two muons.

Accounting for all effects, the combined corrected curvature can be expressed as

kc = (A− 1)k + k

1 + kε sin θ + qM, (7.6)

where (A − 1), M and ε are the free parameters determining the corrections in a
given bin in η and φ. The values of these parameters are expected to be small
considering the discussion in Section 7.1. A is expected to differ from 1 by less than
0.001, M is expected to to be less than 10−4 GeV−1 and ε is expected to be on the
order of a few MeV. These values should be compared to the typical momentum of
muons from W decays of around 40 GeV.

The invariant dimuon mass m2 is given in terms of the curvatures of the two
muons as

m2 = 1
k+

1
k−

[
e∆η + e−∆η − 2 cos ∆φ

]
, (7.7)

where ∆η and ∆φ are the differences in the angles of the two muons and + and −
denote the positive and the negative muon. The angles are measured with negligible
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uncertainty compared to the uncertainty on the curvature [17] and the ratio between
the reconstructed mass, which is biased by the detector effects, and the true mass
can therefore be expressed as

m2
reco

m2
true

= kc+k
c
−

k+k−
. (7.8)

With the muons in different bins in η and φ, the parameters A,M and ε are different
for the two muons which results in the relation

m2
reco

m2
true

=
(
A+ − 1 + 1

1 + k+ε+ sin θ+
+ M+

k+

)(
A− − 1 + 1

1 + k−ε− sin θ−
− M−

k−

)
. (7.9)

Fit of the correction parameters

The free parameters A, M and ε in each η-φ bin are extracted from the control
samples using a Kalman filter approach2. In this case, the system is characterized
by a state vector that includes the three parameters in each bin. Every event in the
sample is an iteration where the ratio m2

reco/m
2
true is used to compute the param-

eters. The target mass mtrue is taken as the average mass in a sample simulated
at generator level. This simulation excludes all detector effects while taking into
account important physics effects such as FSR and the mass shift due to the PDFs.
The events are weighted using the error given by the covariance matrix of the track
reconstruction introduced in Section 3.2.6.

7.4 Closure of the scale calibration
To estimate the closure of the calibration technique, an independent fit model is
used to test the result given by the Kalman filter. The closure is described by the
ratio

rabs = mtrue
mcorr

, (7.10)

where mcorr is the reconstructed dimuon mass after calibration and mtrue is the
invariant dimuon mass in the generator level sample. A perfect calibration takes
the reconstructed dimuon mass to the real mass and returns rabs = 1. The deviation
from 1 therefore determines the systematic error of the method. The value of rabs
is extracted from a fit to the resonance peak using a fit model specifically developed
for this purpose. This model is described later, in Section 8.5.1. Since the W mass
measurement is performed by comparing data to MC, the important aspect is the
relative difference between the samples after calibration. The figure of merit is
therefore the ratio

rrel = rabs(DATA)
rabs(MC) = mcorr(MC)

mcorr(DATA) . (7.11)

2The Kalman filter technique is discussed in view of the track reconstruction in Section 3.2.6.
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7.5 Resolution effects on the muon momentum spectrum

Apart from the detector effects described in Section 7.1, the muon momentum scale
is biased by the resolution on the momentum. This bias can be understood in the
following way. Every momentum measurement is made with a corresponding uncer-
tainty. A measurement of a given momentum many times will result in a Gaussian
distribution centered at the true momentum and with a width given by the detector
resolution. The measured spectrum is the sum of all Gaussians corresponding to
the true spectrum. This implies that a given point in the measured spectrum will
contain events belonging to the tails of the Gaussians corresponding to the neigh-
boring points in the true spectrum. For a flat distribution, the same amount of
events will enter the measured value from both sides and the effect will not create a
bias. For a distribution with a slope, like the pT spectrum, more events enter from
one side which leads to a bias in the measured momentum scale.

The bias on the momentum spectrum further propagates to the mass distribu-
tion. The Kalman filter technique used to derive the correction factors for the scale
is not affected by this bias since the events are compared to the target mass one
by one. In the closure test, the full mass distribution is used to extract the scale
rabs and any bias introduced by the momentum resolution will therefore affect the
result.

The importance of the effect can be examined by performing the closure test on
generator level MC which is smeared by adding a resolution to the sample. Since
the generator level sample has ideal scale, any bias from 1 in the parameter rabs is a
result of the resolution. The smearing of the generator level sample is performed by
adding to the curvatures in every event a term randomly sampled from a Gaussian
corresponding to the momentum resolution in the MC sample. Figure 7.6 shows
the result for different smearings of the generator level Z sample as a function of
the transverse momentum of the positive muon in the decay.

The shape of this graph can be understood from the pT spectrum of the Z,
shown in Fig. 7.4(b). The sum of the momenta of the two muons in the decay is
constrained by the mass of the Z. For a positive muon with a given transverse
momentum below about 45 GeV, the negative muon is at pT & 45 GeV where the
spectrum has a negative slope. The measured mass is therefore underestimated.
For a positive muon with a given transverse momentum above 45 GeV, the negative
muon is at pT . 45 GeV where the spectrum has a positive slope and the measured
mass is overestimated.

Clearly, the smearing induces biases in the fitted mass. Of importance for the
W mass measurement is the ratio of the closures in data and MC. The mass dis-
tributions in Section 7.2 show that the resolution in the simulation differs from
the resolution in data for both the J/ψ and Z samples. It is therefore relevant to
compare the shift of the mass scale between the different smearings instead of the
absolute shift from unity in Fig. 7.6. A difference in the resolution of 10 % causes
a non-closure of 2 · 10−4 which is above the desired level of precision of the scale
calibration. Before computing the systematic error of the scale calibration it is
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therefore essential to match the resolution in data and MC to avoid this bias. In
order to reach a closure of 10−4, the muon momentum resolution in each sample
must be measured with a precision at the level of 3 %.

) [GeV]
+

µ (
T

p
20 30 40 50 60 70 80

ge
n

m
/m

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

1.0005

1.001

1.0015

1.002
σSmeared with MC 

 + 10%σSmeared with MC 

 + 20%σSmeared with MC 

Figure 7.6: Mass shift in smeared Z generator level sample as a function of the transverse
momentum of the positive muon. The sample is smeared using different fractions of the
resolution σ in the MC, 1 · σ (blue triangle), 1.1 · σ (red circle) and 1.2 · σ (green square).
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Chapter 8

Calibration of the muon momentum
resolution

The muon momentum resolution plays an important role in the estimation of the
systematic error of the muon momentum scale calibration, described in the previous
chapter. A difference in the resolution between data and MC gives rise to a bias on
the measured mass, resulting in a non-closure of the momentum scale calibration. If
the resolution in data and MC is known to good precision, this bias can be removed
by correcting the resolution in MC to match the resolution in data. In order to
reach the desired precision, the muon momentum resolution must be calibrated to a
precision of 3 %. This is a challenging task that requires detailed understanding of
the detector and the effects that give rise to the uncertainty on the muon momentum
measurement. This chapter describes the calibration procedure starting with a
detailed description of the origin of the momentum resolution in the CMS tracker.

