
Contiki80211: An IEEE 802.11 Radio Link Layer
for the Contiki OS

Ioannis Glaropoulos, Vladimir Vukadinovic, and Stefan Mangold

Abstract—We believe that the existing 802.11 MAC layer can
be optimized (especially for energy-efficiency) to make Wi-Fi suit-
able for a wide range of IoT applications. However, there is a lack
of low-cost embedded platforms to be used for experimentation
with 802.11 MAC. The majority of low-power Wi-Fi modules for
embedded systems has closed source firmware and protocol stack
implementations, which prevents implementation and testing of
new protocol features. Here we describe Contiki80211, an open
source 802.11 radio link layer implementation for Contiki OS,
optimized for resource constrained embedded platforms, whose
purpose is to enable experimentation with 802.11 MAC layer
management mechanisms on embedded devices.

Index Terms—IEEE 802.11, IoT, Contiki OS, prototyping.

I. INTRODUCTION

The future Internet of Things (IoT) will provide global
IP connectivity to a broad variety of devices, such as en-
tertainment electronics, wearable sport gadgets, home ap-
pliances, and industrial sensors. Some of these devices are
portable, battery-powered, and need to connect wirelessly to
surrounding devices and Internet gateways. Several wireless
standards are porposed for IoT including Zigbee, which is
based on the IEEE 802.15.4 standard [1], Z-Wave [2] or
Bluetooth Low Energy (BLE), targeting, respectively, smart
metering applications, home and building automation, and
connectivity with modern smartphone hardware. IoT devices
that need to connect to smartphones, tablets, TVs, set-top
boxes, game consoles, and toys would, however, benefit from
IEEE 802.11 connectivity, as Wi-Fi technology dominates
the consumer electronics segment. Therefore, it is expected
that future consumer electronics market will boost Wi-Fi’s
presence on the IoT market. The economy of scale and the
possibility of reuse of the existing Wi-Fi infrastructure offer
key cost savings and facilitate faster deployment with Wi-Fi
than with competing technologies. Furthermore, Wi-Fi has the
advantage of native compatibility with IP, which is the key
enabler for IoT: IP eliminates the need for expensive gateway
solutions to connect IoT devices to the Internet.

Wi-Fi energy consumption is, however, relatively high
compared to ZigBee, Z-Wave and BLE and may quickly
drain the battery of a device. There have been some notable
improvements in radio hardware and many low-power Wi-Fi

I. Glaropoulos is with the Access Linnaeus Centre, Stockholm, Sweden.
His work was done while at Disney Research. E-mail: ioannisg@kth.se.

V. Vukadinovic and S. Mangold are with Disney Research Zurich. E-
mail: {vvuk,stefan}@disneyresearch.com.

This work is partially funded by European Community’s Seventh Frame-
work Program, area ”Internet Connected Objects”, under Grant No. 288879,
CALIPSO Project – Connect All IP-based Smart Objects. The work reflects
only the authors views; the European Community is not liable for any use
that may be made of the information contained herein.

chips with energy-efficient radio transceivers have emerged.
The 802.11 MAC protocol, however, is inherently energy-
hungry, as a result of idle listening, which consumes energy
even in the absense of traffic exchange. To alleviate the
problem, the MAC layer management entity (MLME) of the
802.11 standard [3] includes a power-saving mode (PSM). In
[4] we described how 802.11 PSM – originally designed for
single-hom communication – can be optimized for multi-hop
networking with minimal amendments to the standard. While
testing the proposed amendments we were faced with a lack
of embedded platforms that can be used for experimentation
with 802.11 MAC protocol. On one side, the vast majority of
low-power Wi-Fi modules for embedded systems has closed-
source firmware and protocol stack implementations, which
prevents the implementation and the testing of new MAC pro-
tocol features. On the other side, popular embedded operating
systems for IoT, such as Tiny OS [5] and Contiki OS [6], are
developed for ZigBee-enabled motes and, therefore, they lack
kernel libraries and drivers for Wi-Fi devices.

