
Contiki80211: An IEEE 802.11 Radio Link Layer
for the Contiki OS

Ioannis Glaropoulos
Access Linnaeus Center

KTH, Royal Institute of Technology
Stockholm, Sweden

Email: ioannisg@kth.se

Vladimir Vukadinovic
Disney Research Zurich

8092 Zurich,
Switzerland

Email: vvuk@disneyresearch.com

Stefan Mangold
Disney Research Zurich

8092 Zurich,
Switzerland

Email: stefan@disneyresearch.com

Abstract—We believe that the existing 802.11 standards can be
optimized (especially in terms of energy-efficiency) to make Wi-
Fi suitable for a wide range of IoT applications. However, there
is a lack of low-cost embedded platforms that can be used for
experimentation with 802.11 MAC protocol. The vast majority
of low-power Wi-Fi modules for embedded systems has closed
source firmware and protocol stack implementations, which
prevents the implementation and the testing of new protocol
features. In this paper we describe Contiki80211, an open source
802.11 radio link layer implementation for Contiki OS, whose
purpose is to enable experimentation with 802.11 MAC layer
management mechanisms on embedded devices, such as sensor
motes and IoT smart objects. Contiki80211 implements a number
of optimizations in order to run on hosts that are constrained
in terms of memory and processing power. We evaluate its
performance (memory usage, interrupt processing latency, etc.)
on an embedded platform.

Index Terms—IEEE 802.11, IoT, Contiki, prototyping, exper-
imentation.

I. INTRODUCTION

THE FUTURE Internet of Things (IoT) will provide
global IP connectivity to a broad variety of devices, such

as entertainment electronics, wearable sport gadgets, home
appliances, and industrial sensors. Some of these devices are
portable, battery-powered, and need to connect wirelessly to
surrounding devices and Internet gateways. Different wireless
standards are proposed as the solution for today’s IoT. Zigbee,
which is based on the IEEE 802.15.4 standard [1], is often
referred to as a wireless technology of choice for home
and building automation, smart metering, and IoT in general
because of its simplicity and energy-efficiency. Z-Wave [2] is
another technology that targets similar applications and envi-
ronments with emphasis on home automation. Both Zigbee and
Z-Wave provide meshing capabilities, which are required by
many IoT applications. Although it does not support meshing,
Bluetooth Low Energy (BLE) is also a candidate technology
for IoT. The comparative advantage of BLE, besides its low
energy consumption, is its support in the majority of todays
smartphone hardware and protocol stacks.

These technologies, however, do not cover the entire spec-
trum of IoT devices and applications. Wi-Fi, which is based on

I. Glaropoulos is with the Access Linnaeus Centre, KTH, Royal Institute of
Technology, 10044 Stockholm, Sweden. His work was done while at Disney
Research in Zurich, Switzerland.

Fig. 1. Open-source Contiki80211 driver provides 802.11 connectivity to IoT
motes (c© Disney).

IEEE 802.11 standard [3], dominates the consumer electronics
segment. IoT devices that need to connect to smartphones,
tablets, TVs, set-top boxes, game consoles, and toys would
benefit from Wi-Fi connectivity. Therefore, it is expected
that future consumer electronics market will boost Wi-Fi’s
presence on the IoT market. The economy of scale and the
possibility of reuse of the existing Wi-Fi infrastructure offer
key cost savings and facilitate faster deployment with Wi-Fi
than with competing technologies. Furthermore, Wi-Fi has the
advantage of native compatibility with IP, which is the key
enabler for IoT: IP eliminates the need for expensive gateway
solutions to connect IoT devices to the Internet. Furthermore,
some sensors that operate at high sampling rates, such as those
used in seismic monitoring and imaging, may generate large
amounts of data that cannot be transmitted using ZigBee and
Z-Wave due to their limited transmission rate, but can easily
be transmitted by Wi-Fi. The feasibility of connecting battery-
powered sensors to the IoT using commercially available Wi-

Fi chips has been demonstrated in [4]. In [5], the authors share
their experiences of using off-shelf Wi-Fi modules to connect
things to the Web of Things.

The energy consumption of Wi-Fi is relatively high com-
pared to ZigBee, Z-Wave and BLE and it may quickly drain
the battery of a device. For cost and convenience reasons,
long battery recharge/replacement cycles are preferred not
only for sensors but also for consumer electronics. There
have been some notable improvements in radio hardware
and many low-power Wi-Fi chips with energy-efficient radio
transceivers have appeared in the market. The 802.11 MAC
protocol, however, is inherently energy-hungry. One of the
major sources of unnecessary energy consumption in 802.11
MAC is idle listening, which consumes energy even when
there is no traffic exchange in the network. To alleviate the
problem, the MAC layer management entity (MLME) of the
802.11 standard [3] includes a power-saving mode (PSM).
PSM allows an idle 802.11 station to transit to a low-power
doze state by switching off its radio transceiver. However,
PSM has been designed for single-hop communication and,
therefore, it is not suitable for IoT applications that assume
multi-hop communication.

In [6], [7], we describe how 802.11 PSM can be optimized
for multi-hop communication with minimal amendments to the
standard. One problem that we faced while testing the pro-
posed amendments was the lack of embedded platforms that
can be used for experimentation with 802.11 MAC protocol.
On one side, the vast majority of low-power Wi-Fi modules for
embedded systems has closed-source firmware and protocol
stack implementations, which prevents the implementation and
the testing of new MAC protocol features. On the other side,
popular embedded operating systems for IoT, such as Tiny
OS [8] and Contiki OS [9], are developed for ZigBee-enabled
motes and, therefore, they lack kernel libraries and drivers for
Wi-Fi devices.