8.1 Muon momentum resolution
In the CMS tracker, the momentum1 of a charged particle is measured from the
sagitta of its track, as described in Section 3.2.4. The uncertainty on the momen-
tum measurement therefore depends on the precision that can be achieved on the
measurement of the sagitta. For a particle of charge e in a uniform field B, the
sagitta s is related to the momentum according to

p = eBL2

8s , (8.1)

where L is the length of the track measured on the transverse plane. A given
measurement error σs can be translated to the momentum using error propagation,

σp = eBL2

8s2 σs = p2 8
eBL2σs. (8.2)

1In this chapter, the word "momentum" and the symbol p always refer to the transverse mo-
mentum pT .
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The measurement error σs stems from two effects: the intrinsic resolution of the
measurement points (hits) and the multiple scattering that the charged particle
undergoes as it traverses the tracker. These two effects are described separately in
the next sections.

8.1.1 Intrinsic hit resolution
All hits in the tracker are measured with an error given by the spatial resolution
of the silicon sensors. When the track is reconstructed, these errors are taken into
account and are propagated to the track parameters. The resulting uncertainty
on the sagitta can be calculated by explicitly minimizing the χ2 built from the
reconstructed track and the hits. This procedure is described in detail in Refer-
ence [30]. For the case of N equally spaced measurement points which all have the
same resolution ε, the uncertainty on the sagitta is given by

σs = ε

8

√
720
N + 5 . (8.3)

The corresponding error on the measured momentum is obtained by inserting this
expression into Eq. 8.2,

(σp)hit = p2 ε

eBL2

√
720
N + 5 , (8.4)

where the transverse length L in this case is defined by the radial distance between
the first and the last measurement point. The relative error is thus proportional to
the momentum according to (

σp
p

)
hit

= a · p, (8.5)

where a is a constant given by

a = ε

eBL2

√
720
N + 5 . (8.6)

For the CMS tracker, L ≈ 1 m, N ≈ 14 and B ≈ 3.8 T, as described in Section 3.2.5.
The module resolution in the tracker varies between 15− 50µm in the various lay-
ers. For ε = 30µm, the above equation predicts a value of a2 = 2.6 · 10−8 GeV−2.
The value is quoted in quadrature since the momentum uncertainty due to the
intrinsic hit resolution later will be added in quadrature to the momentum uncer-
tainty due to the multiple scattering. In the barrel, the value of a is expected to
be approximately constant. Tracks in the endcaps above |η| = 1.6 do not cross the
full radius of the tracker and the radial distance between the first and last mea-
surement point decreases. According to Eq. 8.6, the value of a should therefore
increase in the endcap. For |η| = 2.5, the transverse track length is L ≈ 0.4 m and
a2 = 1 · 10−6 GeV−2.
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8.1.2 Multiple scattering
A charged particle traversing a medium is deflected by many small angle scatters
due to Coulomb interactions with the nuclei in the material. The overall deflection
angle with respect to the original direction of motion is described by a Gaussian
distribution [31]. In the tracker, the width of this distribution gives rise to an un-
certainty on the position of the track at each measurement point. This uncertainty
can be computed by considering small steps along the path and integrating over the
scattering angle at each layer. The corresponding sagitta error can then be inferred
from the displacement of the track at each measurement point. These calculations
are described in detail in Reference [30]. For a material that is uniformly distributed
along the track, the sagitta error is given by

σs = L

4
√

3
13.6 MeV

p

√
L/X0, (8.7)

where L/X0 is the thickness of the material in radiation lengths. In a non-uniform
material, the effect of the multiple scattering on the sagitta is larger if the bulk of
the material is at the center of the track. This can be taken into account in the
calculation of σs by weighting the scattering angle at each step with the square of
the distance from the closer endpoint of the segment of length L.

The momentum resolution due to multiple scattering can now be computed from
Eqs. 8.2 and 8.7,

(σp)ms = p2 8
eBL2 ·

L

4
√

3
13.6 MeV

p

√
L/X0. (8.8)

The relative resolution is therefore independent of momentum,(
σp
p

)
ms

= b, (8.9)

where b is a constant defined by

b = 2 · 13.6 MeV√
3eBL

√
L/X0. (8.10)

Figure 8.1 shows the simulated material of the tracker, expressed in radiation
lengths, as a function of the pseudorapidity η and the radius rs in spherical co-
ordinates. This radius represents the distance in space from the origin, given by
rs =

√
r2 + z2 where r and z are the usual cylindrical coordinates. The integral of

the material along rs for a given value of η represents the factor L/X0 in Eq. 8.10
and can therefore be used to compute the corresponding value of b. Figure 8.2 shows
the estimation of b2 as a function of η, achieved when assuming the material to be
uniformly distributed and by accounting for the variations in the material along the
track. The plot is by construction symmetric around η = 0 but is shown for the full
range to allow for comparison with results presented later.
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Figure 8.1: Thickness of the tracker material traversed by a particle produced at the center
of the detector, in units of radiation lengths, as a function of the pseudorapidity η and the
radius rs in spherical coordinates.
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Figure 8.2: Multiple scattering term b2, as a function of pseudorapidity, computed from the
simulated thickness of the tracker material for the assumption of uniform material and by
accounting for the non-uniform distribution of the material.
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8.2 Parametrization of the muon momentum resolution
The total momentum resolution is the sum in quadrature of the contributions from
the hit resolution and the multiple scattering. Based on the discussion in the pre-
vious sections, the resolution can therefore be approximated by the functional form(

σp
p

)2
=
(
σp
p

)2

hit
+
(
σp
p

)2

ms
= b2 + a2p2, (8.11)

where a and b encode the intrinsic hit resolution and the effect of multiple scat-
tering respectively. This expression suggests that the resolution is dominated at
low momentum by the multiple scattering and at high momentum by the intrinsic
hit resolution. Figure 8.3 shows a comparison of the two contributions given the
value of a2 for |η| < 1.6 derived in Section 8.1.1 and the values of b2 derived in
Section 8.1.2 for a non-uniform material.
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Figure 8.3: Comparison of the two resolution contributions b2 and a2p2 for momenta of 10,
50 and 100 GeV.

