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GMT Exercise Class 21se February.

Question 1. In the proof of Rademacher’s Theorem (Theorem 5.1.11), we
use that the partial derivatives of f are approximately continuous, but why is
this obviously true? We know that every measurable function is approximately
continuous, but is it obviously true that the partial derivatives are measurable?
Note that even though they are bounded, that alone is not enough to imply
measurability (e.g. a function which is 1 on a Vitali set and 0 everywhere
else). And did we every prove that the differential is measurable, or is this too
considered to be obvious?

Question 2. Could one replace C1-function in Corollary 5.1.10 with Lips-
chitz continuous?

Question 3. What is the geometric interpretation of Corollary 5.1.10
(Sard’s theorem)?

Question 4. What is a concrete example on how to use the area formula
in applications or in ordinary area calculations in multivariable calculus?

Question 5. By introducing Hausdorff measure we could generalise the
notion of Jacobian of f : Rm → Rn to any K-dimension. What is the inter-
pretation of the dimension K, for K to be fractional or any number below or
beyond m / n?

Question 6. Here is an alternate proof of Rademacher’s theorem which I
like better than the Krantz version since I find that one quite technical.

Theorem 1. Let Ω ⊂ Rn be open, bounded and convex. Any Lipschitz function
f : Ω→ R is differentiable a.e. in Ω.

Proof. It is enough to show that f is differentiable in every Lebesgue point of
Ω. To this end, fix such an x and introduce for y ∈ B1

fσ(y) =
f(x+ σy)− f(x)

σ
, σ ∈ (0,dist(x, ∂Ω)).

Uniform convergence of fσ to 〈∇f, y〉 would imply that f is differentiable in x,
and this is now our goal.

By the Lipschitz continuity of f , we get that fσ is uniformly equibounded
and equicontinuous, whereby the Ascoli-Arzela compactness theorem allows us
to simply check whether the limit function f̂ of some arbitrary sequence fσh
coincides with 〈∇f, y〉. (Note that we may consider the sequence itself, and
not just the subsequence, for if not then Ascoli-Arzela applied once more to a
non-convergent subsequence gives us a contradiction.)

Every Lipschitz function is a Sobolev function in W 1,∞, in fact when Ω is
bounded, open and convex these spaces are the same.
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Thus we have a weak derivative ∇f of f , and so we may estimate∫
B1

|∇fσh(y)−∇f(x)|dy =

∫
B1

|∇fσh(x+ σy)−∇f(x)|dy =

=
1

σnh

∫
Bσh (x)

|∇fσh(z)−∇f(x)|dz ≡ 0,

Letting h → ∞ in the above thus gives us that the weak derivative of our
sequence converges in L1 to the constant ∇f(x) ∈ L1(Ω). As the sequence itself

converges uniformly to f̂ , it also holds, that the sequence converges in L1 to f̂
since Ω is bounded. All this amount to saying that according to a proposition
from Sobolev theory (sorry this part is not so satisfying) we have,

fσh →∗ f̂ and ∇f̂(y) = ∇f(x).

By Stokes theorem f̂(y) = 〈∇f(x), y〉 + c, an affine function. Again by
uniform convergence we get c = 0.

Question 7. I apologise for this question. It looks like another way to look
at the k-dimensional Jacobian

Jkf(a) = sup

{
Hk(Df(a)(P ))

Hk(P )
;P is a k-dimensional parallelepiped in Rn

}
in the area and coarea formulae is through so called approximate tangent spaces.
Perhaps these formulations are more general, or completely unnecessary for our
purposes. Approximate tangent spaces are spaces defined for every point in
a Hk-rectifiable set, taking a corresponding role to classical tangent spaces in
differential geometry. I introduce some definitions and then I give the formulae
in this form.

Let µ be a Rn-valued Radon measure defined on an open set Ω ⊂ Rm. Define
µx,ρ as µx,ρ(B) = µ(x + ρB) for Borel B ⊂ 1/ρ(Ω − x) and x ∈ Ω. At x ∈ Ω
we say that µ has approximate tangent space π ⊂ Rm with multiplicity θ ∈ Rn
if ρ−kµx,ρ locally weakly∗ converges to θHkπ in Rm as ρ ↓ 0. Here π is always
k-dimensional, and we denote

Tank(µ, x) = θHkπ.

Intuitively I guess this means that µ measures local sets around x in the same
way that the Hausdorff measure measures their projections onto the k-dimensional
space π.

Given this notion we can now define the approximate tangent space to a set
as follow. For S ⊂ Rm a countably Hk-rectifiable set, we define Tank(S, x) to
be the approximate tangent space to the measure HkSi at x ∈ Si where (Si) is
a partition of Hk-almost all of S into Hk-rectifiable sets.

