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Motivation The performance of solvers greatly depends on the strength of the linear
and continuous relaxations.
– Weak relaxations → huge number of subproblems.

A new framework for constructing tight linear relaxations by utilizing disjunctive
structures in the problem.

1 Obtain a valid inequality (cut).

2 Strengthen the cut over the convex hull of a disjunction.

Presentation based on

Kronqvist J. and Misener R. A disjunctive cut strengthening technique for convex MINLP,

Optimization and Engineering, 2020.
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– Other disjunctive techniques to derive strong cuts for convex MINLP

Lodi A, Tanneau M, Vielma JP (2019), Disjunctive cuts for mixed-integer conic optimization.

ArXiv:191203166

Kılınç MR, Linderoth J, Luedtke J (2017) Lift-and-project cuts for convex mixed integer nonlinear

programs. Mathematical Programming Computation

Trespalacios F, Grossmann IE (2016), Cutting plane algorithm for convex generalized disjunctive

programs. INFORMS Journal on Computing.

Bonami P (2011), Lift-and-project cuts for mixed integer convex programs. In: IPCO 2011.

Zhu Y, Kuno T (2006), A disjunctive cutting-plane-based branch-and-cut al-gorithm for 0-1 mixed-integer

convex nonlinear programs. Industrial Engineering Chemistry Research

Stubbs RA, Mehrotra S (1999), A branch-and-cut method for 0-1 mixed convex programming.

Mathematical Programming.

Main difference with our approach: we don’t use the convex hull formulation of disjunctions.
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The MINLP problem scope

Convex MINLP problems can be formulated as

find x∗ ∈ arg min
x∈C∩L∩Y

cT x (P)

where the feasible region is defined by C ∩ L ∩ Y

C = {x ∈ Rn | gm(x) ≤ 0, m = 1, . . . ,M }
L = {x ∈ Rn |Ax ≤ a, Bx = b }
Y = {x ∈ Rn | xi ∈ Z, i ∈ IZ }

and gm are convex functions.

J. Kronqvist 2020



Background Disjunctive cut strengthening Numerical results

The MINLP problem scope

Convex MINLP problems can be formulated as

find x∗ ∈ arg min
x∈C∩L∩Y

cT x (P)

where the feasible region is defined by C ∩ L ∩ Y

C = {x ∈ Rn | gm(x) ≤ 0, m = 1, . . . ,M }
L = {x ∈ Rn |Ax ≤ a, Bx = b }
Y = {x ∈ Rn | xi ∈ Z, i ∈ IZ }

and gm are convex functions.

C

J. Kronqvist 2020



Background Disjunctive cut strengthening Numerical results

The MINLP problem scope

Convex MINLP problems can be formulated as

find x∗ ∈ arg min
x∈C∩L∩Y

cT x (P)

where the feasible region is defined by C ∩ L ∩ Y

C = {x ∈ Rn | gm(x) ≤ 0, m = 1, . . . ,M }
L = {x ∈ Rn |Ax ≤ a, Bx = b }
Y = {x ∈ Rn | xi ∈ Z, i ∈ IZ }

and gm are convex functions.

C ∩ L

J. Kronqvist 2020



Background Disjunctive cut strengthening Numerical results

The MINLP problem scope

Convex MINLP problems can be formulated as

find x∗ ∈ arg min
x∈C∩L∩Y

cT x (P)

where the feasible region is defined by C ∩ L ∩ Y

C = {x ∈ Rn | gm(x) ≤ 0, m = 1, . . . ,M }
L = {x ∈ Rn |Ax ≤ a, Bx = b }
Y = {x ∈ Rn | xi ∈ Z, i ∈ IZ }

and gm are convex functions.

C ∩ L ∩ Y

J. Kronqvist 2020



Background Disjunctive cut strengthening Numerical results

The extended supporting hyperplane algorithm

We use cuts generated by the ESH algorithm.

The ESH algorithm is described in

Kronqvist J., Lundell A. and Westerlund T. The extended supporting hyperplane algorithm for

convex MINLP problems, Journal of Global Optimization, 2016.