In the central region, the resolution is dominated by the multiple scattering up
to p = 50 GeV where the two effects contribute equally. This implies that muons
from the Z decay, which typically have a momentum of 45 GeV, are affected by both
contributions to the resolution. For muons from the J/ψ, which typically have a
momentum of a few GeV, the resolution is completely dominated by the multiple
scattering.

In the previous discussion, the parameter a was estimated by assuming a con-
stant space resolution of the silicon sensors. To examine how crude this approx-
imation is, the a and b parameters can also be extracted from plots of the muon
momentum resolution produced with the full simulation of the the CMS tracker.
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Figure 8.4 shows the expected relative resolution for single muons of momenta of
1, 10 and 100 GeV as a function of pseudorapidity. The expected resolution is
computed by generating many muons at fixed momentum and pseudorapidity and
measuring the width of the reconstructed momentum.

Figure 8.4: Simulated relative resolution on the momentum of the tracker as a function of
the pseudorapidity η for muons of momenta of 1, 10 and 100 GeV [15].

At 1 GeV the resolution is entirely dominated by the multiple scattering. The
value of b2 can therefore be obtained directly from the curve at 1 GeV in Fig. 8.4.
For |η| = 0 this approach gives the estimate

b2 ≈
(
σp
p

)2
≈ 4.9 · 10−5.

This value is very consistent with the value derived from first principles, shown in
Fig. 8.2. The value of a2 at η = 0 can be obtained from the curve at 100 GeV by
subtracting the value of b2 from the resolution

a2 · (100 GeV)2 ≈
(
σp
p

)2
− b2 ≈ 2.3 · 10−4 − 4.9 · 10−5 → a2 ≈ 1.8 · 10−8 GeV−2.

This value is 30 % smaller than the value derived in Section 8.1.1. The resolution
curve of the 100 GeV muon in Fig. 8.4 also shows that a2 is approximately constant
in the barrel region.

8.3 Muon momentum resolution from the track
reconstruction

The final result of the track reconstruction is the set of track parameters and the
covariance matrix describing the correlations of the parameters and their errors, as
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described in Section 3.2.6. For each dimuon event, the tracking therefore provides
estimates of the errors on the muon momenta. These errors are referred to as the
event-by-event momentum uncertainties and are computed both for data and MC.
The error is estimated by the tracking algorithm using models for the intrinsic
resolution of the silicon sensors and the multiple scattering. These models are
detailed and simulate the space resolution depending on how the track crosses the
sensor.

The accuracy of the model for the resolution, derived in Section 8.2, can be exam-
ined by studying the momentum dependency of the event-by-event error. Figure 8.5
shows the squared relative momentum resolution from the track reconstruction as
a function of the square of the momentum, in data and simulation, for two different
pseudorapidity bins.
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Figure 8.5: Average (σp/p)2 computed from the event-by-event error of the positive muon
in J/ψ and Z dimuon events as a function of p2 in the bin 0 < η < 0.1 for data (a) and
simulation (b) and the bin 1.1 < η < 1.4 for data (c) and simulation (d). The blue curve
represents the fit to the points and the red marker the value of b2 derived for a non-uniform
material in Section 8.1.2.
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According to the parametrization in Eq. 8.11, these graphs should display a
straight line with a slope given by a2 and an intercept given by b2. However, the
plots show a shift in the slope at around p2 = 500 GeV2. The event-by-event error
must therefore have an additional dependence on momentum. It will later be shown
that the real resolution also displays this behavior.

A fit with a straight line to the points in Fig. 8.5 above the shift in the slope
gives an estimation of the value of the a2 of the event-by-event error assuming the
parametrization in Eq. 8.11. The values for the central bin can be compared to
the value derived from first principles in Section 8.1.1. In data, the values differ by
about 40 % and in the MC they differ by about 30 %. The graphs in Fig. 8.5 are
also complemented with a marker on the y axis showing the expected intercept for
the assumed parametrization given the value of b2 derived in Section 8.1.2.

It is not clear where the additional momentum dependence stems from or how
it can be parametrized.2 A plausible hypothesis is that the effect is related to the
angle at which the muon path hits the silicon modules. For large angles of incidence,
the charge sharing between two adjacent strips, described in Section 3.2.5, may lead
to a larger error on the measurement. This effect is not taken into account in the
derivation of the intrinsic hit contribution to the resolution. The angle of incidence
is related to the curvature of the track and therefore also to the momentum, which
might explain the extra momentum dependency. In this study, the parametrization
in Eq. 8.11 will be kept and will eventually be used used to derive corrections to
the event-by-event error. This way, the flaw in the parametrization applies only to
the correction which is small compared to the resolution.

8.4 Dimuon mass resolution
The muon momentum scale and resolution calibrations are carried out on dimuon
events by studying the invariant mass distribution. It is therefore important to un-
derstand how the errors on the momentum measurements of the two muons propa-
gate to the dimuon mass

m2 = p1p2
[
e∆η + e−∆η − 2 cos ∆φ

]
, (8.12)

where 1 and 2 mark the two muons in the decay. The angles η and φ are measured
in CMS with a relative resolution on the order of 10−3 [17]. Their contribution
to the dimuon mass resolution is therefore negligible compared to the momentum
resolution. The mass resolution is thus given by(

σm2

m2

)2
=
(2σm
m

)2
=
(
σp1

p1

)2
+
(
σp2

p2

)2
. (8.13)

Using the parametrization in Eq. 8.11, this can be expressed in terms of the a
and b parameters. Since the two muons typically are emitted at different η, the

2Since the effect is simulated by the MC it can be further examined with a dedicated study,
which however goes beyond the scope of this thesis.
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parameters are different for the two muons which results in the relation(2σm
m

)2
= b21 + a2

1p
2
1 + b22 + a2

2p
2
2. (8.14)

8.5 Measurement of the muon momentum resolution
The calibration of the muon momentum resolution is performed on the measured
and simulated samples of J/ψ and Z dimuon events described in Section 7.2. The
mass resolution in these samples can be used to extract the momentum resolutions
of the two muons in the decay on basis of Eq. 8.13 and also to extract the parameters
a and b according to Eq. 8.14.

