
SF2812 Applied linear optimization, final exam
March 14 2024 08.00–13.00

Brief solutions

1. (a) To keep the notation as simple as possible, I will use the notation x1, x2, x3, x4
for the variables representing the amount produced of each product. Similarly,
I use xe1, xe2, xe3 for the excess variables. The problem can then be written as

minimize − 8x1 − 7x2 − 8x3 − 20x4

subject to 2x1 + 4x2 + 5x3 + 8x4 + xe1 = 15,

4x1 + 1x2 + 7x3 + 4x4 + xe2 = 10,

9x1 + 7x2 + 8x3 + 15x4 + xe3 = 80,

x1, x2, x3, x4 ≥ 0,

xe1, xe2, xe3 ≥ 0.

(1)

(b) From the GAMS output we get

x =


0.8333

0

0

1.6667

 , xe =

 0

0

47.50

 , y =

 −2

−1

0

 , s =

(
sx

sxe

)
=



0

2

9

0

2

1

0


.

(c) From the GAMS output, we can see that both raw materials 1 and 2 are limiting
(all is used). The dual variables y1 and y2 show that increasing the amount
of raw materials 1 and 2 would improve the solution. But, the dual variable
y1 is more negative indicating that increasing raw material 1 would be more
beneficial.

(d) Product 2, as it has a smaller reduced cost (s2).

(e) We know that the reduced costs sN = cN −NT y. The question is really, how
much smaller can we make cn before sn becomes negative?

For product 2 we have sx2 = 2 and c2 = −7. If we make the objective coeffi-
cient for product 2 more than two units smaller then the reduced cost becomes
negative. Thus if the coefficient for product 2 is smaller than -9, the solution
will change.

Similarly, we get that the coefficient for product 3 needs to be smaller than -17
for the solution to change.

2. (a) For the solution to be optimal it needs to be both primal and dual feasible
and satisfy xTs = 0. For the solution provided by the friend, we get xTs = 2.
Therefore, it cannot be optimal!

(b) With x1, x2, x5 as basic, x3, x4 as nonbasic variables we get

B =

 −4 1 0

0 1 0

2 1 1

 , N =

 1 0

0 1

0 0

 .

1
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We can easily calculate the calues for the basic variables as

xB = B−1b =

 1

4

1

 .

Next, we calculate y from BTy = cB and get

y =

 0.25

−1.25

0

 .

We then calculate the reduced costs sN = cN −NT y, and get

sN =

(
−0.25

1.25

)
.

We should, thus move x3 into the basis. We next calculate the search direction
pB for the basic variables by

pB = −B−1N1 =

 0.25

0

−0.5

 . (where N1 is the first column of N)

For the nonbasic variables the search direction pN is simply given by

pN = e1 =

(
1

0

)
.

When moving in this direction x5 is the first variable to reach zero (leaves the
basis), and we get the maximal step length αmax = 2. We can then update the
variables by

x =


1

4

0

0

1

+ 2


0.25

0

1

0

−0.5

 =


1.5

4

2

0

0

 .

Now we still need to check if this is optimal. With x1, x2, x3 as basic variables
we get

B =

 −4 1 1

0 1 0

2 1 0

 .

We calculate y as before and get

y =

 0

−0.5

−0.5

 ,
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and we get the reduced costs

sN =

(
0.5

0.5

)
.

As the reduced costs are positive the solution is optimal.

(c) From the simplex calculations we got all that we need (but, we need to remem-
ber that sB = 0). The dual variables are thus

y =

 0

−0.5

−0.5

 , s =


0

0

0

0.5

0.5

 .

3. See material from lecture 10, and chapter 7.4 in the book.

An ideal solution should start from the master problem. Then explain how the re-
duced costs for the master problem can be determined and how the smallest reduced
costs can be found by solving an LP problem that gives you the smallest reduced
costs and the new extreme point to enter the basis.