In this paper, we describe Contiki80211, an open source
802.11 radio link layer (MAC and 802.11 device driver)
implementation for Contiki OS, one of the most popular
operating systems for embedded systems and IoT. The purpose
of Contiki80211 is to enable experimentation with 802.11
MAC layer management mechanisms on embedded platforms,
such as sensor motes and IoT smart devices. The integration
of Contiki80211 with the Contiki network protocol suite [10]
enables researchers to run and evaluate IETF protocols for IoT,
such as RPL and CoAP, on top of an 802.11 radio link layer.
Contiki80211 supports ad hoc (IBSS) mode for direct device-
to-device communication and power saving mode (PSM) for
radio duty-cycling. In order to provide maximum flexibility
for experimentation with low-cost off-the-shelf hardware, Con-
tiki80211 uses an Qualcomm Atheros AR9170-based radio
for which an open-source firmware is available. Contiki80211
implements a number of optimizations in order to run an
otherwise resource-hungry 802.11 MAC layer on hosts that
are constrained in terms of memory and processing power.

The rest of the paper is organized as follows: Section II
describes the software implementation of Contiki80211 and its

integration into the networking protocol stack of Contiki OS.
In Section III, we evaluate the Contiki80211 code performance
on an embedded platform. Section IV gives a brief overview
of related work, while Section V concludes the paper.

II. CONTIKI80211
We implemented Contiki80211 [10] on a hardware platform

shown in Fig. 2. The platform consists of an Arduino Due
board (ARM Cortex-M3 MCU, 96 KB SRAM, 512 KB
Flash) and an 802.11 interface attached to it via USB. The
802.11 interface module is based on the Atheros AR9170
chip. Contiki80211 provides link layer functionalities to the
Contiki’s micro IP stack (uIP6) and uses an API provided by
the AR9170 firmware to exchange commands, asynchronous
responses, and frames with the 802.11 interface on the
AR9170 device (Fig. 2). The implementation of Contiki80211
was facilitated by the existence of carl9170, an open-source
AR9170 driver for the Linux kernel [11]. carl9170 implements
a number of features, such as the support for BSS (infras-
tructure) and IBSS (ad hoc) operation modes, rate-control
algorithms, and MAC encryption. It, however, lacks a PSM
implementation for the ad hoc mode. A depreciated version
of carl9170 driver, called Otus driver, includes an incomplete
non-functional implementation of PSM for the ad hoc mode
[12]. Contiki80211 is partialy based on the carl9170 driver. Its
implementation of PSM for ad hoc mode is an extension of
the incomplete Otus driver code.

Contiki80211 consists of three functional blocks, as shown
in Fig. 3:

• platform-independent IEEE80211Lib, which implements
802.11 IBSS management (scan, join, create, leave), IBSS
parameter configuration, frame generation and parsing,
and a power saving mode (PSM) scheduler

• AR9170 radio driver, which manages TX and RX
queues, handles commands/hardware responses to/from
the 802.11 interface, and implements the lower-level PSM
functionality, namely the RF duty-cycling

• AR9170 USB driver, which implements routines for
installation and enumeration of the 802.11 interface, and
allocation of the end-points for communication with the
interface over USB.

Each of the three functional blocks is described in the
following:
IEEE80211Lib: The IEEE80211Lib connects the uIP protocol
stack with the radio link layer. It encapsulates IP packets
into 802.11 frames, generates 802.11 management frames,
and parses incoming 802.11 frames. It implements an 802.11
connection manager that is responsible for network configu-
ration and management, including network scanning, joining,
creating or leaving an IBSS network. Finally, IEEE80211Lib
implements the PSM algorithm including the generation of
ATIM frames and maintenance of a list of awake neighbors
[6].
AR9170 Radio Driver: The AR9170 radio driver is respon-
sible for dynamic MAC configuration through the AR9170
command API and for frame transmission and reception. The

Contiki80211

Contiki uIP

Firmware

Lower MAC

AR9170

Cortex- M3

MCU

Arduino Due

Atheros AR9001U-2NX

(AR9170 + AR9104)

USB interface

USB

Fig. 2. Hardware platform on which we implemented Contiki80211.

core of the AR9170 radio driver is the AR9170 scheduler.
The scheduler is polled by the Contiki OS together with other
processes using round-robin policy. At each execution round
the scheduler inspects the contents of the command, TX and
RX queues and dispatches the next-in-line task prioritizing
command over TX/RX packet processing. The scheduler ac-
cesses the TX and RX queues in a round-robin fashion, so
as to guarantee fairness in packet handling. The AR9170
radio driver implements the 802.11 IBSS PSM duty-cycling
using a high-resolution Timer Counter (TC) interrupt routine
that schedules state transitions in real-time. State transitions
notify the PSM algorithm of the IEEE80211Lib to perform
the required actions.

The AR9170 driver waits for a pre-TBTT interrupt from the
802.11 interface in order to prepare the 802.11 protocol for
the upcoming ATIM window. The selection of the optimal pre-
TBTT period duration takes into consideration the speed of the
host’s CPU, as well as the processing overhead of the routines
to be executed in the beginning of each beacon interval. A long
pre-TBTT period guarantees that all tasks will be executed in
time, but it decreases the duration of the TX/RX Window in
each beacon interval. We implemented a closed-loop control
scheme that dynamically adjusts the pre-TBTT period duration
based on the percentage of beacon intervals, in which the
required tasks were executed in time.
AR9170 USB Driver: The AR917 radio driver requires an
underlying USB driver to handle the communication between
the host and the 802.11 interface. We implemented the USB
driver using Atmel’s USB host library [13], which provides
platform-independent routines for the installation of a USB
device, enumeration, and allocation of the required endpoints
for communication with the device, as well as the low-level
USB on-the-go driver for Arduino Due. On top of these
routines, we implemented functions for reading and writing
from/to the allocated endpoints.