Let E ⊂ Rm be a countably Hk-rectifiable set and f : Rm → Rn Lipschitz.
We say that f is tangentially differentiable at x ∈ E if the restriction of f to
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the affine space x+Tank(E, x) is differentiable at x. The tangential differential,
denoted by dEfx, is a linear map between Tank(E, x) and Rn.

Let n ≥ k.

Theorem 2. Let E ⊂ Rm be a countably Hk-rectifiable set and f : Rm → Rn
Lipschitz. Then the multiplicity function H0(E ∩ f−1(y)) is Hk-measurable in
Rn and ∫

Rn
H0(E ∩ f−1(y))dHk(y) =

∫
E

Jkd
EfxdHk(x)

Still, n ≥ k.

Theorem 3. Let E ⊂ Rm be a countably Hk-rectifiable set and f : Rm → Rk
Lipschitz. Then the multiplicity function Hn−k(E ∩ f−1(y)) is Lk-measurable
in Rk, E ∩ f−1(y) is countably HN−k-rectifiable for Lk-a.e. y ∈ Rk, and∫

Rk
Hn−k(E ∩ f−1(y))dy =

∫
E

Jkd
EfxdHn(x)

Do we have an expert in the class who has seen these before, what is different
here and what have we gained? It seems that should one invest the time in
learning these definitions then the proofs look easier (or at least shorter). One
remark is that the Area formula in the tangent space version has a Hausdorff
measure integration on both equality sides.

Question 8. Lemma 5.1.4 gives an explicit formula for special cases of lower
dimensional Jacobians. The proof says it is clear that the parallepiped P , over
which we are taking the suprenum, can be chosen in a certain way to make
calculations easier. Motivate this choice of P .

Question 9. The proof that Lipschitz functions are differentiable a.e. rely
on a induction argument. Prove the base case n=1.

Question 10. Use the area and co-area formulas to prove Corollary 5.1.13.
and 5.2.6. Are there any details one should be aware of?

Question 11. Consider W (·) a sample path of a one dimensional Wiener
process. Is it true that

lim sup
t→t0

|W (t)−W (t0)|
|t− t0|

=∞

holds for a.e t0 ∈ R?

Hint: Can we use the following Theorem (known as Stepanov’s Theo-
rem), and also maybe prove it (its proof should follow as a consequence of
Rademacher’s Theorem)?

Theorem 4. Let E ⊂ R be a measurable set and f : E → R a measurable
function. Then f is a.e differentiable on{

x ∈ E | lim sup
y→x

|f(x)− f(y)|
|x− y|

<∞
}
.
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Consider W (·) a sample path of a one dimensional Wiener process. Is it true
that

lim sup
t→t0

|W (t)−W (t0)|
|t− t0|

=∞

holds for a.e t0 ∈ R?

Question 12.
In the proof of theorem 5.1.9. when estimating the the term |〈T, y− z〉|. At

one step there is an equality where some extra term Π(f(y) − f(z)) has been
added seemingly out of nowhere. Why can these be added and still have an
equality?

Question 13. There is a minor error in the statement of Corollary 5.1.10
(disclaimer: some may classify this as an absurd counter-example and not an
actual error.), what is it?

Question 14.1 The following three theorems are direct consequences of the
co-area formula. Explain how:

Theorem 5. [Polar coordinates] Let g : Rn 7→ R be integrable (w.r.t. the
Lebesgue measure). Then∫

Rn
g(x)dLn(x) =

∫ ∞
0

(∫
∂Br(0)

g(y)dHn−1(y)

)
dr.

Theorem 6. [Levelset integration] Assume that f : Rn 7→ R is Lipschitz.
Then ∫

Rn
|Df(x)|dLn(x) =

∫ ∞
−∞
Hn−1({x ∈ Rn; f(x) = t})dt.

Theorem 7. [Levelset integration again] Assume that f : Rn 7→ R is Lip-
schitz with |Df(x)| > δ > 0 a.e. (the value of δ > 0 doesn’t matter). Also
assume that g : Rn 7→ R is integrable. Then∫

{x∈Rn; f(x)>t}
g(x)dLn(x) =

∫ ∞
t

(∫
{x∈Rn; f(x)=s}

g(x)

|Df(x)|
dHn−1

)
ds.

1These observations are taken from Evans-Gariepy’s “Measure theory and fine properties
of fuctions”. I think that the examples are good and should be mentioned in relation to the
rather technical formulation of the co-area formula.