4. (a) We are comparing the inequality

x3 + 2x4 + 2x5 ≤ 3, (2)

with

x3 + x4 + x5 ≤ 2, (3)

x4 + x5 ≤ 1. (4)

As all the variables x3, x4, and x5 are binary, it is clear that the feasible integer-
valued solutions to (2) are the same as the feasible integer-valued solutions to
(3) and (4). But, when we relax integrality and allow for fractional solution
then the feasible sets will not be the same as we will show.

First, note that we can obtain (2) by simply adding (3) and (4) together. There-
fore, any solution that satisfies (3) and (4) must automatically satisfy (2). It
is now clear that (3) and (4) cannot give a weaker continuous relaxation than
(2). But, we still need to show that it is stronger.

Consider the fractional point x3 = 0, x4 = 0.75, x5 = 0.75. This point satisfies
(2) but clearly violates (4). Thus we have shown that (3) and (4) give a smaller
set of feasible fractional solutions than (2).

(b) There are several ways to formulate this as a MILP and there are several ways
of deriving the constraints needed. Here, I will show one approach. You don’t
need to follow these steps to get a correct solution. But, I think this is the
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most systematic and clear way of deriving the constraints. In the exam, I
didn’t expect all these steps, but I included it here to make the explanation as
clear as possible.

First, we focus on node n1. For n1 it is clear that z1 ≥ 0. We can also include
the constraint z1 ≥ −2x1 + x2 + 3.

We can consider the node as the disjunctive constraint[
z1 = 0

]
∨
[
z1 = −2x1 + x2 + 3

z1 ≥ 0

]
. (5)

The disjunctive constraint simply says that either z1 = 0 or (z1 = −2x1 +
x2 + 3, z1 ≥ 0). We will rewrite the equality constraints as two inequality
constraints (we know how to deal with inequality constraints with the big-M
approach). We then get

[
z1 ≤ 0
z1 ≥ 0

]
∨

z1 ≤ −2x1 + x2 + 3
z1 ≥ −2x1 + x2 + 3

z1 ≥ 0

 . (6)

We can directly apply the big-M approach to the disjunctive constraint above
to get a mixed-integer formulation of the node. But, I want to clean it up a bit
to avoid unnecessary constraints. (But this is not necessary, you will still get a
correct solution without this step)

As first mentioned, we know that we can include the constraints z1 ≥ 0 and
z1 ≥ −2x1 + x2 + 3. So all the constraints we have are

[
z1 ≤ 0
z1 ≥ 0

]
∨

z1 ≤ −2x1 + x2 + 3
z1 ≥ −2x1 + x2 + 3

z1 ≥ 0

 , (7)

z1 ≥ −2x1 + x2 + 3, (8)

z1 ≥ 0. (9)

Note that we have constraints (8) and (9) both as separate constraints and
within the disjunctive constraint (7). We can remove these from the disjunctive
constraint to reduce the number of constraints and we are then left with

[
z1 ≤ 0

]
∨
[
z1 ≤ −2x1 + x2 + 3

]
,

z1 ≥ −2x1 + x2 + 3,

z1 ≥ 0.

By introducing two binary variables b0 and b1 we can use the big-M formulation
to represent the disjunctive constraint, and we get

z1 ≤ 0 +M1(1− b0),
z1 ≤ −2x1 + x2 + 3 +M2(1− b1),
z1 ≥ −2x1 + x2 + 3,

z1 ≥ 0,

b0 + b1 = 1.
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As a final step, we need to determine suitable values for M1 and M2, and to
do so we need to analyze the expression −2x1 + x2 + 3. Since both x1 and x2
are in restricted to be within the interval [−5, 5] we can easily determine the
following upper and lower bounds on the expression

−12 ≤ −2x1 + x2 + 3 ≤ 18. (10)

Thus, we can use M1 = 18 and M2 = 12. The MILP representation of node n1
is then given by

z1 ≤ 18(1− b0), (11)

z1 ≤ −2x1 + x2 + 3 + 12(1− b1), (12)

z1 ≥ −2x1 + x2 + 3, (13)

z1 ≥ 0, (14)

b0 + b1 = 1. (15)