Main idea
Construct an equivalent MILP representation of the MINLP by generating supporting
hyperplanes to the feasible set.

J. Kronqvist 2020
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First step (initialization)

Find a strictly feasible solution to the continuous relaxation of the MINLP.

x1

x2

Can be formulated as a convex NLP.
J. Kronqvist 2020
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ESH algorithm

Solve linear relaxations to generate supporting hyperplanes.

x1

x2

Optimize the linear relaxation.
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ESH algorithm

Solve linear relaxations to generate supporting hyperplanes.

x1

x2

The solution is approximately projected by a simple root search.
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ESH algorithm

Solve linear relaxations to generate supporting hyperplanes.

x1

x2

Linearize the active nonlinear constraints.
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ESH algorithm

Solve linear relaxations to generate supporting hyperplanes.

x1

x2

– Converges to a feasible and optimal solution.
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Some remarks on the ESH algorithm

– The cuts generated by the ESH algorithm are

Tight with regards to the linear and nonlinear constraints.

Not tight when considering both the integrality restrictions and the
linear/nonlinear constraints.

Possible to strengthen the cuts.
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Illustrative example
Optimization task: find a point that minimizes the objective such that the point is in one of the three
circles.

min
x

− x1 − x2

s.t. (x1 − 1)2 + (x2 − 2)2 ≤ 1 + 29.944(1− x3),

(x1 − 2)2 + (x2 − 5)2 ≤ 1 + 29.944(1− x4),

(x1 − 4)2 + (x2 − 1)2 ≤ 1 + 29.944(1− x5),

x3 + x4 + x5 = 1,

0 ≤ x1 ≤ 8, 0 ≤ x2 ≤ 8,

x1, x2 ∈ R, x3, x4, x5 ∈ {0, 1}.

(EX1)

Big-M formulation.

Figure: Feasible set of problem (EX1)

J. Kronqvist 2020
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Illustrative example

Figure: Feasible set of the continuous
relaxation of problem (EX1)
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Illustrative example

Figure: Feasible set of the continuous
relaxation of problem (EX1)

Iteration 1: ESH gives the cut

5.920x1 + 4.536x2 + 29.944x3 ≤ 59.249.
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Illustrative example

Figure: Feasible set of the continuous
relaxation of problem (EX1)

Figure: Note that the cut does not form a
supporting hyperplane in the projected space
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Illustrative example

Figure: Feasible set of the continuous
relaxation of problem (EX1)

Iteration 1: ESH gives the cut

5.920x1 + 4.536x2 + 29.944x3 ≤ 59.249.

We can strengthen the cut by reducing the right-

hand side (RHS) value.

– How to determine the smallest valid RHS?
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Illustrative example

Figure: Feasible set of the continuous
relaxation of problem (EX1)
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Definition 1: Tighter cut

We say that that the first cut is tighter than the second if all x ∈ X that satisfies
inequality (1) also satisfies inequality (2) but not vice versa

α>
1 x ≤ β1, (1)

α>
2 x ≤ β2. (2)

J. Kronqvist 2020
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Disjunctive cut strengthening

J. Kronqvist 2020
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Problem structure

Assumption

The MINLP problem contains at least one exclusive selection constraint of binary variables, i.e.,
∃ ID ⊂ IZ : xi ∈ {0, 1} ∀i ∈ ID , and either one of the constraints∑

i∈ID

xi = 1, (3)

∑
i∈ID

xi ≤ 1, (4)

appears in the problem.

We only consider the first type of exclusive selection constraint, but the second type can easily be used

by the same framework.

J. Kronqvist 2020
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Cut strengthening

Given a valid cut α>x ≤ β and the index set ID of an exclusive selection constraint,

we determine a reduced RHS-value for the cut by solving the disjunctive program

z∗ = max
x

α>x

s.t.
∨
i∈ID

 x ∈ N ∩ L
xi = 1

xj = 0 ∀j ∈ ID \ i

 . (5)

Theorem 1

The cut α>x ≤ z∗ is a valid inequality for the MINLP problem and is at least as tight, or tighter, than

the original cut.