This paper describes Contiki80211, an open source 802.11
radio link layer (MAC and 802.11 device driver) implementa-
tion for Contiki OS, one of the most popular operating systems
for embedded systems and IoT. The purpose of Contiki80211
is to enable experimentation with 802.11 MAC layer man-
agement mechanisms on embedded platforms, such as sensor
motes and IoT smart devices. The integration of Contiki80211
with the Contiki network protocol suite enables researchers to
run and evaluate IETF protocols for IoT, such as RPL and
CoAP, on top of an 802.11 radio link layer. Contiki80211
supports ad hoc (IBSS) mode for direct device-to-device
communication and power saving mode (PSM) for radio duty-
cycling. In order to provide maximum flexibility for experi-
mentation with low-cost off-the-shelf hardware, Contiki80211
uses an Qualcomm Atheros AR9170-based radio for which an
open-source firmware is available. Contiki80211 implements a
number of optimizations, discussed in Section II, and evaluated
in Section III, in order to run an otherwise resource-hungry
802.11 MAC layer on hosts that are constrained in terms of
memory and processing power.

II. CONTIKI80211

We implemented Contiki80211, as part of the Contiki op-
erating system [6], on a hardware platform (Fig. 1) consisting
of an Arduino Due board (ARM Cortex-M3 MCU, 96 KB
SRAM, 512 KB Flash) and an 802.11 interface attached to it
via USB. The 802.11 interface module is based on the Atheros
AR9170 chip. Contiki80211 provides link layer functionalities
to the Contiki’s micro IP stack (uIP6) and uses an API
provided by the AR9170 firmware to exchange commands,
asynchronous responses, and frames with the 802.11 interface



Contiki80211

Contiki uIP

Firmware

Lower MAC

AR9170

Cortex- M3 

MCU

Arduino Due

Atheros AR9001U-2NX

(AR9170 + AR9104)

USB interface

USB

Fig. 1. Hardware platform for Contiki80211 implementation and evaluation.

USB Host Library

IN USB 

Interrupts

CMD

Responses

Incoming

Frames

Untie CMDs/Frames

RSP Handling 

Frame Parsing:

PHY HDR

MAC HDR

(DEST addr., SSID)

IEEE 802.11

State Update

PSM Scheduler

  
  
  
  
  
  
T

X
 Q

u
e

u
e

O

F

I

F

  
  
  
  
  
  
  
 A

s
y
n

c
 C

M
D

 Q
u

e
u

e

O

F

I

F

AR9170 Scheduler

Async.

Frame

Processing

Frame

Transmis

sion

Broadcast

Frame 

Handling

CMD

Transmis

sion

AR9170 PSM Duty-Cycling

  
  
  
  
  
  
R

X
 Q

u
e

u
e

O

F

I

F

Config:

Lower MAC

PHY, PSM

Beaconing

RX Filter

RX Frame

Filtering

ATIM/Data Parsing & Generation State-Aware RX FilteringBeaconing

IEEE80211 Manager

Join / Create / Leave IBSS Scanning Configuration

Contiki uIP

USB Interrupts

Bulk-IN 

Interrupts

INT-OUT 

Interrupts

Bulk-OUT 

Interrupts

Buffer 

Response

Reschedule 

Listening

CMD / Data Transfer Done

AR9170 USB FSM                   

Update USB FSM State: IDLE

State

Direct

CMD / Data

Transmission

IDLE

PENDING

O
U

T
 Q

u
e

u
e

Prioritized

Next 

CMD

Dispatch

State PENDING

TCA
R

9
1

7
0

 U
S

B
 D

ri
v

e
r

A
R

9
1

7
0

 R
a

d
io

 D
ri

v
e

r
IE

E
E

8
0

2
1

1
 L

ib

Fig. 2. Contiki80211 functional blocks. Yellow boxes represent functions
executed within interrupt context. Green boxes represent function executed
asynchronously by the Contiki scheduling system.

on the AR9170 device. Contiki80211 consists of three func-
tional blocks (Fig. 2):

• platform-independent IEEE80211Lib, which implements
802.11 IBSS management (scan, join, create, leave), IBSS
parameter configuration, frame generation and parsing,
and a power saving mode (PSM) scheduler,

• AR9170 radio driver, which manages the TX and RX
frame queues, handles commands/hardware responses
to/from the 802.11 interface, and implements the lower-
level PSM functionality, namely the RF duty-cycling.

• AR9170 USB driver, which handles the communication
between the host and the 802.11 interface. It implements
routines for installation and enumeration of the 802.11
interface, and allocation of the end-points for communi-
cation with the interface over USB.