The momentum resolution varies with the pseudorapidity of the muon. In this
study, the η range is divided into 28 bins. It is then assumed that the momentum
resolution and the parameters a and b can be taken as constant inside each bin.
The task of the calibration is thus to determine the momentum resolution (σp/p)
in the 28 bins and finally to determine the 28 pairs of parametrization parameters
(a, b). Eventually, the derived parameters can be used to equalize the resolution
in data and MC on an event-by-event basis in order to avoid biases in the closure
test of the scale. The calibration is derived for the region |η| < 2.4 in data and
for |η| < 1.7 in MC since the J/ψ simulation is limited to this range. For technical
reasons, the same binning is used for all samples. The last bin in the Z sample is
filled only up to |η| = 2.1 since the sample is limited to this range.

For a given event, the uncertainty on the mass depends on the pseudorapidities
of the two muons in the decay. The samples are therefore split into 28 × 28 bins
in the η1-η2 plane. It is important to note that 1 and 2 mark the position in η of
a given muon, regardless of its sign. A given bin ij contains all events where the
positive muon is in bin i in η1 and the negative muon in bin j in η2 as well as all
events with the negative muon in bin i in η1 and the positive muon in bin j in η2.
It therefore holds that a bin ij is equal to a bin ji. For simplicity, the bins are
ordered and filled with η2 > η1. Figures 8.6 and 8.7 show the population of events
in the η1-η2 plane with the binning used in the study for the J/ψ and Z samples.
The differences between the J/ψ and Z event distributions can be understood from
the one-dimensional distributions shown in Section 7.2. In the J/ψ sample, the
opening angle between the two muons is small which gives rise to the narrow band
of populated bins along the line η1 = η2. For the Z, the muons are emitted with a
large opening angle and the events populate almost the full η1-η2 plane.

The calibration procedure consists of three main steps. First, the mass resolution
in each bin ij is extracted from a fit to the mass distribution of the events in the
bin. This fit will be referred to as the "mass lineshape fit". The result of the first
step is a map of the mass resolution as a function of η1 and η2. In the second step,
the parameters (σp/p)i are extracted from a fit to the map of the mass resolution.
This step is referred to as the "momentum resolution fit". Finally, the parameters ai
and bi are extracted from two separate fits to the mass resolution. The parameters
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are derived both accounting for the full resolution and as corrections to the event-
by-event error. In the following sections, the various steps of the procedure are
described in detail.
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Figure 8.6: Event distributions showing the correlation between the pseudorapidities of the
two muons produced in the decay of J/ψ mesons for data (a) and simulation (b). The
distributions are normalized by unit area. The simulation is limited to |η| < 1.7 and the
first and last two bins are therefore empty.
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Figure 8.7: Event distributions showing the correlation between the pseudorapidities of the
two muons produced in the decay of the Z boson for data (a) and simulation (b). The
distributions are normalized by unit area.

8.5.1 Fit of the mass lineshape

The mass distribution in each bin ij is fitted with a kernel model which is defined by
using generator level events that include FSR. Each generator level event contributes
to the model with a Gaussian with an average resolution σ and a scale that is a
variation of its true scale by a factor rscale. The signal model is thus described by
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the probability density function

P (m, rscale, σ) =
N∑
i=1

1√
2πσ

exp
[
−1

2

(
m− rscale ·mi

σ

)2
]
, (8.15)

where N is the number of events, mi is the generator level mass of each event and σ
is an average resolution appropriate for the sample. The free parameters in the fit
are the scale rscale and the resolution σ. This model factorizes out all the theoretical
effects such as PDFs and FSR. Since the model builds on generator level events,
the width represented by σ is due solely to the resolution of the detector. The
model can therefore be used to directly extract the detector resolution from the Z
sample where the width of the mass distribution is given by the convolution of the
Breit-Wigner width and the detector resolution. Figure 8.8 shows examples of the
fits for J/ψ and Z data. The background is modeled by an exponential in the J/ψ
sample. In the Z sample, the background is negligible and is not included in the fit.

 [GeV]µµm
2.9 2.95 3 3.05 3.1 3.15 3.2 3.25 3.3

E
ve

nt
s 

/ (
0.

00
4 

G
eV

)

0

100

200

300

400

500

600

700
data

total fit
background

/ndf = 86.6/952χ
 0.0003 GeV± = 0.0291 σ

 0.0001± = 0.9998 scaler

 0.42±slope = 2.52 
 117± = 12111 sign

 50± = 876 bkgn

 < -1.1
1

η-1.4 < 

 < -0.5
2

η-0.6 < 

(a)

 [GeV]µµm
70 75 80 85 90 95 100 105 110

E
ve

nt
s 

/ (
0.

4 
G

eV
)

0

50

100

150

200

250

300

350

400

450 data

total fit
/ndf = 104.1/982χ

 0.047 GeV± = 1.038 σ
 0.0004± = 0.9993 scaler

 = 6787sign

 < -1.1
1

η-1.4 < 

 < -0.5
2

η-0.6 < 

(b)

Figure 8.8: Mass distributions of the J/ψ (a) and the Z (b) data samples in the bin
−1.4 < η1 < −1.1, −0.6 < η2 < −0.5 with the fitted lineshape together with the fit
result for the free parameters. The number of events in the signal peak is represented
by the parameter nsig. For the fit to the J/ψ, the parameter nbkg represents the number
of background events and the slope corresponds to the exponent in the exponential that
models the background.

The final result of the mass lineshape fit is a map of the mass resolution in the
populated bins. The result is shown in Fig. 8.9 for J/ψ data and simulation and in
Fig. 8.10 for the Z. The generator level events used to build the signal model are
selected in the same bin ij as the fitted data and have the same momentum cuts
applied. All fits are seen to converge with a good χ2/nd, where nd is the number of
degrees of freedom. As expected, the resolution is worse in the endcaps, where more
material is present and the transverse track length L is shorter. The plots show
similar trends in data and MC but the scales differ. For the J/ψ, the resolution in
MC is better by 5 − 10 %. For the Z, the resolution in MC is worse by 10 − 20 %.
These differences show that the resolution effects indeed would cause a bias in the
closure test of the scale calibration.
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Figure 8.9: Measured mass resolution as a function of the pseudorapidities of the two muons,
for measured (a) and simulated (b) J/ψ events.
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Figure 8.10: Measured mass resolution as a function of the pseudorapidities of the two
muons, for measured (a) and simulated (b) Z events.