Proof in: Kronqvist J. and Misener R. A disjunctive cut strengthening technique for convex MINLP, Optimization and Engineering, 2020.

J. Kronqvist 2020
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We formulate the disjunctive program

as |ID | convex NLP problems

z∗ = max
i∈ID

bi = max
x
α>x

s.t. x ∈ N ∩ L,

xi = 1,

xj = 0, ∀j ∈ ID \ i .

(6)

⇐⇒

Disjunctive formulation of the cut

strengthening problem

z∗ = max
x

α>x

s.t.
∨
i∈ID

 x ∈ N ∩ L
xi = 1

xj = 0 ∀j ∈ ID \ i

 . (5)

Further strengthen the cut
– Note that each bi is a valid RHS-value for the corresponding partial integer assignment.
– A valid cut is given by

α>x ≤
∑
i∈ID

bixi . (7)

Identify infeasible partial integer assignments

– If any of the NLP problems (6) are infeasible, then the variable fixed to one can be removed

(permanently fixed to zero).

J. Kronqvist 2020
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Two types of tightened cuts

By solving the convex NLP problems (6), we can determine two types of strengthened cuts.
Single tightening

α>x ≤ z∗ (ST)

Multi tightening

α>x ≤
∑
i∈ID

bixi (MT)

Theorem 2

The cut given by (MT) is always as tight, or tighter, than the cut given by (ST).

Proof in: Kronqvist J. and Misener R. A disjunctive cut strengthening technique for convex MINLP, Optimization and Engineering, 2020.

J. Kronqvist 2020
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Illustrative example

Back to our simple example:

min
x

− x1 − x2

s.t. (x1 − 1)2 + (x2 − 2)2 ≤ 1 + 29.944(1− x3),

(x1 − 2)2 + (x2 − 5)2 ≤ 1 + 29.944(1− x4),

(x1 − 4)2 + (x2 − 1)2 ≤ 1 + 29.944(1− x5),

x3 + x4 + x5 = 1,

0 ≤ x1 ≤ 8, 0 ≤ x2 ≤ 8,

x1, x2 ∈ R, x3, x4, x5 ∈ {0, 1}.

(EX1)

Figure: Original ESH cut.
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Illustrative example

Illustration of the cuts

ESH cut
5.92x1 + 4.54x2 + 29.94x3 ≤ 59.25

ST cut
5.92x1 + 4.54x2 + 29.94x3 ≤ 52.03

MT cut
5.92x1 + 4.54x2 ≤ 22.09x3 + 41.19x4 + 35.45x5

J. Kronqvist 2020



Background Disjunctive cut strengthening Numerical results

Illustrative example

Illustration of the cuts

ESH cut
5.92x1 + 4.54x2 + 29.94x3 ≤ 59.25

ST cut
5.92x1 + 4.54x2 + 29.94x3 ≤ 52.03

MT cut
5.92x1 + 4.54x2 ≤ 22.09x3 + 41.19x4 + 35.45x5

– The MT cut also improves the MILP relaxation.

For the MILP relaxation, the MT cut acts as a supporting hyperplane for the nonlinear
constraints of each term of the disjunction.

J. Kronqvist 2020



Background Disjunctive cut strengthening Numerical results

MT cut for all integer assignments

x3 = 1 x4 = 1 x5 = 1

ST cut for all integer assignments

x3 = 1 x4 = 1 x5 = 1J. Kronqvist 2020
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Cut strengthening procedure

1 Obtain a cut by the ESH algorithm.

2 Select an exclusive selection constraint.

Select the one with most variables interacting with the variables in the ESH cut,
directly or through another constraint.

3 Solve problem (6) to obtain the RHS of the cut.

If any inner NLP problem is infeasible, then eliminate the corresponding binary
variable form the MINLP problem.

J. Kronqvist 2020



Background Disjunctive cut strengthening Numerical results

Cut strengthening procedure

1 Obtain a cut by the ESH algorithm.
2 Select an exclusive selection constraint.

Select the one with most variables interacting with the variables in the ESH cut,
directly or through another constraint.