A. Resource Optimization

The implementation of AR9170 radio and USB drivers is
based on the open-source carl9170 and Otus AR9170 Linux
drivers [7] [8]. Both drivers, however, have been designed
for non-constrained hosts, such as PCs, while Contiki80211
is expected to run on resource-constrained systems. In the
following, we describe some of the most important resource
optimizations that we made in Contiki80211.

1) Minimizing TX/RX Buffer Space: carl9170 allocates 16
TX-RX buffer pairs, where USB resource blocks (driver com-
mands, hardware responses and incoming/outgoing frames)
are stored before being processed. Each buffer has a length
of 2 KB to accommodate the maximum possible MAC PDU
length, resulting in 64 KB of memory being reserved for the
buffers only, which would consume two thirds of the MCU’s
total RAM. Instead, Contiki80211 uses a single TX-RX buffer
(Fig. 2). To handle heavy incoming traffic, it implements
dynamic RX buffer space allocation, which increases the pro-
cessing load in favor of low memory usage. In Section III, we
evaluate the impact of dynamic buffer allocation on processing
latency for RX interrupts coming from the 802.11 interface.

2) Streamlined Interrupt Processing: A major challenge
for constrained hosts is the CPU load of the code executed
in the context of an interrupt coming from the 802.11 USB
interface. If the interrupt execution time is long, there is a
risk of missing subsequent USB interrupts, which are instead
handled as a single interrupt. The incoming data associated
with this grouped interrupt, will contain multiple interrupt
responses from all these subsequent USB interrupts (e.g., mul-
tiple frames, or frames grouped with commands or hardware
responses from the 802.11 interface), which are difficult to
untie from each other. Therefore, the interrupt context code
must be kept as minimal as possible. Contiki80211 reduces
the interrupt processing load by moving the processing of
incoming data frames outside the interrupt context, except
for the lightweight checks for PHY and MAC header errors.
The frames are then buffered and processed off-line by the
AR9170 scheduler. Command and hardware responses are still
handled on-line, but the handling consists only of driver and
802.11 state updates (Fig. 2). Streamlined interrupt processing,
however, does not entirely eliminate the risk of grouped
interrupts. Therefore, the AR9170 radio driver implements
an efficient interrupt response parsing algorithm, which uses
the characteristic header patterns of USB command/hardware
responses, in order to detect and extract them from the grouped
interrupt response1.

3) State-Aware RX Filtering: Off-line frame processing
can, however, result in RX queue overflows in case of intense
data traffic. Also, moving a part of frame processing outside
interrupt context provides no guarantee for the frame handling
delay. ATIM frames, however, need to be handled fast, so
that the PSM state machine is updated before the end of the
ATIM window. We address this by dynamically enforcing low-
level frame filtering,so that non-relevant frames are filtered-out
by the 802.11 interface, without reaching the host MCU. RX

1Frame responses do not include such patterns and possible consecutive
frames are untied by inspecting their payload.



filtering is PSM state-aware, as follows:
• during ATIM window AR9170 accepts only 802.11

MGMT frames
• during TX/RX window AR9170 accepts only 802.11

DATA frames with the default SSID, or MGMT frames,
with the exception of BCN and ATIM frames

• during Soft BCN window [4] AR9170 accepts both DATA
and MGMT frames.

B. Integration with Contiki OS

Contiki network protocol stack is optimized to provide
wireless connectivity to resource-constrained devices.It fully
supports IPv6, RPL routing protocol for low-power and lossy
networks, and the Constrained Application Protocol (CoAP),
which makes it well suited for the development of a wide
range of IoT applications. We integrated Contiki80211 into
the Contiki’s network protocol stack (NETSTACK).
NETSTACK organizes the network modules into a com-

plete protocol stack covering all traditional OSI layers. On
the top level of NETSTACK, at the NETSTACK_NETWORK
layer, we introduce IEEE80211_net (Fig. 3), connecting
the underlying Contiki80211 modules with the Contiki’s uIPv6
stack. Unlike 6LoWPAN, which is used with the 802.15.4
link layer, IEEE80211_net provides neither IPv6 packet
compression nor fragmentation support, as 802.11 frames can
accommodate long IPv6 packets. On the NETSTACK_MAC
layer, we introduce the IEEE80211_mac module that im-
plements the IEEE80211Lib functionality. IEEE80211_mac
delivers IP packets to the underlying IEEE80211_rdc mod-
ule that uses IEEE80211_framer to encapsulate them into
802.11 frames. At the opposite direction IEEE80211_rdc
performs MAC address filtering and duplicate frame de-
tection and delivers IP packets to the IEEE80211_mac.
On the bottom level the NETSTACK_WIFI layer includes
the AR9170_radio_driver and AR9170_USB_driver
modules.