Variations of the kernel model can also be used, taking the event-by-event mass
uncertainty for each Gaussian kernel and fitting the additional resolution. The
signal model is then described by the probability density function

P (m, rscale, δσ
2) =

N∑
i=1

1√
2π
(
σ2

ebei
+ δσ2

) exp

−1
2

m− rscale ·mi√
σ2

ebei
+ δσ2

2
 , (8.16)

where σebe is the event-by-event error and δσ2 is the correction to be added to the
square of the event-by-event error. The free parameters of the fit are in this case
the scale rscale and the correction δσ2 which is allowed to be negative.
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8.5.2 Fit of the momentum resolution
In this study, it is assumed that the momentum resolution is constant inside a bin
i in η. The mass resolution in each bin ij is therefore a function of the unknown
momentum resolutions in the two η bins i and j according to(2σm

m

)2

ij
=
(
σp
p

)2

i

+
(
σp
p

)2

j

, (8.17)

where σm denotes the mass resolution obtained from the mass lineshape fit using
the first version of the kernel model, Eq. 8.15. The parameters (σp/p)2

i can be
extracted from a fit to the measurement points (σm/m)2

ij by adopting the method
of least squares. The likelihood function is the χ2 which in this case is defined by

χ2 =
∑
i,j

[(
2σm
m

)2

ij
−
(
σp

p

)2

i
−
(
σp

p

)2

j

]2

[
∆
(

2σm
m

)2

ij

]2

=
∑
i,j

[(
2σm
m

)2

ij
−
(
σp

p

)2

i
−
(
σp

p

)2

j

]2

(
8σm∆σm

m2

)2

ij

,

(8.18)

where ∆σm is the error on the parameter σm returned by the mass lineshape fit. The
minimum of this equation defines the least-squares estimators for the parameters
(σp/p)2

i . Technically, the minimization conditions

∂χ2

∂
(
σp

p

)2

i

= 0 (8.19)

reduce the problem to a system of 28 linear equations in the unknown parameters
(σp/p)2

i , which can be solved using matrix algebra. The errors on the fitted points
are derived from the covariance matrix U which can be found from its inverse(

U−1
)
ij

= 1
2

∂2χ2

∂
(
σp

p

)2

i
∂
(
σp

p

)2

j

. (8.20)

The diagonal elements of the covariance matrix represent the square of the errors
on the fitted parameters. Figure 8.11 shows the results of the fit for J/ψ and Z
after correcting the error bars with a scale factor discussed below.
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Figure 8.11: Measured relative momentum resolution in J/ψ (a) and Z (b) as a function of
pseudorapidity. The error bars on most points are smaller than the marker and therefore
not visible.

Goodness of fit

In order to assess the quality of the momentum resolution fit, the total χ2 is com-
puted according to Eq. 8.18 from the estimated values of (σp/p)2. A good fit
result is characterized by a χ2 equal to the number of degrees of freedom nd, which
corresponds to the number of measurement points minus the number of fitted pa-
rameters. For the momentum resolution fits described in the previous section, the
value of χ2/nd is 5213/144 for J/ψ data, 2369/132 for J/ψ MC, 530/372 for Z data
and 1836/372 for Z MC. These values indicate a poor goodness-of-fit. At the same
time, the relative errors on the estimated parameters are found to be very small,
on the order of 5 · 10−3. Given the large value of the χ2/nd, these errors cannot be
taken at face value.

A poor goodness-of-fit does not necessarily imply large statistical errors for the
parameter estimates. The standard deviations of the estimated parameters reflect
how widely the estimates would be distributed if the measurement was to be re-
peated many times, assuming that the hypothesis and the measurement errors used
in the construction of the χ2 are correct. They do not include the systematic error
which may result from an incorrect hypothesis or incorrectly estimated measure-
ment errors. It is therefore first important to verify that the errors delivered by the
mass lineshape fit are appropriate.

The mass lineshape is essentially a Gaussian for which the statistical error on the
width σ is given by σ/

√
N where N is number of events. It is therefore justified to

assess the accuracy of the error ∆σ delivered by the mass lineshape fit by comparing
it to the ratio σ/

√
N . Figure 8.12 shows the ratio of these two numbers in all bins

in the J/ψ data sample. The ratio is close to unity which implies that the errors
returned by the fit are appropriate. A similar result is seen also in the other three
samples.
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Figure 8.12: The ratio ∆σ
σ/
√
N

as a function of η1 and η2 for the mass lineshape fit to J/ψ
data.

In order to further investigate the large value of the χ2 of the momentum reso-
lution fit, the contributions from all individual bins are examined separately. These
contributions correspond to the terms in the sum in Eq. 8.18. Figure 8.13 shows
the χ2 contributions as a function of η1 and η2 for J/ψ data. The distribution
shows clear peaks, mostly in the regions around |η| = 1. In this region, the graph
of (σp/p)2 as a function of η, shown in Fig. 8.11, has a steep slope. Due to this
slope, the assumption that the resolution is constant inside the bins in η may fail.
Figure 8.14 shows the distribution of the events in the J/ψ data sample in the bin
−1.1 < η1 < −0.9 when the other muon is selected in different bins in η2. The distri-
butions are highly non-uniform which explains the poor goodness of the momentum
resolution fit. A similar result is seen also in the other three samples.
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Figure 8.13: Contribution to the total χ2 as a function of η1 and η2 for the momentum
resolution fit to J/ψ data.
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Figure 8.14: Event distributions in η1 for all populated bins defined by −1.1 < η1 < −0.9
for J/ψ data.

In order to obtain error bars that are representative of this bias, the measurement
errors entering in Eq. 8.18 are scaled by the corresponding contributions to the χ2.
After the scaling, the values of χ2/nd are 150/144 for J/ψ data, 133/132 for J/ψ
MC, 342/372 for Z data and 362/372 for Z MC. The estimated parameters are
shifted by at most 2 % and the errors are increased by a factor of about 5, resulting
in new relative errors on the order of 2− 3 %. The plots presented in the previous
section have corrected error bars. In what follows, the errors are always scaled in
order to obtain representative error bars.

8.5.3 Fit of the multiple scattering resolution

The method developed in the previous sections can be applied to extract the pa-
rameters b2i from the mass resolution. Assuming a constant value of a2 given by the
calculation in Section 8.1.1 and using the average momentum squared in each bin,
the χ2 is built from the equation

(2σm
m

)2

ij
= b2i + b2j + a2

const

(
〈p2
i 〉+ 〈p2

j 〉
)
. (8.21)

The fit is performed using only the J/ψ sample in order to reduce the importance
of the selected value of a2. Figure 8.15 shows the results for data and simulation
together with the result from the calculation in Section 8.1.2 assuming a non-uniform
material.