The state machine of the USB driver is shown in Fig. 3.
The driver is in the PENDING state, when the transfer of a
USB data chunk pushed to the USB line is not yet completed.
The driver transits to the IDLE state when the transfer is
completed. A simple flow-control is implemented to prevents a
data chunk to be sent before the previous transfer is completed.

USB Host Library

IN USB

Interrupts

CMD

Responses

Incoming

Frames

Untie CMDs/Frames

RSP Handling

Frame Parsing:

PHY HDR

MAC HDR

(DEST addr., SSID)

IEEE 802.11

State Update

PSM Scheduler

T

X
 Q

u
e

u
e

O

F

I

F

 A

s
y
n

c
 C

M
D

 Q
u

e
u

e

O

F

I

F

AR9170 Scheduler

Async.

Frame

Processing

Frame

Transmis

sion

Broadcast

Frame

Handling

CMD

Transmis

sion

AR9170 PSM Duty-Cycling

R

X
 Q

u
e

u
e

O

F

I

F

Config:

Lower MAC

PHY, PSM

Beaconing

RX Filter

RX Frame

Filtering

ATIM/Data Parsing & Generation State-Aware RX FilteringBeaconing

IEEE80211 Manager

Join / Create / Leave IBSS Scanning Configuration

Contiki uIP

USB Interrupts

Bulk-IN

Interrupts

INT-OUT

Interrupts

Bulk-OUT

Interrupts

Buffer

Response

Reschedule

Listening

CMD / Data Transfer Done

AR9170 USB FSM

Update USB FSM State: IDLE

State

Direct

CMD / Data

Transmission

IDLE

PENDING

O
U

T
 Q

u
e

u
e

Prioritized

Next

CMD

Dispatch

State PENDING

TCA
R

9
1

7
0

 U
S

B
 D

ri
v

e
r

A
R

9
1

7
0

 R
a

d
io

 D
ri

v
e

r
IE

E
E

8
0

2
1

1
 L

ib

Fig. 3. Contiki80211 consists of three functional blocks: IEEE80211Lib,
AR9170 radio driver, and AR9170 USB driver. Yellow boxes represent
functions executed within interrupt context. Green boxes represent function
executed asynchronously by the Contiki scheduling system.

The outgoing data chunks may have to be buffered at the USB
driver. Pending commands are given priority over outgoing
packets. In order to accelerate outgoing USB transfers, a new
transfer is dispatched directly inside the OUT completion
callback function, within the interrupt context.

A. Resource Optimization

Both carl9170 and Otus have been designed for non-
constrained hosts, such as PCs, while Contiki80211 is ex-
pected to run on resource-constrained hosts. In the following,
we describe some of the most important resource optimizations
that we made in Contiki80211.

1) Minimizing TX/RX Buffer Space: carl9170 allocates 16
TX-RX buffer pairs, where USB resource blocks (driver com-
mands, command responses and incoming/outgoing frames)
are stored before being processed. Each buffer has a length
of 2 KB to accommodate the maximum possible MAC PDU
length. This results in 64 KB of RAM being reserved for
the buffers only, which is two thirds of the Cortex-M3 total
SRAM memory. Instead, Contiki80211 uses a single TX-RX
buffer (Fig. 3) to minimize the memory requirements. To
handle heavy incoming traffic, it implements dynamic RX
buffer space allocation, which increases the processing load
in favor of low memory usage. In Section III, we evaluate the
impact of dynamic buffer allocation on processing latency for
RX interrupts that are coming from the 802.11 interface.

2) Minimizing Interrupt Processing Load: A major chal-
lenge for constrained hosts is the CPU load of the code

HEADER

CMD

RESP

HEADER

CMD

RESP

PAYLOAD
PAYLOAD

CMD

RESP

HEADER

CMD

RESP

PAYLOAD

CMD Response CMD ResponseFrame

Grouped USB Interrupt Response

Fig. 4. A grouped USB interrupt response example containing two command
responses and a data frame.

executed in the context of an interrupt coming from the 802.11
USB interface. If the interrupt execution time is long, there is a
high risk of missing subsequent USB interrupts, which are, in-
stead, handled as a single interrupt by the CPU. However, this
particular interrupt response, i.e. the incoming data associated
with this interrupt, will contain multiple interrupt responses
from all these subsequent USB interrupts. In other words, there
is a risk of a grouped interrupt response, containing multiple
frames, or frames grouped together with command or hardware
responses from the AR9170 device (Fig. 4). This incurs a
significant effort to untie the different response units from
each other. Hence, the interrupt context code must be kept
as minimal as possible. Contiki80211 reduces the interrupt
processing load by moving the processing of incoming data
frames outside the interrupt context, except for the lightweight
checks for PHY and MAC header errors. The frames are then
buffered and processed off-line by the AR9170 scheduler.
Command and hardware responses are still handled on-line,
but the handling consists only of driver and 802.11 state
updates (Fig. 3).