3 Solve problem (6) to obtain the RHS of the cut.

If any inner NLP problem is infeasible, then eliminate the corresponding binary
variable form the MINLP problem.

J. Kronqvist 2020



Background Disjunctive cut strengthening Numerical results

Cut strengthening procedure

1 Obtain a cut by the ESH algorithm.
2 Select an exclusive selection constraint.

Select the one with most variables interacting with the variables in the ESH cut,
directly or through another constraint.

3 Solve problem (6) to obtain the RHS of the cut.

If any inner NLP problem is infeasible, then eliminate the corresponding binary
variable form the MINLP problem.

J. Kronqvist 2020



Background Disjunctive cut strengthening Numerical results

Numerical results
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Computational setup

Test set of 43 convex MINLP instances from MINLPLib[1].

2 – 46 exclusive selection constraints.

2 – 40 disjunction size.

37 – 1060 variables (31 – 432 binary variables).

2 – 200 nonlinear constraints.

Basic implementation of the ESH algorithm with some primal heuristics[2].

Basic ESH algorithm.

ESH + ST cuts.

ESH + MT cuts.

[1] http://www.minlplib.org

[2] Kronqvist J. and Misener R. A disjunctive cut strengthening technique for convex MINLP, Optimization and Engineering, 2020.

J. Kronqvist 2020
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– Number of instances solved as a function of solution time.
– Solved in 2 hours: ESH 36, ESH + ST 40, and ESH + MT 42.
– ST cuts reduce time by 15% and number of iterations by 33%.

– MT cuts reduce time by 56% and number of iterations by 59%.
J. Kronqvist 2020
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More detailed results

ESH ESH + ST ESH + MT
Instance Iter. Time Time/iter. Iter Time Time/iter. Iter. Time Time/iter.

p ball 15b 5p 2d 389 144.7s 0.37s 209 341.4s 1.63s 51 73.1s 1.43s

– The cut strengthening requires additional computations in each iteration.

J. Kronqvist 2020
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More detailed results

ESH ESH + ST ESH + MT
Instance Iter. Time Time/iter. Iter Time Time/iter. Iter. Time Time/iter.

p ball 15b 5p 2d 389 144.7s 0.37s 209 341.4s 1.63s 51 73.1s 1.43s
p ball 10b 5p 3d 491 543.4s 1.11s 185 168.7s 0.91s 60 48.0s 0.80s
p ball 10b 5p 4d 879 2496.4s 2.84s 265 410.1s 1.55s 115 122.8s 1.07s

– The cut strengthening greatly reduces the number of iterations.
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More detailed results

ESH ESH + ST ESH + MT
Instance Iter. Time Time/iter. Iter Time Time/iter. Iter. Time Time/iter.

p ball 15b 5p 2d 389 144.7s 0.37s 209 341.4s 1.63s 51 73.1s 1.43s
p ball 10b 5p 3d 491 543.4s 1.11s 185 168.7s 0.91s 60 48.0s 0.80s
p ball 10b 5p 4d 879 2496.4s 2.84s 265 410.1s 1.55s 115 122.8s 1.07s
slay10m 420 4432.5s 10.55s 105 203.1s 1.93s 109 219.2s 2.01s
stockcycle >1205 >96h 286.80s >3901 >96h 88.59s 2910 36.1h 44.66s

– The cut strengthening procedure can result in easier subproblems.

In stockcycle we are able to eliminate 299 of the 432 binary variables.

In slay10m we are able to eliminate 53 of the 180 binary variables.

Smaller linear subproblems with a tighter continuous relaxation.

J. Kronqvist 2020
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Summary

Presented a new framework for strengthening cuts over disjunctive structures.

Based on the ESH algorithm, but can also be used with other techniques.

Can greatly reduce both the number of iterations and time needed to solve convex MINLP
problems.

A new set of nonlinear disjunctive test problems
github.com/jkronqvi/points_in_circles/.

The paper “A disjunctive cut strengthening technique for convex MINLP” is available as
open access doi.org/10.1007/s11081-020-09551-6.

Thank you for your attention!

J. Kronqvist 2020
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