The importance of the selected value of a2 can be assessed by varying its value
in the fit. A reduced value of a2 is seen to change the value of b2 by less than 1 %.
Increasing the value by a factor of 2 changes b2 by 1 % whereas a factor of 5 changes
b2 by 3 %. This can be compared to the relative errors on the values of b2 which
are on the order of 2− 3 %.
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Figure 8.15: Measured multiple scattering term b2 as a function of pseudorapidity overlayed
with the result computed from the material budget of the tracker. The measured results
represent the average in each bin whereas the values computed from the material budget
represent the results at the given values of η.

8.5.4 Fit of the intrinsic hit resolution
The parameter a2 can be extracted by considering the difference in mass resolution
between two independent samples differing in momentum. The multiple scattering
term is independent of momentum and cancels when the mass resolutions in the
two samples are subtracted. Using the labels "low" and "high" to mark the sample
with the lowest and highest momentum respectively, the mass resolution difference
is given by[(

2σm
m

)2

ij

]
high
−
[(

2σm
m

)2

ij

]
low

=
(
a2
i 〈p2

i 〉+ a2
j 〈p2

j 〉
)

high
−
(
a2
i 〈p2

i 〉+ a2
j 〈p2

j 〉
)

low
. (8.22)

The parameters a2
i can now be computed by minimizing the χ2 built from the

above equation. The procedure is first performed using only the J/ψ and splitting
the sample in two independent samples. All events with two muons of momentum
p > 10 GeV enter in the high momentum sample and all events with two muons of
momentum p < 10 GeV enter in the low momentum sample. The procedure is then
repeated using the full J/ψ sample as the low momentum sample and the Z for the
high momentum sample. This approach allows for the use of the full statistics in
both samples and results in smaller statistical errors on the measurement points.
The results are shown in Fig. 8.16. It is clear from these figures that the derived
values of a2 differ when computed from the two different samples.

The discrepancy between the derived values of a2 indicates that the additional
dependence on momentum seen in the event-by-event error in Section 8.3 is present
also in the measured resolution. The larger value derived from the J/ψ sample cor-
responds to the steeper slope at low momentum seen in Fig. 8.5 and the lower value
derived from both samples corresponds to the less steep slope at high momentum.
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Figure 8.16: Measured intrinsic hit resolution term a2 as derived from J/ψ (a) and from
J/ψ and Z together (b). The result in J/ψ is limited to |η| < 1.4 due to very large statistical
errors in the endcaps.

In order to include the unknown momentum dependence in the resolution calibra-
tion, the parameters a2 and b2 can instead be extracted as correction factors to the
event-by-event resolution.

8.5.5 Correction to the event-by-event error
The correction to the event-by-event error can be derived using the second version
of the kernel model, Eq. 8.16, to fit the mass distribution. The result of this fit gives
the correction δσ2 to be added to or subtracted from the event-by-event error in
quadrature. This additional resolution can be used to extract correction factors δa2

and δb2 that correct the event-by-event error to match the real resolution according
to

4
(
δσ2

m2

)
= δb21 + δa2

1 · p2
1 + δb22 + δa2

2 · p2
2. (8.23)

The parameters δa2 and δb2 are computed using the χ2 fits developed in Sec-
tions 8.5.3 and 8.5.4. Figure 8.17 shows the result for the multiple scattering term.
This approach represents an alternative way of measuring the flaws in the mod-
eling of the material in the tracker, discussed in view of the scale calibration in
Section 7.1.2. Every point in the plot translates into a correction to the amount
of material used in the track reconstruction. The correction δb2 can be compared
to the b2 computed in Section 8.5.3. For the data, the correction is positive in all
bins, meaning that the material is underestimated in the track reconstruction. In
the barrel, the correction amounts to 2 − 10 % and in the endcap it amounts to
10− 20 %. In MC, the correction is negative in the barrel by 1− 2 % which implies
that the material is overestimated.
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Figure 8.17: Multiple scattering correction δb2 to the event-by-event error as a function of
pseudorapidity.

The result for the intrinsic hit resolution correction is presented in Fig. 8.18 as
derived only from J/ψ and from Z and J/ψ together. In this case, the values of δa2

computed using the different samples are in good agreement in the barrel.
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Figure 8.18: Intrinsic hit resolution correction δa2 to the event-by-event error as a function
of pseudorapidity, as computed from the J/ψ (a) and the J/ψ and Z samples together (b).
The result in J/ψ is limited to |η| < 1.4 due to very large statistical errors in the endcaps.

8.6 Closure of the resolution calibration
The closure of the resolution calibration is derived as a function of the pseudorapid-
ity and the momentum of the positive muon. For each bin, the average resolution is
computed from the corrected event-by-event error and compared to the resolution
fitted with the simple kernel model, Eq. 8.15. The ratio of these two numbers pro-
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vides an estimate of the closure of the calibration method. Figure 8.19 shows the
closure before and after the correction to the event-by-event error as a function of
the pseudorapidity of the positive muon for the J/ψ samples. After the correction,
the event-by-event error matches the fitted resolution to a level of 2 %. Since the
resolution in the J/ψ sample is completely dominated by the multiple scattering,
this result indicates a systematic error of 2 % on the derived values of δb2. The
closure on the δa2 term can be computed by comparing the calibrated event-by-
event error and the fitted resolution as a function of momentum. Figures 8.20 and
8.21 show the result of the correction in the J/ψ and Z samples as a function of
the momentum of the positive muon. After the correction, the event-by-event error
matches the fitted resolution to a level of 5 %.
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Figure 8.19: Closure as a function of the pseudorapidity of the positive muon before and after
correction of the event-by-event error for J/ψ data (a) and simulation (b). The predicted
resolution is the average value of the event-by-event error in each bin and the fitted resolution
is obtained from the fit to the mass lineshape.
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Figure 8.20: Closure as a function of the momentum of the positive muon before and after
correction of the event-by-event error for J/ψ data (a) and simulation (b).
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Figure 8.21: Closure as a function of the momentum of the positive muon before and after
correction of the event-by-event error for Z data (a) and simulation (b).
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Chapter 9

Summary and conclusions

A precise measurement of the W boson mass allows for an important test of the
Standard Model through a comparison between the prediction of the model and
the experimental value. In the CMS measurement, the W mass is extracted from
W → µν events using three experimental quantities based on observables transverse
to the beam direction: the transverse momentum of the muon, the missing trans-
verse energy and the transverse mass. A condition for the success of this method is
the control of all systematic uncertainties on the distributions of these quantities.
This thesis has focused on the calibration of the muon momentum.