3) State-Aware RX Filtering: The described method of min-
imizing the interrupt processing load has a serious drawback
in case of intensive data traffic. Since all frames must be
buffered, the RX queue may overflow. In addition, moving
a part of frame processing outside interrupt context provides
no guarantee for the frame handling delay. ATIM frames,
however, need to be handled fast, so that the PSM state
machine is updated before the end of the ATIM window.
These problems are solved by dynamically enforcing low-level
frame filtering through the AR9170 command API, so that
specific frames are filtered-out by the 802.11 interface, without
reaching the host’s MCU. RX filtering is PSM state-aware:
Depending on the 802.11 PSM state, the AR9170 accepts or
drops certain frame types:

• during ATIM window AR9170 accepts only 802.11
MGMT frames

• during TX/RX window AR9170 accepts only 802.11
DATA frames with the default SSID, or MGMT frames,
with the exception of BCN and ATIM frames

• during Soft BCN window [7] AR9170 accepts both DATA
and MGMT frames

This ensures that only relevant traffic interrupts the host’s
MCU.

4) Interrupt Response Parsing: The above described tech-
niques for reducing the CPU load do not entirely eliminate the
risk of grouped interrupts from the 802.11 interface. Therefore,

an efficient interrupt response parsing algorithm is imple-
mented, which uses the characteristic header patterns of USB
command/hardware responses. The existence of a command
response block inside the interrupt response is detected due to
presence of the header. The command responses are extracted
from the USB interrupt response, and the remaining blocks
are treated as incoming frames. Since frame headers lack such
characteristic pattern, consecutive frames are hard to delimit.
This is done off-line by inspecting the payload of the received
frames. Notice, that such parsing is not needed in the original
carl9170 driver because interrupts are rarely missed or grouped
when host’s CPU is fast.

5) Prioritization of USB Interrupts: To minimize the risk of
missed USB interrupts, we increase the priority of USB inter-
rupts against interrupts from other peripherals, such as timers,
system clocks, and serial ports. This, however, increases the
risk of performance degradation for time-sensitive applications
that depend on those peripherals.

6) USB Transfer Timeouts: Due to long interrupt pro-
cessing delays on CPU-constrained hosts, it is possible that
outgoing transfer completion interrupts are missed. This occurs
when multiple interrupts of the same type (e.g. USB) overwrite
each other. A missed transfer completion interrupt could result
in a deadlock of the USB driver state machine. To avoid
this, we implemented a timeout handler for each pending
outgoing transfer: If the transfer completion interrupt is lost,
the driver waits for a predefined period, after which the USB
state machine transits to the IDLE state. On our Cortex-M3
platform, a dedicated high-precision timer counter is used to
implement this policy.

7) 32-bit Memory Copy: On the 32-bit Cortex-M3 MCU,
32-bit operations are carried out at system clock frequency.
Since Contiki80211 functions often copy and move memory
blocks between different locations in RAM, we accelerate the
code performance by redefining memmove and memcpy, so
they always execute on 32-bit integers. We have measured an
almost four-fold decrease in processing delay compared to the
standard memmove and memcpy functions, were copying is
performed byte-by-byte: For a 1000 B array, memory copy is
completed in ∼ 10µs instead of ∼ 40µs.

B. Integration with Contiki OS

Contiki OS is one of the most popular operating systems for
embedded systems and IoT. Its protocol stack is optimized to
provide wireless connectivity to resource-constrained devices.
It fully supports IPv6, RPL routing protocol for low-power
and lossy networks, and the Constrained Application Proto-
col (CoAP), which makes it well suited for the development
of a wide range of IoT applications.

1) Contiki Porting: The porting of Contiki OS to the
Arduino Due platform involves re-implementation of CPU-
dependent Contiki code in order to run on the Cortex-M3
MCU. The most important of the ported libraries include
the software for the basic peripherals, such as the system
clock, UART, SPI and USART lines, RTimer, Watchdog and
Flash controllers. An efficient high resolution RTimer library

AR9170 radio driver (scheduler)

IBSS Setup Process

Connection

Device Boot

RF Init

Catch BCN

Wait for device connection

USB Endpoint Installation

AR9170 Firmware Upload

Interface Registration

MAC / PHY Initialization

Scan for default IBSS

Create IBSS

Start upper-layer networking

Join IBSS

No BCN found

AR9170 pollhander

Fig. 5. Integration of AR9170 and 802.11 system processes into Contiki OS.

is essential for the Contiki80211 implementation. High res-
olution, however, decreases the time window during which
events can be scheduled. To alleviate this problem we redesign
the RTimer library using two timer counter (TC) channels
on the Cortex-M3 board and the maximum time precision
without any pre-scaling, allowing us to schedule interrupts
with 12 ns resolution. The first TC is solely used to count
the universal time, while the second is used to schedule short-
term events. The overflow of the first TC increments the MSB
part of the universal time, which is saved in a 64-bit integer;
since the two counters are separate, the overflow does not
affect the short-term event scheduling. In addition, we enhance
the RTimer library to support parallel scheduling of multiple
RTimer interrupts – non-supported feature in Contiki OS –
which facilitates the implementation of the AR9170 scheduler
and the AR9170 USB state machine.

2) Process Integration: The integration of the
Contiki80211-related processes with the Contiki OS process
scheduling system is shown in Fig. 5. The AR9170 radio
driver process waits for the AR9170 device connection:
a USB connection event triggers the process to invoke the
USB installation procedure and firmware upload. The
BOOT event invokes interface registration, MAC and RF
initialization. Triggered by the RFinit signal, the IBSS
Setup Process is invoked, which attempts to join the
default IBSS network or to create it, depending on the network
scanning result. A successful IBSS setup triggers the start
of the AR9170 pollhandler, where the aforementioned

AR9170 scheduler and the PSM scheduler are integrated.
All system processes exchange signaling messages using the
default Contiki inter-process event-posting mechanism.