If we want to, we can also eliminate one of the binary variables using the
equation b0+b1 = 1. For example, if we solve the equation for b0 and substitute
in b0 = 1− b1 then we get

z1 ≤ 18b1, (16)

z1 ≤ −2x1 + x2 + 3 + 12(1− b1), (17)

z1 ≥ −2x1 + x2 + 3, (18)

z1 ≥ 0. (19)

But, either formulation is ok! I will use the latter formulation, simply because
there are fewer things to write down.

Using a similar approach we can get the following bound for the expression in
n2

−21 ≤ 3x1 − x2 − 1 ≤ 19. (20)

Then we know that 0 ≤ z1 ≤ 18 and 0 ≤ z2 ≤ 19, and we can determine bounds
for the expression in n3 according to

−23 ≤ 2z1 − z2 − 4 ≤ 32. (21)

I will use the formulation with just one binary variable, per node and I will
denote the binary variable for node n2 by b2 and the one for n3 by b3. Problem
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(P1) can then be written as

minimize y

subject to Ax ≤ b,
z1 ≤ 18b1,

z1 ≤ −2x1 + x2 + 3 + 12(1− b1),
z1 ≥ −2x1 + x2 + 3,

z2 ≤ 19b2,

z2 ≤ 3x1 − x2 − 1 + 21(1− b2),
z2 ≥ 3x1 − x2 − 1,

y ≤ 32b3,

y ≤ 2z1 − z2 − 4 + 23(1− b3),
y ≥ 2z1 − z2 − 4,

− 5 ≤ xi ≤ 5, i = 1, 2,

z1, z2, y ∈ IR+,

b1, b2, b3 ∈ {0, 1},
x ∈ IRn, xi ∈ Z ∀i ∈ I.

(22)

Here, I assume the constraints from question a) are all in the constraints Ax ≤ b.
This is written with as few constraints and variables as possible, and it is ok if
you have more variables and constraints.

5. (a) i. First remember ||u||1 =
∑n

i=1 |ui|. By introducing two new positive vari-
ables u+i and u−i for each ui we can write the constraint with the 1-norm
as

n∑
i=1

u+i + u−i ≤ ε, (23)

u = u+ − u−, (24)

u+ ≥ 0, u− ≥ 0. (25)

The new variables u+ and u− are here used to represent the absolute values.

Alternatively one could introduce just one new variable ūi for each ui
along with the constraints ui ≤ ūi and −ui ≤ ūi. The norm constraint
can then be written as

∑n
i=1 ūi ≤ ε. This will result in a slightly more

complicated (but correct dual) and, therefore, I will go with the first op-
tion. However, you can solve the problem without any issues with both
approaches.

The constraint problems can thus be written as
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minimize aTi (x− u)

subject to

n∑
i=1

u+i + u−i ≤ ε,

u = u+ − u−,
u+ ≥ 0, u− ≥ 0,

u+, u−, u ∈ IRn.

(26)

This is one correct solution to the first question.
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ii. First, we will slightly rewrite the constraint problems (26) to simplify the
derivation of the dual (but, these steps are not needed). By introducing a
vector of n ones e = [1 1 . . . 1]T, we can write the first constraint in (26)
as eT(u+i + u−i ) ≤ ε,. Furthermore, by introducing a slack variable s1 we
can write the inequality constraint as an equality constraint. (The reason
behind writing the constraint as an equality constraint; we mainly looked
at how to derive the dual for equality or greater than constraints during
the lectures). We will thus consider the constraint problems (26) written
in the form

minimize aTi (x− u)

subject to eT(u+i + u−i ) + s1 = ε,

u = u+ − u−,
u+ ≥ 0, u− ≥ 0, s1 ≥ 0

u+, u−, u ∈ IRn, s1 ∈ IR.