III. PERFORMACE EVALUATION

We evaluate the effect of the various optimizations described
in Section II-A on the performance of Contiki80211. We
consider a scenario where a Contiki80211-enabled mote shown
in Fig. 1 is placed inside a building of an university campus.
The mote receives and processes all incoming 802.11 traffic,
which is heavy as the experiments were performed during
busy hours. In each experiment, we measure the Contiki80211
performance (memory usage, interrupt processing latency, etc.)
on the platform MCU during a time interval of 120 minutes.

A. Performance of RX Buffer Space Allocation

We investigate the effect of the dynamic buffer allocation
for the incoming USB interrupt responses, described in Sec-
tion II-A1. Fig. 4 shows the memory usage and RX interrupt
processing delay for three allocation policies: the static policy,
where 16 buffers (2 KB each) are reserved at compilation time,
the dynamic policy, where buffers are allocated on-demand
in real time, and a hybrid policy, where a maximum-sized
buffer is reserved at the time of re-scheduling listening at
the bulk-in USB endpoint. The static policy results in the
shortest processing delay – at the expense of highest memory

NETSTACK_RDC

NETSTACK_MAC

NETSTACK_FRAMER

         Standard architecture                                   Contiki80211 architecture

NETSTACK_RADIO

CC2420 CC2520 ...

802154Framer ...

XMAC ...

CSMA

NETSTACK_NET

6LoWPAN RIME ...

...

IEEE80211_net

IEEE80211_mac

uIP6

uIP6 ICMP6

TCP UDP

RPL

App

HTTP CoAP ...

AODV

NETSTACK_WIFI

AR9170_radio_driver

IEEE8021_framer

...

NullMAC

NullFramer

ContikiMAC

SPI UART ... AR9170_USB_driver

IEEE80211_rdc

Fig. 3. Standard and 802.11-enabled Contiki network stacks.

usage – as it does not perform memory operations inside
interrupt context2. The dynamic policy minimizes memory
usage, but increases the processing delays as all memory
operations are performed within interrupt context. The hybrid
policy decreases the interrupt process delay as it schedules
the resource allocation to be executed once the interrupt
routine is terminated. If a subsequent interrupt arrivs before the
resource allocation, the ybrid policy reduces to the dynamic
policy. However, since such events are rare, the hybrid policy
performs better at the expense of slightly higher memory
demand since the a-priory resource allocation account for the
maximum possible size of the interrupt response.

B. Performance of Streamlined Interrupt

The processing of interrupt responses from the 802.11
interface consists of three stages: usb handling, i.e. memory
allocation, copy, and re-scheduling listener, parsing to check
for grouped responses, and handling of command/hardware
responses and/or frames inside interrupt context Interrupt
responses containing only command/hardware responses are
short and the command response header pattern is immediately
detected, leading to low parsing delays (Fig. 5). Interrupt re-
sponses containing frames require longer parsing time, because

2It does not require copying the interrupt response content to the Contiki
buffers before prosessing, as the static memory blocks are thread-safe and can
serve as on-demand Contiki buffers.



Packet Loss (overflow) Lost Command Responses Late ATIMs [ATIM window: 10 ms, 20 ms, 40 ms]
RX filtering ∼0% 0.02% 0.05%, 0.01%, ∼0%
no filtering 1.60% 0.04% 5.54%, 0.91%, 0.01%

TABLE I
EVALUATION OF THE PSM STATE-AWARE FRAME FILTERING.

Stat. Hybr. Dyn.
0

5

10

15

20

25

30

35

Memory Allocation Policy

U
S

B
 R

X
 M

em
or

y 
F

oo
tp

rin
t [

kB
]

 

 
Average
Peak

Stat. Hybr. Dyn.
0

5

10

15

20

25

30

35

40

U
S

B
 R

X
 IR

Q
 L

at
en

cy
 [ 

µs
ec

]

 

 
Average
Peak

Fig. 4. Comparison of the different buffer allocation policies.