3) Code Integration: We integrated Contiki80211 into the
Contiki’s network protocol stack (NETSTACK). NETSTACK
organizes the network modules into a complete protocol stack
covering all traditional OSI layers.

On the top level of the NETSTACK, at the
NETSTACK_NETWORK layer, we implemented
IEEE80211_net (Fig. 6). IEEE80211_net connects
the underlying Contiki80211 modules with the Contiki’s
uIP stack. Unlike 6LoWPAN, which is used with the
802.15.4 radio link layer, IEEE80211_net provides neither
IPv6 packet compression nor fragmentation support since
802.11 frames can accommodate long IPv6 packets. On the
NETSTACK_MAC layer, we introduce the IEEE80211_mac
module that implements the IEEE80211Lib functionality.
IEEE80211_mac delivers IP packets (MAC frame
payloads) to the underlying IEEE80211_rdc module,
which uses IEEE80211_framer to encapsulate
them into 802.11 frames. At the opposite direction,
IEEE80211_rdc performs MAC address filtering and
duplicate frame detection and delivers IP packets to the
IEEE80211_mac. Below the NETSTACK_FRAMER layer,
we introduced the NETSTACK_WIFI layer that contains the
AR9170_radio_driver and AR9170_USB_driver
modules.

Note that although the higher uIP and application layers
are supposed to be oblivious to the radio link layer modules,
they are by default parametrized for 802.15.4 and, therefore,
must be modified to meet the requirements of the 802.11
radio link layer. This involves an expansion of the Contiki
packet buffer structures (uIPbuf, packetbuf), an increase
of the maximum UDP and IPv6 packet sizes, and the adoption
of an Ethernet-style link-layer address (uip_lladdr_t)
structure.

III. PERFORMACE EVALUATION

We evaluate the effect of the various optimizations described
in Section II-A on the performance of Contiki80211. We
consider a scenario where a Contiki80211-enabled mote shown
in Fig. 2 is placed inside a building of an university campus.
The mote does not transmit any 802.11 frames, but it receives
and processes all incoming 802.11 traffic, which is heavy
since the experiments were performed during busy hours. In
each experiment, we measure the Contiki80211 performance
(memory usage, interrupt processing latency, etc.) on an ARM
Cortex-M3 MCU during a time interval of 120 minutes.

A. Performance of RX Buffer Space Allocation

We investigate the effect of the dynamic buffer allocation
for the incoming USB interrupt responses, which is described
in Section II-A1. Fig. 7 shows the memory usage and RX
interrupt processing delay for three buffer allocation policies:
the static policy, where 16 buffers (2 KB each) are reserved at
compilation time using the Memory Block Allocator (memb)

NETSTACK_RDC

NETSTACK_MAC

NETSTACK_FRAMER

 Standard architecture Contiki80211 architecture

NETSTACK_RADIO

CC2420 CC2520 ...

802154Framer ...

XMAC ...

CSMA

NETSTACK_NET

6LoWPAN RIME ...

...

IEEE80211_net

IEEE80211_mac

uIP6

uIP6 ICMP6

TCP UDP

RPL

App

HTTP CoAP ...

AODV

NETSTACK_WIFI

AR9170_radio_driver

IEEE8021_framer

...

NullMAC

NullFramer

ContikiMAC

SPI UART ... AR9170_USB_driver

IEEE80211_rdc

Fig. 6. The standard and the 802.11-enabled Contiki network stacks.

of Contiki OS, the dynamic policy, where buffers are allocated
on-demand in real time on the Managed Memory (mmem) of
Contiki, and the hybrid policy, where a buffer of maximum
length is allocated at the time of re-scheduling listening at the
bulk-in USB endpoint. As expected, the static policy results
in the shortest processing delay because it does not require to
reserve memory for command and/or frames responses inside
interrupts. In addition, it does not require copying the interrupt
response content to the Contiki buffers before proessing, as
the static memory blocks are thread-safe and can serve as
on-demand Contiki buffers. The performance improvement of
the static policy is achieved, however, at the expense of high
memory usage. The dynamic policy minimizes memory usage,
but increases the processing delays as memory must be allo-
cated and the interrupt response content bust be copied inside
interrupt context. The hybrid policy decreases the interrupt
process delay as it schedules the resource allocation to be
executed once the interrupt routine is terminated. In the event
of a subsequent interrupt arrival before the resource allocation,
the hybrid policy reduces to the dynamic one, however, since
the frequency of such events is low, the average performance
of the hybrid policy is higher, in the expense of slightly higher
memory demand, as the a-priory resource allocation account
for the maximum possible size of the interrupt response.

Stat. Hybr. Dyn.
0

5

10

15

20

25

30

35

Memory Allocation Policy

U
S

B
 R

X
 M

em
or

y
F

oo
tp

rin
t [

kB
]

Average
Peak

Stat. Hybr. Dyn.
0

5

10

15

20

25

30

35

40

U
S

B
 R

X
 IR

Q
 L

at
en

cy
 [

µs
ec

]

Average
Peak

Fig. 7. Memory usage and interrupt processing delay for various buffer
allocation policies.