The momentum scale is biased by imperfect modeling of the material and the
magnetic field in the tracker and by misalignment of tracker modules. In the cal-
ibration procedure, these effects are parametrized and extracted from data and
simulations of J/ψ and Z dimuon resonances. The measured momentum spectrum
is also biased by the resolution which leads to an overestimated systematic error of
the scale calibration. In order to remove this bias, the muon momentum resolution
must be measured with a precision of 3 %.

This thesis has presented a novel study of the muon momentum resolution as a
function of pseudorapidity. The analysis is performed on measured and simulated
samples of J/ψ and Z dimuon events collected at a center of mass energy of 7 TeV.
The mass resolution in these samples is used to derive correction factors to the event-
by-event momentum uncertainty returned by the track reconstruction. After the
calibration, the event-by-event error is found to agree with the measured resolution
to a level of 5 %, which is slightly above the desired level.

The relative muon momentum resolution is parametrized accounting for two
effects: the multiple scattering that the muons undergo when they traverse the
tracker and the intrinsic resolution of the tracker modules. The contribution from
the multiple scattering is constant whereas the intrinsic hit contribution is propor-
tional to the momentum. In the analysis, an additional momentum dependence is
found both in the event-by-event uncertainty and in the real resolution. The effect
is neglected in this study but constitutes an important target for further analysis in
order to improve the precision of the calibration. Since the additional momentum
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dependence is present in the simulation it can be examined with a dedicated study
of the MC. Including the effect in the calibration of the momentum resolution may
reduce the precision below the desired level of 3 %. Reaching this precision will
allow for a reduced systematic error on the muon momentum scale which in turn
will increase the precision on the W mass measurement.

70



Acknowledgements

I would like to express my deepest gratitude to my supervisor at CMS, Luigi Rolandi,
for giving me the opportunity to complete my master's degree project at CERN and
for guiding me through the work. Most importantly, I would like to thank him for
showing me the beauty of physics in every small step of the analysis. I also wish to
thank my supervisor at KTH, Jonas Strandberg, for help and support throughout
the project. My grateful thanks also go to the W mass group at CMS, and to
Michalis Bachtis in particular, for patiently answering my many questions. Finally,
I want to show my deepest appreciation to my loved ones for endless support.

71





List of figures

2.1 Feynman diagram for the process µ− → e− + ν̄e + νµ. . . . . . . . . . . 8
2.2 First and second order Feynman diagrams contributing to the scattering

process e− + e− → e− + e−. . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Higher order Feynman diagram for the reaction e− + νµ → µ− + νe with

a loop of fermions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Overview of the CMS detector. . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Signatures of various particles in the CMS detector. . . . . . . . . . . . 20
3.3 Schematic cross section through the CMS tracker. . . . . . . . . . . . . 22
3.4 Layout of the muon system in one quadrant of CMS. . . . . . . . . . . . 25

4.1 Schematic illustration of the W or Z boson production process at the
LHC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Predicted and measured cross sections in CMS for different processes at
the LHC at 7 and 8TeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Feynman diagrams for the production and leptonic decays of W and Z
bosons at the LHC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Signal distributions of the muonic W and Z samples collected by CMS
at 7TeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Invariant mass distribution for J/ψ production at 7TeV. . . . . . . . . . 31

6.1 ∆χ2 profiles for the indirect measurement of the W boson mass in the
electroweak fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.1 Ratio between the parametrized and the measured magnetic field maps
in CMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.2 Material budget of the CMS tracker in terms of density. . . . . . . . . . 39
7.3 Measured and simulated kinematic distributions for dimuon J/ψ decays. 40
7.4 Measured and simulated kinematic distributions for dimuon Z decays. . 41
7.5 Schematic drawing showing how misalignment of the tracker modules

affects the curvature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.6 Shift of the measured mass in the smeared generator level Z sample. . . 46

8.1 Material budget of the CMS tracker in terms of radiations lengths. . . . 50

73



List of figures

8.2 Multiple scattering term b2 computed from the simulated thickness of
the tracker material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8.3 Comparison of the two resolution contributions b2 and a2p2. . . . . . . . 51
8.4 Simulated relative momentum resolution in the CMS tracker. . . . . . . 52
8.5 Average relative momentum resolution computed from the event-by-

event error in data and simulation. . . . . . . . . . . . . . . . . . . . . . 53
8.6 Correlation between the pseudorapidities of the two muons for J/ψ decays. 56
8.7 Correlation between the pseudorapidities of the two muons for Z decays. 56
8.8 Mass distributions for J/ψ and Z together with the result of the mass

lineshape fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.9 Measured mass resolution as a function of the pseudorapidities of the

two muons in the J/ψ samples. . . . . . . . . . . . . . . . . . . . . . . . 58
8.10 Measured mass resolution as a function of the pseudorapidities of the

two muons in the Z samples. . . . . . . . . . . . . . . . . . . . . . . . . 58
8.11 Measured momentum resolution in the J/ψ and Z samples as a function

of pseudorapidity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.12 Ratio between the expected error on the width and the error delivered

by the mass lineshape fit to J/ψ data. . . . . . . . . . . . . . . . . . . . 61
8.13 Contribution from each bin to the total χ2 for J/ψ data. . . . . . . . . . 61
8.14 Event distributions in η1 for J/ψ data. . . . . . . . . . . . . . . . . . . . 62
8.15 Measured multiple scattering term b2 as a function of pseudorapidity. . 63
8.16 Measured intrinsic hit resolution term a2 as a function of pseudorapidity. 64
8.17 Multiple scattering correction δb2 to the event-by-event error as a func-

tion of pseudorapidity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.18 Intrinsic hit resolution correction δa2 to the event-by-event error as a

function of pseudorapidity. . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.19 Closure of the event-by-event error before and after calibration as a func-

tion of pseudorapidity for J/ψ. . . . . . . . . . . . . . . . . . . . . . . . 66
8.20 Closure of the corrected event-by-event error before and after calibration

as a function of momentum for J/ψ. . . . . . . . . . . . . . . . . . . . . 66
8.21 Closure of the corrected event-by-event error before and after calibration

as a function of momentum for Z. . . . . . . . . . . . . . . . . . . . . . 67

74



List of tables

2.1 Particle content of the Standard Model. . . . . . . . . . . . . . . . . . . 4
2.2 Excerpt from the result of the global electroweak fit after the discovery

of the Higgs boson. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

75





Bibliography

[1] ATLAS Collaboration. Observation of a new particle in the search for the
Standard Model Higgs boson with the ATLAS detector at the LHC. Physics
Letters B, 716(1):1–29, 2012.

[2] CMS Collaboration. Observation of a new boson at a mass of 125 GeV with
the CMS experiment at the LHC. Physics Letters B, 716(1):30–61, 2012.