(27)

Next, we need to derive the dual of the problem above. We introduce the
dual variables λi for the constraint u = u+−u− and the dual variable µi for
the constraint eT(u+i + u−i ) + s1 = ε. We can then define the Lagrangian
dual function as

ϕ(λ, µ) = minimize
u∈IRn,u+∈IRn

+,u−∈IRn
+,s1∈IR+

aTi (x−u)−λT(u−u++u−)−µ
(
eT(u+i + u−i ) + s1 − ε

)
.

(Remember, the dual function can be defined in different ways and you will
still get a correct dual problem. )

By rearranging the terms in the dual function we can write it as

ϕ(λ, µ) = minimize
u∈IRn,u+∈IRn

+,u−∈IRn
+,s1∈IR+

aTi x+µε−(ai+λ)Tu+(λ−µe)Tu+−(λ+µe)Tu−−µs1.

We then get

ϕ(λ, µ) =

{
aTi x+ µε if ai + λ = 0, λ ≥ µe, −λ ≥ µe, µ ≤ 0

∞ otherwise

and we can write the dual problem as

maximize aTi x+ µε

subject to ai + λ = 0,

λ ≥ µe,
−λ ≥ µe,
µ ≤ 0.

(28)

(b) Note that we have one separate constraint problem and a corresponding dual
problem for each of the m constraints. But, these problems and their duals all
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have the same form. The dual of the constraint problems are

maximize aTi x+ µiε

subject to ai + λ = 0,

λi ≥ µie,
−λi ≥ µie,
µi ≤ 0,

λi ∈ IRn, µi ∈ IR.

(29)

Now, note that each of these dual problems has different sets of variables. Since
each problem is feasible and strong duality holds, we know that we can replace
the optimization problems in the constraints with their dual problems (they
obtain the same optimal objective value). We can then change the constraints
problems from minimization problems into maximization problems. Problem
(R− LP ) can then be written as

minimize

x∈IRn

cTx

subject to



maximize aTi x+ µiε

subject to ai + λ = 0,
λi ≥ µie,
−λi ≥ µie,
µi ≤ 0,

λi ∈ IRn, µi ∈ IR


≥ bi, i = 1, . . .m.

Note that each constraint problem has different sets of variables. From the du-
ality theory, we know that any feasible solution to the dual constraint problems
(29) provides a lower bound of the optimal objective value of the correspond-
ing constraint problem (26). More specifically, for any λi, µi satisfying the
constraints in (29) we get

aTi x+ µiε ≤ minimize aTi (x− u)

subject to
n∑

i=1

u+i + u−i ≤ ε,

u = u+ − u−,
u+ ≥ 0, u− ≥ 0,

u+, u−, u ∈ IRn.

Dropping the maximization operator from the constraint problems could, there-
fore, only result in a potentially stronger constraint (but all constraints from the
dual problem are needed to ensure that aTi x+ µiε gives a lower bound). Since
strong duality holds we know that aTi x+ µiε will be equal to the minimum for
the optimal dual variables. Now, we can observe that the max operator in the
constraints is redundant. If aTi x + µiε is less than its maximum, it means we
are satisfying the constraint “more than needed”.

As long as we are taking the constraints of each constraint problem into con-
sideration we are allowing aTi x+ µiε to obtain its maximum or a smaller value
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(and a smaller value just results in a stricter constraint). When we skip the
maximization operator in the constraints we are left with

(R− LP ∗)

minimize cTx

subject to aTi x+ µiε ≥ bi, i = 1, . . .m.
ai + λ = 0, i = 1, . . .m.
λi ≥ µie, i = 1, . . .m.
−λi ≥ µie, i = 1, . . .m.
µi ≤ 0, i = 1, . . .m.
λi ∈ IRn, µi ∈ IR, i = 1, . . .m.
x ∈ IRn.

This linear programming problem is equivalent to (R − LP ) in the sense they
have the same minimizer x.