49%

22%

29%

USB RX IRQ Parse Handle

28%

56%

15%

CMD Resource Blocks PKT/Mixed Resource Blocks

Total Average: 37 µsec Total Average: 151 µsec

Fig. 8. Processing costs for various stages of interrupt response processing.

B. Performance of Interrupt Response Parsing

The processing of interrupt responses from the 802.11
interface consists of three stages: usb handling, i.e. resource al-
location, copy, and re-scheduling listener, parsing of the inter-
rupt response, and handling of command/hardware responses
and/or frames inside the interrupt. Fig. 8 shows the CPU
processing cost associated with each of the stages. Interrupt
responses that contain only command/hardware responses are
short and the command response header pattern is immedi-
ately detected, which leads to low parsing delays. Interrupt
responses that contain frames require longer parsing time.
This is because the complexity of pattern search increases
linearly with the length of the interrupt response. Clearly, in
such interrupt responses, parsing dominates processing delay.
When 802.11 interface is in fully-operational mode, most of
the interrupt responses contain received frames and, therefore,
the dynamic buffer allocation policy is optimal because it
decreases the memory usage without causing a significant

Parsing Algorithm Parsing Delay Frequency of Lost Commands
carl9170 14 µs 5.43%
contiki80211 100 µs 0.02%

TABLE I
PARSING EFFICIENCY FOR THE ORIGINAL AND THE OPTIMIZED

INTERRUPT RESPONSE PARSER.

32%

68%

 Inside Interrupt overhead (%) Scheduler overehad (%)

Packet Handling Overhead

Fig. 9. Online and offline frame processing overhead.

processing delay.
The results in Table I show the benefits of the interrupt re-

sponse parsing described in Section II-A4 by comparing it with
the original carl9170 parser, which simply examines the
beginning of an incoming interrupt response for a command
response header pattern and, consequently, may fail to detect
the presence of command responses inside a grouped interrupt
response. Although such simple parser minimizes the interrupt
processing delay, it results in a much higher frequency of lost
command responses. This occurs due of the long usb handling
and parsing/handling times for large frames inside the interrupt
context, which increase the probability that the next incoming
command and/or frame response(s) are grouped. The results
show that the advanced interrupt response parser significantly
reduces the frequency of lost command/hardware responses.

Fig. 9 shows CPU processing overhead for online and offline
frame handling operations, as illustrated in the AR9170 radio
driver diagram (Fig. 3). Since the offline handling constitutes
the larger part of the total frame handling overhead, the
decision to do the remaining frame handling offline results
in a significant decrease in the interrupt response processing
delay.

C. Performance of State-Aware RX Filtering

Contiki80211 employs the state-aware RX filtering de-
scribed in Section II-A3. Here we evaluate its performance. As
shown in Table II, in the absence of the filtering mechanism
the probability of RX buffer overflow is non-negligible. In the
university campus scenario with a heavily background traffic,
Contiki80211 needs to store and process all decoded manage-
ment and data frames (including retransmissions) regardless
of their origin. Buffer overflows occur at traffic bursts when
the driver is unable to process all incoming traffic in time. In
addition, in case of long incoming frames, the probability of

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

Transfer Completion Interrupt Latency [µsec]

C
C

D
F

L ~ U(0,2kB)
L ~ U(0,400B)
L ∈ [4, 64B]

Fig. 10. Complementary CDF of USB transfer completion interrupt latencies
for different USB transfer lengths corresponding to outgoing packet trans-
missions of uniformly distributed payload lengths in (0, 2KB) and (0,400B),
respectively, and outgoing command transfers with lengths in the range (4,
64B).

lost command responses slightly increases.
We conducted an experiment similar to the one in [7] to

measure the probability that an ATIM frame is not processed
before the expiration of the current ATIM window. This prob-
ability depends on the length of the ATIM window. As shown
in Table II, the filtering of DATA frames before they reach
the host prevents the RX queue of the AR9170 radio driver
from growing large and, therefore, increases the probability
for ATIM frames to be processed in time.

D. USB Transfer Timeouts

As discussed in Section II-A6, USB driver deadlocks are
avoided with the help of a timeout mechanism that forces the
USB driver to transit from the pending to the idle state. We
aim at optimizing the required timeout duration in order to
minimize the time wasted if a transfer completion interrupt is
lost. The time required for the host to receive the transfer com-
pletion interrupt from the 802.11 interface depends on the USB
host implementation on the Cortex-M3, on the USB protocol
implementation on the AR9170 chip, on the prioritization of
USB interrupts, and on the CPU load at both the host and the
802.11 interface. Fig. 10 shows the empirical distribution of
the transfer completion interrupt latency, as computed in our
measurements. This latency depends on the size of the out-
going USB transfer L, with transfers corresponding to packet
transmissions having slightly larger USB completion interrupt
latencies compared to outgoing command transfers. Based on
Fig. 10, we set the timeout threshold to 16 µs, which tightly
upperbounds the latencies. Besides avoiding long deadlocks,
such a tight timeout threshold enables fast re-attempts of USB
outgoing command transfers, whose completion interrupts get
lost. The probability of such losses was measured to be in the
order of ∼ 10−3, showing that the re-transmission overhead
is kept low.

Packet Loss (overflow) Lost Command Responses Late ATIMs [ATIM window: 10 ms, 20 ms, 40 ms]
RX filtering ∼0% 0.02% 0.05%, 0.01%, ∼0%
no filtering 1.60% 0.04% 5.54%, 0.91%, 0.01%

TABLE II
PARSING EFFICIENCY FOR THE ORIGINAL AND CONTIKI80211 INTERRUPT RESPONSE PARSER.