[3] S. Weinberg. A Model of Leptons. Physical Review Letters, 19:1264–1266,
1967.

[4] S. L. Glashow. Partial-symmetries of weak interactions. Nuclear Physics,
22(4):579–588, 1961.

[5] D. Griffiths. Introduction to Elementary Particles. Wiley-VCH, Weinheim, 2nd
edition, 2008.

[6] K.A. Olive et al. (Particle Data Group). Review of Particle Physics. Chinese
Physics C, 38:090001, 2014.

[7] G. Breit and E. Wigner. Capture of Slow Neutrons. Physical Review, 49:519–
531, 1936.

[8] S. Schael et al. Precision electroweak measurements on the Z resonance.
Physics Reports, 427:257–454, 2006.

[9] P. J. Mohr, B. N. Taylor, and D. B. Newell. CODATA Recommended Values
of the Fundamental Physical Constants: 2010. Reviews of Modern Physics,
84:1527–1605, 2012.

[10] M. Baak et al. The global electroweak fit at NNLO and prospects for the LHC
and ILC. The European Physical Journal C, 74:3046, 2014.

[11] L. Evans and P. Bryant. LHC Machine. Journal of Instrumentation,
3(8):S08001, 2008.

[12] F. Caola, S. Forte, and J. Rojo. HERA data and DGLAP evolution: Theory
and phenomenology. Nuclear Physics A, 854(1):32–44, 2011.

77



BIBLIOGRAPHY

[13] Public CMS Luminosity Information. https://twiki.cern.ch/twiki/bin/
view/CMSPublic/LumiPublicResults. Accessed: 2015-05-14.

[14] Y. Nagashima. Beyond the standard model of elementary particle physics.
Wiley-VCH, Weinheim, 1st edition, 2014.

[15] The CMS Collaboration. The CMS experiment at the CERN LHC. Journal of
Instrumentation, 3(8):S08004, 2008.

[16] How CMS detects particles. http://cms.web.cern.ch/news/
how-cmsdetects-particles. Accessed: 2015-05-14.

[17] CMS Collaboration. Description and performance of track and primary-
vertex reconstruction with the CMS tracker. Journal of Instrumentation,
9(10):P10009, 2014.

[18] R. Fruhwirth. Application of Kalman filtering to track and vertex fitting.
Nuclear Instruments and Methods in Physics Research, A262:444–450, 1987.

[19] P. Billoir. Progressive track recognition with a Kalman like fitting procedure.
Computer Physics Communications, 57:390–394, 1989.

[20] CMS Collaboration. Alignment of the CMS tracker with LHC and cosmic ray
data. Journal of Instrumentation, 9:P06009, 2014.

[21] Summaries of CMS cross section measurements. https://twiki.cern.ch/
twiki/bin/view/CMSPublic/PhysicsResultsCombined. Accessed: 2015-05-
14.

[22] CMS Collaboration. Measurements of Inclusive W and Z Cross Sections in pp
Collisions at

√
s = 7 TeV. Journal of High Energy Physics, 1101:80, 2011.

[23] CMS Collaboration. J/ψ and ψ(2S) production in pp collisions at
√
s = 7 TeV.

Journal of High Energy Physics, 2012(2):11, 2012.

[24] M. Baak et al. The electroweak fit of the standard model after the discovery
of a new boson at the LHC. The European Physical Journal C, 72(11), 2012.

[25] T. Aaltonen et al. Precise measurement of theW -boson mass with the Collider
Detector at Fermilab. Physical Review D, 89:072003, 2014.

[26] T. Aaltonen et al. First run II measurement of the W boson mass at the
Fermilab Tevatron. Physical Review D, 77:112001, 2008.

[27] T. Sjöstrand, S. Mrenna, and P. Skands. PYTHIA 6.4 Physics and Manual.
Journal of High Energy Physics, 5:026, 2006.

[28] S. Alioli, P. Nason, C. Oleari, and E. Re. A general framework for implement-
ing NLO calculations in shower Monte Carlo programs: the POWHEG BOX.
Journal of High Energy Physics, 6:043, 2010.

78

 https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults
 https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults
 http://cms.web.cern.ch/news/how-cmsdetects- particles
 http://cms.web.cern.ch/news/how-cmsdetects- particles
 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined
 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined


[29] T. Sjöstrand, S. Mrenna, and P. Skands. A brief introduction to PYTHIA 8.1.
Computer Physics Communications, 178(11):852–867, 2008.

[30] W. Blum, W. Riegler, and L. Rolandi. Particle detection with drift chambers.
Springer, Berlin, 2nd edition, 2008.

[31] H. A. Bethe. Molière’s Theory of Multiple Scattering. Physical Review,
89:1256–1266, 1953.

79


	Introduction
	The author's contribution

	The Standard Model
	Matter
	Leptons
	Quarks

	Interactions
	The electromagnetic force
	The weak force
	The strong force

	Decays and conservation laws
	Feynman diagrams and calculus
	Electroweak physics
	The unification condition and the W boson mass
	The electroweak fit


	The CMS experiment at the LHC
	The Large Hadron Collider
	Luminosity and beam energy
	Anatomy of an event
	Parton distribution functions
	Coordinates and kinematic variables
	Operational history of the LHC

	The CMS experiment
	Detector overview
	Particle identification
	Triggering
	Magnetic field and momentum measurement
	Tracker
	Track reconstruction
	Tracker alignment
	Muon detector
	Muon identification and reconstruction


	W and Z boson physics at the LHC
	W and Z boson production
	W and Z boson decay
	W and Z mass distributions

	The J/ meson
	W mass measurement
	Motivation for the W mass measurement
	General strategy of the W mass measurement
	Theoretical and experimental uncertainties

	Calibration of the muon momentum scale
	Bias of the muon momentum scale
	Magnetic field
	Energy loss in the material
	Misalignment

	Measured and simulated samples
	Calibration methodology
	Closure of the scale calibration
	Resolution effects on the muon momentum spectrum

	Calibration of the muon momentum resolution
	Muon momentum resolution
	Intrinsic hit resolution
	Multiple scattering

	Parametrization of the muon momentum resolution
	Muon momentum resolution from the track reconstruction
	Dimuon mass resolution
	Measurement of the muon momentum resolution
	Fit of the mass lineshape
	Fit of the momentum resolution
	Fit of the multiple scattering resolution
	Fit of the intrinsic hit resolution
	Correction to the event-by-event error

	Closure of the resolution calibration

	Summary and conclusions
	List of figures
	List of tables
	Bibliography