49%

22%

29%

 

 
USB RX IRQ Parse Handle

28%

56%

15%

PKT/Mixed Resource BlocksCMD Resource Blocks

Total Average: 37 µ sec Total Average: 151 µ sec

Fig. 5. Processing costs for various stages of interrupt response processing.

the complexity of pattern search is proporional to the length of
the response, therefore, parsing dominates processing delay.

Table II shows that the interrupt response parsing described
in Section II-A2 is more robust compared to the original
carl9170 parser, which, although minimizing the interrupt
processing delay, as it simply examines the beginning of an
incoming interrupt response for a command response header
pattern, it may fail to detect the presence of command re-
sponses inside a grouped interrupt response. Table. III shows
CPU processing overhead for online and offline frame han-
dling operations, as illustrated in the AR9170 radio driver
diagram (Fig. 2). As offline handling constitutes the larger
part of the total frame handling overhead, the decision to do
the remaining frame handling offline results in a significant
decrease in the interrupt response processing delay.

C. Performance of State-Aware RX Filtering

In Table I we evaluate the performance of the state-aware
RX filtering described in Section II-A3. In the absence of the
filtering mechanism the probability of RX buffer overflow is
non-negligible. Contiki80211 stores and processes all decoded
management and data frames (including retransmissions) re-

Parsing Algorithm Parsing Delay Frequency of Lost Commands
carl9170 14 µs 5.43%
contiki80211 100 µs 0.02%

TABLE II
PARSING EFFICIENCY FOR THE ORIGINAL AND THE OPTIMIZED

INTERRUPT RESPONSE PARSER.

Processing Overhead (%)
Inside IRQ 32%
Outside IRQ 68%

TABLE III
ONLINE AND OFFLINE FRAME PROCESSING OVERHEAD.

gardless of their origin. Buffer overflows and response losses
will, then, occur at traffic bursts when the driver is unable
to process all incoming traffic in time.We conducted an
experiment similar to the one in [4] to measure the probability
that an ATIM frame is not processed before the expiration
of the current ATIM window. This probability depends on
the length of the ATIM window. As shown in Table I, the
filtering of DATA frames before they reach the host prevents
the RX queue of the AR9170 radio driver from growing large
and, therefore, increases the probability for ATIM frames to
be processed in time.

IV. CONCLUSIONS

In this paper we presented Contiki80211, an open-source
802.11 radio link layer for the Contiki OS. Contiki80211
is fully integrated into the network stack of Contiki OS,
enabling the experimentation and performance evaluation of
IoT network stacks over 802.11. We described several resource
optimizations that allow Contiki80211 to run efficiently on
embedded devices with limited memory and processing power.
In particular, a hybrid allocation policy for the RX queues
results in a good trade-off between the memory requirement
and interrupt processing delays. A careful assignement of
driver operations to the interrupt and thread execution contexts
is shown to guarantee a robust behavior of the driver. Finally,
we showed that state-aware filtering of incoming packets
increases the stability of Contiki80211.

REFERENCES

[1] Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-
WPANs), IEEE Std., Rev. IEEE Std 802.15.4, 2006.

[2] “Z-Wave Alliance,” http://www.z-wavealliance.org.
[3] Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications, IEEE Std., Rev. IEEE Std 802.11-2012, 2012.
[4] V. Vukadinovic, I. Glaropoulos, and S. Mangold, “Enhanced Power

Saving Mode for Low-Latency Communication in Multi-Hop 802.11
Networks,” Elsevier Ad Hoc Networks, 2014.

[5] P. Levis, S. Madden, J. Polastre, S. R., K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler, “Tinyos: An operating system
for wireless sensor networks,” in Ambient Intelligence, J. R. W. Weber
and J. E. Aarts, Eds. Springer, Berlin, 2005.

[6] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - A Lightweight and
Flexible Operating System for Tiny Networked Sensors,” in Proc. IEEE
Int. Conf. Local Computer Networks, Tampa, USA, 2004.

[7] “carl9170 - Linux Wireless,”
http://wireless.kernel.org/en/users/Drivers/carl9170/. [Nov-2013].

[8] “otus - linux wireless,” http://linuxwireless.org/en/users/Drivers/otus.
[Nov-2013].