E. Prioritization of USB Interrupts

As discussed in Section II-A5, increasing the priority of
USB line interrupts over the other interrupt sources in our
platform – namely the system tick and timer counters, the
digital input PINs, the watchdog interrupt, the UART, SPI and
TWI interface, and the random generator – can improve the
performance of Contiki80211. We modified the USB interrupt
priority level by setting the UHD_USB_INT_LEVEL flag to
1, which results in a priority level that is second only to the
timer counters. Table III shows the effect of the increased USB
interrupt priority level on the rate of USB completion timeout
of outgoing transfers, and on the percentage of grouped
incoming interrupt responses. The results indicate that, the
performance increase is significant. However, since the USB
interrupt delays are relatively high, as we show in Fig. 9,
one must guarantee that the other interrupting sources in the
MCU do not need to perform operations with stricter time
constraints, compared to the USB.

IV. RELATED WORK

Here we give an overview of open-source Linux-based plat-
forms that provide certain flexibility to modify or implement
new 802.11 MAC/MLME algorithms, as well as of (typi-
cally closed-source) 802.11 modules and development boards
for embedded systems. Our focus is on low-cost embedded
hardware/software rather than on expensive FPGA boards,
such as WARP [14], which provide full flexibility to develop
new wireless protocols, but no possibility to test them in an
embedded environment.

We have surveyed a number of open-source Linux drivers
for Wi-Fi chips of various vendors, including Realtek, Broad-
com, Intel, and Atheros, in order to asses their MAC and
MLME implementations — PSM in particular because power
saving is essential for energy-constrained sensor nodes and
smart objects. Although Linux drivers are not written for
such devices, they may be a good starting point for devel-
oping a more optimized code. In some drivers, such as in
the brcm80211 [15] for Broadcom chips, the PSM-related
code is limited to the configuration API, since the PSM is
implemented on-chip. Most drivers, such as iwlwifi for Intel
chips [16], rtlwifi for Realtek chips [17], b43 for Broadcom
chips [18], and ath5k [19], ath9k [20], and carl9170 [11] for
Atheros chips, do contain PSM implementations, but only for
BSS (infrastructure) mode. In B43 and carl9170, the PSM is
listed as a non-working feature, while in iwlwifi and rtlwifi, the
PSM is claimed to work properly for BSS. A fully functional
implementation of the 802.11 PSM for IBSS (ad hoc) mode
is not present in any of the drivers. A driver that provides an
incomplete PSM implementation for IBSS mode is otus [12].

Therefore, we used it as a basis for our code. The otus driver
supports the AR9170 Atheros chip and it is currently in the
staging state after being replaced by the carl9170 driver as of
Linux kernel version 2.6.

There are several projects that have used the above men-
tioned open-source drivers to build experimental platforms
for academic research. OpenFWWF [21] is envisioned as a
platform for developing, prototyping and testing new MAC
implementations. The project has developed a firmware code
that runs on a Broadcom chip/NIC and provides an ex-
tended command and routines set for developing new MAC
protocols. The firmware however, relies on the upper-MAC
implementation of the b43 driver, which lacks PSM for
IBSS mode. Similarly, the Wireless Mac Processor [22] is an
application environment for developing and testing wireless
MAC protocols. It provides a graphical tool for designing
protocols’ finite state machines, which are then used to build
the corresponding device firmware codes. The tool requires
BCM4311 or BCM4318 Broadcom chip/NIC and b43 driver.

Both OpenFWWF and WMP run on Linux PC platforms
and are not best suited for experimenting with MAC protocols
for constrained sensor nodes and smart objects. More promis-
ing development platforms for such devices and applications
are 802.11-enabled MCU boards that are running OpenWrt
[23], an open-source embedded operating system based on the
Linux kernel. For example, Arduino Yun [24] and Carambola
2 [25] are two OpenWrt-based modules that use Atheros
AR9331 chip driven by the ath9k Linux driver. Our platform
has two main advantages over [24] and [25]: it uses the
AR9170 chip, which comes with the open-source firmware,
and it is integrated into the Contiki OS and its state-of-art IoT
protocol stack.

There is a number of low-power 802.11 modules for em-
bedded systems on the market, such as Roving RN-131C/Wi-
Fly, Gainspan GS2100, Texas Instruments CC3000, Atheros
AR4100, Broadcom BCM4390, as well as development boards
for IoT applications that integrate these modules, such as
Flyport [26], SparkCore [27], WiSmart [28], and WICED [29].
These modules and development boards, however, are not
suitable for experimentation with 802.11 MAC protocols and
MAC layer management entity because they come with closed
firmware and proprietary protocol stack implementations.

V. CONCLUSIONS

In this paper we presented Contiki80211, an open-source
802.11 radio link layer implementation for the Contiki oper-
ating system. Contiki80211 is fully integrated into the net-
work stack of Contiki OS, enabling the experimentation and
performance evaluation of IoT network stacks over 802.11.

USB-out completion timeout Percentage of grouped responses
UHD_USB_INT_LEVEL=1 ∼0% 0.22%
highest
UHD_USB_INT_LEVEL=5 0.28% 4.78%
low (usual)

TABLE III
THE EFFECT OF PRIORITIZING USB INTERRUPTS ON THE CORTEX-M3 MCU.

Contiki80211’s modular architecture consists of a platform-
independent, minimal 802.11 IBSS, PSM-enabled stack, and a
device driver for the Atheros AR9170 chip, an open-firmware,
802.11 radio transceiver. We described in detail the functional
blocks of Contiki80211, focusing on a set of essential software
and resource optimization techniques in order to guarantee that
Contiki80211 can run efficiently on embedded devices with
limited memory and low processing power. Particularly, we
showed that a hybrid memory allocation for the driver queues
results in a good trade-off between the memory requirement
and interrupt processing delays, while a careful allocation of
the driver operations into the interrupt and thread execution
contexts is required to guarantee a robust behavior of the
AR9170 driver. In addition, we showed that a smart, protocol-
aware filtering of incoming packets increases the stability
of Contiki80211, showing that the integration of 802.11 –
along with its comparative advantages over 802.15.4 link layer
technologies – into the IoT constrained devices is a promising
solution to increase the performance of the future IoT systems.

VI. ACKNOWLEDGEMENT

This work is partially funded by European Community’s
Seventh Framework Program, area ”Internet Connected Ob-
jects”, under Grant No. 288879, CALIPSO Project – Connect
All IP-based Smart Objects. The work reflects only the authors
views; the European Community is not liable for any use that
may be made of the information contained herein.

REFERENCES

[1] Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks
(LR-WPANs), IEEE Std., Rev. IEEE Std 802.15.4, 2006.

[2] “Z-Wave Alliance,”
http://www.z-wavealliance.org.

[3] Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications, IEEE Std., Rev. IEEE Std 802.11-2012,
2012.

[4] S. Tozlu, M. Senel, W. Mao, and A. Keshavarzian, “Wi-fi enabled
sensors for internet of things: A practical approach,” Communications
Magazine, IEEE, vol. 50, no. 6, pp. 134–143, June 2012.

[5] B. Ostermaier, M. Kovatsch, and S. Santini, “Connecting things to the
web using programmable low-power wifi modules,” in Proceedings of
the Second International Workshop on Web of Things, ser. WoT ’11,
2011, pp. 2:1–2:6.

[6] I. Glaropoulos, S. Mangold, and V. Vukadinovic, “Enhanced IEEE
802.11 Power Saving for Multi-Hop Toy-to-Toy Communication,” in
IEEE Internet of Things (iThings), Beijing, China, 2013.

[7] V. Vukadinovic, I. Glaropoulos, and S. Mangold, “Enhanced Power
Saving Mode for Low-Latency Communication in Multi-Hop 802.11
Networks,” Elsevier Ad Hoc Networks, revised, available upon request.

[8] P. Levis, S. Madden, J. Polastre, S. R., K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler, “Tinyos: An operating
system for wireless sensor networks,” in Ambient Intelligence, J. R.
W. Weber and J. E. Aarts, Eds. Springer, Berlin, 2005.

[9] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - A Lightweight and
Flexible Operating System for Tiny Networked Sensors,” in Proc. IEEE
Int. Conf. Local Computer Networks, Tampa, USA, 2004.

[10] I. Glaropoulos, “Multi-hop power save mode (mh-psm) for 802.11,”
https://github.com/sics-iot/calipso/tree/master/contiki80211 [Dec-2013].

[11] “carl9170 - Linux Wireless,”
http://wireless.kernel.org/en/users/Drivers/carl9170/. [Nov-2013].

[12] “otus - linux wireless,”
http://linuxwireless.org/en/users/Drivers/otus. [Nov-2013].

[13] “Atmel usb host library,”
http://www.atmel.com/Images/doc8486.pdf.

[14] P. Murphy, A. Sabharwal, and B. Aazhang, “Design of WARP: A
Flexible Wireless Open-Access Research Platform,” in Proc. EUSIPCO,
Florence, Italy, 2006.

[15] “brcm80211 - Linux Wireless,”
http://wireless.kernel.org/en/users/Drivers/brcm80211/. [Nov-2013].

[16] “iwlwifi - Linux Wireless,”
http://wireless.kernel.org/en/users/Drivers/iwlwifi/. [Nov-2013].

[17] “rtlwifi - Linux Wireless: realtek 802.11 drivers,”
http://http://wireless.kernel.org/en/users/Drivers/rtl819x/. [Apr-2014].

[18] “b43 - Linux Wireless,”
http://wireless.kernel.org/en/users/Drivers/b43/. [Nov-2013].

[19] “ath5k - Linux Wireless,”
http://wireless.kernel.org/en/users/Drivers/ath5k/. [Nov-2013].

[20] “ath9k - Linux Wireless,”
http://wireless.kernel.org/en/users/Drivers/ath9k/. [Nov-2013].

[21] “Open FirmWare for WiFi networks,”
http://www.ing.unibs.it/ openfwwf/. [Nov-2013].

[22] I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, and
F. Gringoli, “Wireless MAC Processors: Programming MAC Protocols
on Commodity Hardware,” in Proc. IEEE INFOCOM, Orlando, USA,
2012.

[23] “OpenWrt,”
https://openwrt.org/. [Nov-2013].

[24] “Arduino Yun,”
http://arduino.cc/en/Main/ArduinoBoardYun/. [Nov-2013].

[25] “Carambola 2,”
http://8devices.com/carambola-2/. [Nov-2013].

[26] “openPicus Flyport,”
http://www.openpicus.com/site/products/. [Nov-2013].

[27] “SparkCore,”
https://www.spark.io/. [Nov-2013].

[28] “WiSmart,”
http://www.econais.com/products/ec32lxx-family/. [Nov-2013].

[29] “WICED: Wireless Internet Connectivity for Embedded Devices,”
http://http://www.broadcom.com/products/wiced/wifi/. [Apr-2014].

